Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/
|
|
- Wacława Mikołajczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, zdzislaw.otachel@up.lublin.pl materiały: zotachel/geo2i3 konsultacje: poniedziałek, wtorek Lublin, 2016/17
2 Zakres materiału Statystyka opisowa - analiza struktury zjawisk masowych Podstawowe pojęcia rachunku prawdopodobieństwa Zmienne losowe i ich rozkłady Estymacja punktowa i przedziałowa Testowanie hipotez statystycznych
3 Literatura Krysicki W. i in. Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, cz. 1 i 2, PWN Oktaba W. Rachunek prawdopodobieństwa i statystyka matematyczna. WAR Koronacki J., Mielniczuk J. Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Parlińska M., Parliński J. Badania statystyczne z Excelem, Wyd. SGGW W-wa 2003.
4 Przedmiot statystyki Termin statystyka wywodzi się od włoskiego słowa stato, czyli państwo. Został on użyty po raz pierwszy przez niemieckiego politologa Gotfrieda Achenwalla ( ) profesora uniwersytetów w Magdeburgu i Getyndze, na oznaczenie szeroko rozumianych wiadomości o państwie. Dla uporządkowania wywodów ujmowano opisy w tabele, dlatego kierunek ten ochrzczono mianem statystyki tabelarycznej. Za twórców współczesnej statystyki uznaje się Anglików Johna Grunta ( ) i Williama Petty ego ( ), arytmetyków politycznych. Na podstawie danych liczbowych szukali oni prawidłowości wśród pozornie chaotycznych zjawisk masowych.
5 Przedmiot statystyki Dalszy rozwój statystyki stymulowała teoria rachunku prawdopodobieństwa, zapoczątkowana w drugiej połowie XVII w. przez francuskich matematyków: Blaise Pascala ( ) i Pierra Fermata ( ). Podwaliny pod metody współczesnej statystyki położył Carl Friedrich Gauss ( ) tworząc teorię, za pomocą której na podstawie szeregu pomiarów jakiegoś obiektu można oszacować jego rzeczywisty wymiar. Najwybitniejsi twórcy współczesnych metod statystycznych to: Karl Pearson ( ), Ronald Aylmer Fisher ( ), Jerzy Spława-Neyman ( ), E.S. Pearson ( ), Abraham Wald ( ).
6 Statystyka opisowa
7 Podstawowe pojęcia statystyczne Przedmiotem badań statystycznych są populacje - określone zbiory osób, rzeczy lub zjawisk. Będą one badane pod kątem określonych cech tj. funkcji, które przyporządkowują każdemu elementowi populacji wartość liczbową, będącą najczęściej, wynikiem pomiaru. Cechy podzielimy na: Skokowe - przyjmujące skończoną lub przeliczalną liczbę wartości. Ciągłe - przyjmujące dowolne wartości z pewnego przedziału.
8 Przykłady Zbiór studentów GiK UP Lublin (obecnych i przyszłych), zbiór pomiarów odległości pomiędzy dwoma ustalonymi punktami w przestrzeni to populacje. Pierwsza z nich jest tzw. populacją przedmiotową. Natomiast zbiór wszystkich pomiarów pewnej wielkości fizycznej (tutaj, odległość) tworzy tzw. przestrzeń próby związaną z tą wielkością. Wzrost, waga, ocena z matematyki studenta to cechy. Dwie pierwsze są ciągłe, trzecia jest skokowa. W drugim przypadku pojęcia populacji i cechy trudno odróżnić.
9 Całkowite i częściowe badanie populacji Wnioskując o cechach pewnej populacji można wykonać następujące rodzaje badań statystycznych: Badanie całkowite - mierząc wartości interesujących cech dla każdego elementu populacji, Badanie częściowe - oznaczając wartości cech dla wytypowanych na drodze losowania niektórych elementów populacji i uogólniając wyniki, za pomocą technik statystycznych, na całą populację. Statystyka interesuje tylko ten drugi rodzaj badania.
10 Szereg statystyczny Na razie zajmiemy się analizą wyników badania statystycznego dotyczącego jednej cechy, oznaczymy ją x. Badanie częściowe prowadzi do uzyskania pierwotnego szeregu statystycznego. Jest to ciąg pomiarów cechy x dla n obiektów z populacji wytypowanych do badania najczęściej drogą losowania, mianowicie: x 1, x 2,..., x n, gdzie x i jest wartością (lub, inaczej mówiąc, obserwacją lub pomiarem) cechy x dla i-tego elementu wytypowanego z populacji do badania, a n ilością przebadanych obiektów (rozmiarem, liczebnością, długością szeregu statystycznego).
11 Statystyczne szeregi rozdzielcze Rozstęp szeregu statystycznego (R) to różnica: R = x max x min, gdzie x max i x min oznacza odpowiednio największy i najmniejszy zaobserwowany pomiar. Pierwotny szereg statystyczny zawiera nieistotne informacje, dlatego podlega obróbce mającej na celu pominięcie tychże, a przez to zyskanie na przejrzystości. Takie zabiegi prowadzą do otrzymania następujących, przetworzonych danych statystycznych: Szereg szczegółowy - pomiary uporządkowane w kolejności rosnącej lub malejącej, Szereg rozdzielczy - zestawienie uporządkowanych zaobserwowanych wartości lub zakresów (przedziałów klasowych) z odpowiadającymi im liczebnościami. Szeregi rozdzielcze tworzy się z licznych (zawierających więcej niż 30 obserwacji) szeregów statystycznych lub, gdy w szeregu występują powtarzające się wartości.
12 Rodzaje szeregów rozdzielczych Punktowy szereg rozdzielczy - dla cech skokowych przyjmujących skończoną liczbę wartości; ma on postać zestawienia: (x i, l i ), gdzie x i - i-ta w kolejności wzrostu zaobserwowana wartość, l i - ilość powtórzeń w szeregu statystycznym, Przedziałowy szereg rozdzielczy - dla cech ciągłych lub skokowych o licznych różnych wartościach (w praktyce, więcej niż 30) i ma on postać zestawienia: (π i, l i ), gdzie π i - i-ty przedział klasowy, l i - ilość obserwacji należących do tego przedziału. Przedziały klasowe na ogół są jednakowej długości, muszą być rozłączne i ich suma ma pokrywać wszystkie wartości szeregu rozdzielczego. Suma liczebności jest zawsze równa długości szeregu statystycznego: l 1 + l l r = n.
13 Zależność liczby klas od ilości pomiarów Liczba pomiarów (N) Liczba klas (k) Liczbę klas można wyznaczyć także na podstawie jednej z zależności: k 5 ln n, k 1 + 3, 332 ln n, k n. Nie stosuje się większej ilości klas niż 30. Długość przedziału klasowego obliczamy dzieląc rozstęp R przez liczbę klas k. Graficzne przedstawienie szeregu rozdzielczego to histogram (dla szeregów przedziałowych) lub diagram liczebności (dla szeregów punktowych).
14 Rozkład empiryczny Zastępując w szeregu rozdzielczym liczebności l i przez częstości f i = l i /n otrzymujemy zestawienie zwane empirycznym rozkładem cechy. Zauważmy i zapamiętajmy, że f i = 1. i
15 Charakterystyki używane do opisu danych statystycznych Zbiór danych statystycznych szereg statystyczny niesie informację o cesze trudną do operowania. Statystyk decyduje się wykorzystywać tylko taką część tej informacji, którą zawierają charakterystyki danych liczbowych. Do charakterystyk najczęściej wykorzystywanych przy opisie struktury zbiorowości liczbowych należą: miary położenia (średnie, przeciętne) podają one tą wartość wokół której skupiają się pozostałe liczby (obserwacje), jeżeli x jest taką miarą, to zawsze x min x x max ; miary zmienności (rozproszenia, zróżnicowania, dyspersji) określają stopień zróżnicowania wartości w analizowanej zbiorowości, jeżeli d jest taką miarą, to d 0,
16 Charakterystyki używane do opisu danych statystycznychcd. przypadek d = 0 oznacza brak zmienności, wszystkie wartości są równe swojej średniej; miary asymetrii (skośności) określają kierunek zróżnicowania wartości; miary koncentracji określają stopień skupienia wartości wokół średniej.
17 Miary położenia Dzielą się na: 1 średnie klasyczne: średnia arytmetyczna (A), średnia geometryczna (G), średnia harmoniczna (H), 2 średnie pozycyjne: dominanta (moda, wartość modalna, najczęstsza), kwantyle kwartyle wartości dzielące uporządkowaną zbiorowość na cztery części o równej liczebności, decyle dzielące zbiorowość na dziesięć części, percentyle dzielące zbiorowość na sto części. Średnie klasyczne są obliczane na podstawie wszystkich wartości szeregu statystycznego, średnie pozycyjne są często wartościami konkretnych wyrazów szeregu wyróżniających się pod pewnym względem.
18 Średnia arytmetyczna Średnią x cechy x na podstawie szeregu statystycznego x 1, x 2,..., x n najczęściej policzymy posługując się wzorem na średnią arytmetyczną: x = x 1 + x x ni=1 n x i =. n n Ta sama średnia dla szeregu rozdzielczego będzie liczona wg wzoru na średnią ważoną, gdzie wagami są liczebności: x = x 1l 1 + x 2 l x r l r l 1 + l l r = ri=1 x i l i ri=1 l i, gdzie x 1, x 2,..., x r oznaczają tu wartości zaoobserwowane dla szeregu punktowego lub środki przedziałów klasowych dla szeregu klasowego. Średnia arytmetyczna jest miarą wiarygodną tylko dla zbiorowości o niewielkim stopniu zróżnicowania obserwacji. Jej wadą jest wrażliwość na obserwacje odstające. Obserwacje odstające to pomiary, których wartość zdecydowanie odbiega od większości pozostałych. Najczęściej są one wynikiem błędów.
19 Średnia harmoniczna Jeżeli obserwowane wartości cechy są określone w jednostkach względnych (tzn. wielkość/jednostka miary) w odniesieniu do stałej wartości wielkości, to wartość przeciętną szeregu x 1, x 2,..., x n możemy policzyć wg średniej harmonicznej: H = n ni=1 1 x i. Dotyczy to takich cech jak prędkość w km/h, gęstość zaludnienia w osobach/km2, spożycie w kg/osobę, itp. Dla szeregów rozdzielczych należałoby stosować wzór z liczebnościami l i : H = l 1 + l l r ri=1 1. x i
20 Średnia arytmetyczna a harmoniczna - przykład Obserwujemy prędkość v pewnych obiektów. Wykonano 2 eksperymenty. W I-szym mierzono prędkości obiektów w tym samym interwale czasowym τ uzyskując dane: v 1,..., v n. Stąd v A = s t = v 1τ + + v n τ nτ = v v n. n W II-gim mierzono prędkości obiektów na tym samym odcinku drogi σ uzyskując dane: v 1,..., v N. Stąd v H = s t = σ v 1 Nσ + + σ v N N = 1 v v N
21 Średnia geometryczna W przypadku, gdy chcemy policzyć przeciętną wartość względnego przyrostu lub spadku badanej cechy użyjemy średniej geometrycznej, dokładniej: niech x 0, x 1, x 2,..., x n będzie szeregiem statystycznym związanym z cechą x, cecha y to względna zmiana cechy x, a y 1, y 2,..., y n to szereg z nią związany, gdzie y i = x i /x i 1, i = 1, 2,... n. Wtedy y = n y 1 y 2 y n. Dla szeregu rozdzielczego, z wagami l i użyjemy wzoru: gdzie n = l 1 + l l r. y = n y l 1 1 y l 2 2 y lr r,
22 Średnia geometryczna - przykład Liczba studentów rozpoczynających naukę na pewnym kierunku w trzech kolejnych latach wynosiła: x 0 = 40, x 1 = 50, x 2 = 90. Odpowiadające, względne przyrosty liczby studiujących to: y 1 = 50/40 = 1, 25; y 2 = 90/50 = 1, 8. Średni wzgledny przyrost liczby studiujących: y G = 1, 25 1, 8 = 1, 5. Zauważmy, że 40 1, 5 1, 5 = 90. Średnia wyznaczona dla tych danych wg średniej arytmetycznej nie ma tej własności.
23 Średnia arytmetyczna, geometryczna, harmoniczna - własności Niech x 1, x 2,..., x n będą liczbami dodatnimi. x min x A, x G, x H x max, x H x G x A, jeżeli x 1 = x 2 = = x n = x, to x A = x G = x H = x.
24 Średnie pozycyjne Dominanta (moda) D to taka wartość obserwacji, która w szeregu statystycznym występuje najczęściej, ma sens tylko dla zbiorowości jednomodalnych (o jednej wartości maksymalnej). Kwartyle: Q 1 (dolny),q 2 (środkowy mediana), Q 3 (górny) dzielą szereg na 4 części, równe pod względem liczebności (po 25% obserwacji). Mediana (M e ) wartość znajdująca się dokładnie w środku szeregu uporządkowanego. Liczba obserwacji mniejszych od mediany jest równa ilości obserwacji większych o mediany. Mediana to środkowy kwartyl.
25 Miary zmienności (dyspersji) wariancja Wariancja pomiarów cechy x (ozn.: S 2 x := S 2 ) średnia arytmetyczna z kwadratów różnic poszczególnych, zaobserwowanych wartości cechy x od średniej arytmetycznej x wszystkich obserwacji. Dla szeregu surowego lub szczegółowego liczymy ją wg wzoru: S 2 = 1 N N (x i x) 2, i=1 Dla szeregów rozdzielczych użyjemy wzoru z wagami: S 2 = 1 N r l i (x i x) 2, N = i=1 r l i. gdzie tutaj x i są wartościami zaobserwowanymi lub środkami przedziałów klasowych, natomiast l i - liczebnościami związanymi z zaobserwowanymi wartościami x i lub ilościami obserwacji należących do kolejnych przedziałów klasowych. i=1
26 Wariancja - cd. W każdej sytuacji słuszny jest wzór: S 2 = x 2 (x) 2, gdzie x 2 oznacza średnią arytmetyczną kwadratów obserwacji (tzw. średni kwadrat), tj.: x 2 == x x x N 2 N dla szeregu nieuporządkowanego, lub = Ni=1 x 2 i N x 2 = x 2 1 l 1 + x 2 2 l x 2 r l r l 1 + l l r = ri=1 x 2 i l i ri=1 l i, dla szeregów rozdzielczych, gdzie x 1, x 2,..., x r oznaczają tu wartości obserwowane (szeregi punktowe) lub środki przedziałów klasowych (szeregi klasowe) związane z liczebnościami l 1, l 2,..., l r. Wariancja jest zawsze liczbą nieujemną, wyrażoną w kwadracie jednostki fizycznej użytej do pomiaru cechy x. Duża jej wartość świadczy o dużym zróżnicowaniu (zmienności) obserwacji.
27 Poprawka Shepparda Wariancja liczona dla szeregu nieuporządkowanego i klasowego różnią się. Gdy histogram badanej cechy ma jedno maksimum (jest jednomodalny) i liczności klas maleją do 0 w obu kierunkach, to od wariancji S 2 liczonej dla szeregu klasowego odejmujemy poprawkę Shepparda równą 1/12 kwadratu długości klasy d. Wariancja S 2 uwzględniajaca poprawkę jest określona wzorem: S 2 = S d 2. Poprawkę Shepparda stosuje sie w praktyce, gdy liczebność szeregu N 1000 zaś liczba klas k 20.
28 Odchylenie standardowe Odchylenie standardowe pomiarów cechy x (ozn.: S x := S) jest pierwiastkiem kwadratowym z wariancji: S = S 2 i określa o ile średnio obserwacje różnią się od średniej arytmetycznej pomiarów badanej cechy. Odchylenie standardowe służy do do konstrukcji typowego przedziału zmienności dla badanej cechy. W tym obszarze mieści się około 2/3 wszystkich wartości obserwowanych dla tej cechy. Typowy przedział zmienności określa wzór: x S x x + S. By porównywać zmienność dwóch zbiorowości użyjemy niemianowanego współczynnika zmienności (ozn. V ): V = S x 100%.
29 Momenty Niech r będzie liczbą naturalną. Moment zwykły m r rzędu r dla szeregu x 1,..., x N to m r = 1 N xi r. N i=1 Moment centralny M r rzędu r dla szeregu x 1,..., x N to M r = 1 N (x i x) r. N Dla szeregów rozdzielczych i=1 (x i, l i ), i = 1,..., n, l 1 + l l n = N : m r = 1 N xi r l i, M r = 1 N (x i x) r l i. N N i=1 i=1 Pierwszy moment zwykły m 1 jest średnią arytmetyczną. Pierwszy moment centralny M 1 jest zawsze równy 0. Drugi moment centralny M 2 jest wariancją.
30 Miary asymetrii Określają czy większość obserwacji znajduje się powyżej czy poniżej średniej wartości. Asymetrię zbiorowości najłatwiej określić przez uporządkowanie dominanty (D) i średniej arytmetycznej. Zbiorowość symetryczna to taka, dla której te wartości są równe.
31 Miary asymetrii - cd. Dla rozkładów symetrycznych momenty centralne rzedów nieparzystych są równe 0. Stąd trzeci moment centralny wykorzystano do konstrukcji współczynnika asymetrii (skośności) Wartość A S jest: A s = M 3 S 3. równa zero, dla zbiorowości symetrycznej, dodatnia, dla zbiorowości o asymetrii prawostronnej, ujemna, dla zbiorowości o asymetrii lewostronnej. Na ogół wartość współczynnika asymetrii jest w przedziale od -1 do +1, czasami, w przypadku silnej asymetrii leży nieznacznie poza tym przedziałem. Im większa wartość bezwzględna współczynnika skośności tym większa asymetria badanej zbiorowości.
32 Miary koncetracji Za pomocą czwartego momentu centralnego określamy koncentrację (skupienie) pomiarów wokół średniej K = M 4 S 4. Współczynnik ten nazywa sie też kurtozą. Inny współczynnik tego rodzaju to eksces (współczynnik spłaszczenia), obliczamy go następujaco: K 3 = M 4 S 4 3. Im większa kurtoza tym większe skupienie pomiarów wokół wartości średniej, co przekłada się na większą smukłość empirycznego rozkładu cechy. Mała jej wartość daje efekt odwrotny czyli większe spłaszczenie.
33 Koncetracja a smukłość rozkładu
Biostatystyka, # 1 /Weterynaria I/
Biostatystyka, # 1 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Statystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Parametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Statystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Statystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
Opisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii
Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia
Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Miary statystyczne w badaniach pedagogicznych
Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Statystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR
Statystyka Opisowa WK1.2017 Andrzej Pawlak Intended Audience: PWR POJĘCIA STATYSTYKI 1. Zbiór danych liczbowych pokazujących kształtowanie się określonych zjawisk i procesów (roczniki statystyczne). 2.
Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.
Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Ćwiczenia 1-2 Analiza rozkładu empirycznego
Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu
STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)
STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.
Matematyka stosowana i metody numeryczne
Adam Wosatko Magdalena Jakubek Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 4 Podstawy statystyki 4. Wstęp Statystyka nauka o metodach badań właściwości populacji (zbiorowości),
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Statystyka to nauka zajmująca się badaniem prawidłowości w procesach masowych, to jest takich, które realizują się na dużą skalę (np. procesy
Laboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
Miary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 MIARY ZMIENNOŚCI (inaczej: rozproszenia, rozrzutu, zróżnicowania, dyspersji) informuja o zróżnicowaniu jednostek zbiorowości
Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.
Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników
Analiza struktury i przeciętnego poziomu cechy
Analiza struktury i przeciętnego poziomu cechy Analiza struktury Pod pojęciem analizy struktury rozumiemy badanie budowy (składu) określonej zbiorowości, lub próby, tj. ustalenie, z jakich składa się elementów
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.
Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE)
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 1 1 / 33 Warunki zaliczenia 1 Ćwiczenia OBOWIĄZKOWE (max. 3 nieobecności) 2 Zaliczenie
Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
Podstawowe pojęcia statystyczne
Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk
STATYSTYKA OPISOWA. Dr Alina Gleska. 28 września Instytut Matematyki WE PP
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 2 Wyróżniamy następujace miary statystyczne: POŁOŻENIA, które służa do określenia takiej wartości cechy, wokół której skupiaja
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 2 marca 2009 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski.
Analiza zróżnicowania, asymetrii i koncentracji
Analiza zróżnicowania, asymetrii i koncentracji Miary zróżnicowania Miary średnie, chociaż reprezentują wszystkie jednostki badanej zbiorowości, nie dają wyczerpującej charakterystyki szeregu statystycznego,
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?
1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
przedmiot podstawowy obowiązkowy polski drugi
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
4.2. Statystyczne opracowanie zebranego materiału
4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe
Miary w szeregach. 1 Miary klasyczne. 1.1 Średnia Średnia arytmetyczna
Miary w szeregach 1 Miary klasyczne 1.1 Średnia 1.1.1 Średnia arytmetyczna Zad. 1 średnia dla szeregu rozdzielczego punktowego W tabeli zestawiono wyniki badań czasu wykonania 15 detali. Jest to szereg
Miary asymetrii STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 pozwalaja określić, czy jednostki zbiorowości maja tendencje do skupiania się przy niskich wartościach cechy (tzw. asymetria
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Statystyka jest jak kostium bikini: pokazuje wiele, ale nie pokazuje najważniejszego. Aaron Levenstein Jeśli
Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii
Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą
Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Analiza statystyczna w naukach przyrodniczych
Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Statystyki opisowe i szeregi rozdzielcze
Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu
Transport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Studia stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Metody probabilistyczne w transporcie Nazwa modułu w języku angielskim Probabilistic
Średnie. Średnie. Kinga Kolczyńska - Przybycień
Czym jest średnia? W wielu zagadnieniach praktycznych, kiedy mamy do czynienia z jakimiś danymi, poszukujemy liczb, które w pewnym sensie charakteryzują te dane. Na przykład kiedy chcielibyśmy sklasyfikować,
Wykład dla studiów doktoranckich IMDiK PAN. Biostatystyka I. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Wykład dla studiów doktoranckich IMDiK PAN Biostatystyka I dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Program wykładu w skrócie 1. Wprowadzenie: rozkład empiryczny,