Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl
|
|
- Ksawery Stankiewicz
- 9 lat temu
- Przeglądów:
Transkrypt
1 Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl
2 Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych cech/zmiennych-statystyka opisowa; analiza struktury zbioru danych -rozkłady empiryczne zmiennej Odkrywanie i badanie zależności występujących pomiędzy zmiennymi Weryfikacja hipotez statystycznych Narzędzia: metody statystyki matematycznej pakiety statystyczne Statgraph, Statistica moduły statystyczne w arkuszach kalkulacyjnych, bazach danych
3 Temat: Wstępna analiza danych
4 Na czym polega Wstępna analiza danych: Ile danych: ile zmiennych (cech: Płeć, wykształcenie, staż, zarobki) ile przypadków (1255) Jakie typy dane jakościowe (płeć, wykształcenie) dane ilościowe (staż pracy, płaca) Ile braków, jakie, jak je zastąpić
5 Statystyki opisowe
6 Statystyka Opisowa Parametrami statystycznymi ( statystykami) nazywamy liczby umożliwiające sumaryczny opis zbiorowości. Parametry te tak dokładnie charakteryzujązbiorowość, że mogąbyćwykorzystane do porównywania różnych zbiorowości. Wyróżnia sięnastępujące grupy parametrów statystycznych: Miary położenia (klasyczne i pozycyjne) Miary zmienności Miary asymetrii i koncentracji
7 Miary położenia Średnie arytmetyczna, ważona harmoniczna geometryczna Moda- dominanta Kwantyle kwartyl pierwszy mediana (kwartyl drugi) kwartyl trzeci decyl percentyl
8 x Estymatory punktowe parametrów statystycznych Obliczanie wartości średnich = 1 n n i = 1 Średnia arytmetyczna x i x... = n x x x g 1 2 n Średnia geometryczna x n i = 1 = n i = 1 x i w w Średnia ważona, gdzie wagi w i >0 x h = n i = i i 1 n Średnia harmoniczna 1 x i
9 Moda (dominanta) W rozkładach empirycznych określa się dominantę (modę), tj. najczęściej występującą wartość cechy M o = x o + n n m m 1 ( nm nm 1) + ( nm nm + 1 ) h m gdzie x 0 - dolna granicą przedziału w którym występuje moda, h m - rozpiętość przedziału klasowego, n m, n m-1, n m+1 - liczebności odpowiednio przedziału z modą, poprzedniego i następnego
10 Graficzne wyznaczanie mody histogram liczebność Mo wiek
11 Mediana wzór interpolacyjny dla zmiennej ciągłej Medianą rozkładu empirycznego Me nazywamy taką wartość cechy, że co najmniej połowa jednostek zbiorowości ma wartość cechy nie większą niż Me i jednocześnie połowa jednostek ma wartość cechy nie mniejszą niż Me. Czyli dystrybuanta empiryczna F n (Me) 1/2 Dla zmiennej losowej ciągłej medianę oblicza się wg wzoru: Me m h m n = x + m n m 2 i = gdzie x m - dolna granica przedziału zawierającego medianę h m,n m - odpowiednio rozpiętość i liczebność przedziału mediany 1 1 n i
12 Mediana Wzór Pearsona na relacje pomiędzy Mo, Me, oraz dla rozkładów symetrycznych i umiarkowanie asymetrycznych x Mo = 3 ( x Me ) 25% wartości 25% wartości 25% wartości 25% wartości Q1 Mediana Q3 min Rozstęp kwartylowy Rozstęp max
13 Kwantyle Kwantylem rzędu p, gdzie 0<p<1,w rozkładzie empirycznym nazywamy takąwartośćzmiennej x p, dla której, jako pierwszej, dystrybuanta empiryczna spełnia relacjęf(x p ) p, tzn., że prawdopodobieństwo przyjęcia przez zmiennąwartości nie większych od x p wynosi co najmniej p, a wartości nie mniejszych x p wynosi co najmniej 1-p Mediana - Kwantyl rzędu 1/2 Kwartyl - Kwantyl rzędu k/4, gdzie k=1,..,3 Decyl Kwantyl rzędu k/10, gdzie k=1,...,9 Percentyl Kwantyl rzędu k/100, gdzie k=1,...,99;. Percentyl jest wielkościąokreślającąjaki procent obserwacji (wyników) znajduje sięponiżej zadanej wartości x p
14 Miary zmienności Miary zmienności dzieląsięna miary klasyczne i pozycyjne. miary pozycyjne: rozstęp, odchylenie ćwiartkowe, współczynnik zmienności miary klasyczne: wariancja, odchylenie standardowe, odchylenie przeciętne, współczynnik zmienności
15 Odchylenie ćwiartkowe Kwartyle sąwykorzystywane do określenia pozycyjnej miary zróżnicowania, nazywanej odchyleniem ćwiartkowym, którym jest wielkość Q, określona wzorem Q = Q Q 3 1 2
16 Miary zmienności Rozstęp- najprostsza miara zmienności Odchylenie ćwiartkowe Odchylenie przeciętne Q R=x max x min Q 3 Q = 1 2 Współczynnik zmienności d x1 x + L+ n i= 1 = = n x x n x i n x V d = d x
17 Klasyczne miary zmienności Wariancja s 2 n 1 = ( x n i= 1 Odchylenie standardowe s = i = 1 i x) 1 n ( x i x n Współczynnik zmienności - klasyczny 2 ) 2 V s = s x
18 Miary skośności / asymetrii Miarą stopnia i kierunku asymetrii jest klasyczny współczynnik asymetrii g, obliczany według wzoru: g = A s 3 3 gdzie s jest odchyleniem standardowym A 3 jest trzecim momentem centralnym rozkładu empirycznego A r 3 3 = 1 ( x i x ) n i = 1 n i
19 Miary skośności / asymetrii Niemianowany współczynnik asymetrii (skośności) A stosowany do porównań asymetrii wielu rozkładów A = x s Mo gdy: A=0 rozkład symetryczny A<0 asymetria lewostronna- wydłużone lewe ramie rozkładu A<0 asymetria prawostronna wydłużone prawe ramie rozkładu Stwierdzono, że jedynie w przypadku bardzo silnej asymetrii współczynnik A przekracza wartość 1
20 Cechy statystyczne i ich rodzaje Cechy, którymi wyróżniająsięjednostki wchodzące w skład zbiorowości, nazywa się cechami statystycznymi. Każda zbiorowośćstatystyczna ma dużo cech, wyboru cech dokonuje sięna podstawie zakładanego celu badań. Należy wybieraćtakie cechy, które stanowią istotną własność badanego zjawiska Typy cech cechy jakościowe niemierzalne (np. kolor, sprawnyniesprawny, ale jakościowymi mogąbyćteżliczby np. nr piętra, ) cechy ilościowe mierzalne to takie, które dadzą się wyrazićza pomocąjednostek miary w pewnej skali ( np. wzrost [cm], waga [kg], udział[%]). Cecha mierzalna jest: ciągła, może przyjmowaćkażdąwartośćz określonego, skończonego przedziału liczbowego (np.odległość, ciężar, temperatura) dyskretna, skokowa przyjmuje wartości ze zbioru skończonego lub przeliczalnego (ilośćwyrobów wadliwych, liczba zatrudnionych w zawodzie).
21 Co to jest pomiar Pomiar jest procedurąprzyporządkowywania liczb różnym wartościom zmiennej według ustalonej zasady. W naukach empirycznych analizowanie różnych cech staje się użyteczne wtedy gdy można mierzyćich nasilenie w różnych obiektach. Najprostszym przypadkiem pomiaru jest zliczanie. Typowym pomiarem jest pomiar długości ( odległości dwóch punktów), polega on na policzeniu ile odcinków o znanej długości (1 cm, 1m, 1 cal) mieści sięwzdłużmierzonego przedmiotu (odcinka) Jak mierzyćzmienne niemierzalne np. talent, agresję(liczba wulgaryzmów wypowiedzianych w jednostce czasu?), konstruujemy wskaźniki
22 Skale pomiaru Stanley Smith Stevens rozróżnił cztery skale pomiarowe: Najprostszym przykładem pomiaru jest klasyfikacja, czyli nazywanie, dotyczy tylko zmiennych jakościowych, gdy brane pod uwagę kategorie są rozłączne, ponadto, gdy bierze się pod uwagęwszystkie możliwe kategorie danej zmiennej, to podział jest wyczerpujący. Pomiar w skali porządkowej (rangowej) oznacza uporządkowanie ze względu na nasilenie cechy. Tę skalę cechuje spójność( jeśli x jest różny od y yox<ylub x>y) i przechodniość(x<yi y<zto x<z) Przypisaćjakiemuśpomiarowi rangęoznacza określenie jego miejsca w ustalonym porządku. Rangi oznaczająporządek a nie różnice pomiędzy kolejnymi pomiarami
23 Skale pomiaru cechy Skala nominalna dotyczy cech jakościowych, operacją pomiarowąjest identyfikacja kategorii do której należy zaliczyćwynik, prowadzi do podziału zbioru na zbiory rozłączne ( np. samochody wg kolorów). Skala porządkowa stosowana jest do badania cech których natężenie jest określane przez przymiotniki, pociąga za sobąporządkowanie lub uszeregowanie badanej zmiennej ( np. poniżej normy, w normie, powyżej normy, albo za mały, mały, średni, duży, za duży) Skala równomierna (przedziałowa)-stosowania do pomiaru cech ilościowych, zakłada że zbiór wartości cechy składa sięz liczb rzeczywistych określona przez wskazanie stałej jednostki miary i relacji przyporządkowującej liczbękażdemu wynikowi obserwacji (czas kalendarzowy, temperatura o C) Skala ilorazowa-posiada wszystkie właściwości skali przedziałowej ale pomiary wg tej skali charakteryzująsięstałymi stosunkami i bezwzględnym zerem, ma zastosowanie w fizyce, technice np.. czas jaki upłynąłod chwili t 1 do t 2
24 Dane jako wyniki badań Wyniki obserwacji i pomiarów mogąbyćwyrażone w postaci: Tekstu (cechy jakościowe) Liczb całkowitych Przedziałów liczbowych Dane źródłowe zawierająsięw: zbiorze, zbiorze uporządkowanym, zwanym szeregiem szczegółowym zbiorze podzielonym na klasy, zwanym szeregiem rozdzielczym
25 Opracowanie materiału statystycznego Szeregi statystyczne Celem tych działańjest przejście od danych indywidualnych do danych zbiorowych. Materiał źródłowy należy odpowiednio posegregować i policzyć, w wyniku otrzymuje siętzw. tablice robocze. Klasyfikacja danych musi być przeprowadzona: w sposób rozłączny, jednostki o określonych cechach musząbyćjednoznacznie przydzielone do poszczególnych klas W sposób zupełny, tzn. klasy musząobjąćwszystkie występujące cechy danej zbiorowość Technika zestawiania zależy od rodzaju skali pomiarowej
26 Szeregi statystyczne szczegółowe rozdzielcze czasowe Z cechą ilościową Z cechą jakościową punktowe przedziałowe proste skumulowane proste skumulowane
27 Szereg szczegółowy Badana cecha przyjmuje niewielką liczbę jednostek (mała grupa) {x 1,...,x n} Wartości porządkuje się lub Rosnąco x 1 <... <x n Malejąco x 1 >... >x n
28 Szereg czasowy, dynamiczny, chronologiczny Otrzymuje sięw wyniku grupowania typologicznego (wyodrębniającego różne jakościowo cechy) wariancyjnego (porządkującego zbiorowość przez łączenie w klasy jednostek mających odpowiednie wartości cech) gdy podstawągrupowania jest zmiana badanego zjawiska w czasie
29 Wykres dla szeregu typologicznego; poziom wykształcenia
30 Kategoryzacja według dwóch zmiennych Jaki jest stan wykształcenia kobiet i mężczyzn
31 Analiza zmian w czasie-budowa szeregu czasowego Lata Liczba pacjentów Wykres dla szeregu czasowego Liczba pacjentów zarejestrowanych rocznie w przychodni uzależnień od komputera
32 Szereg rozdzielczy Przy budowie szeregu rozdzielczego wyróżnia siętrzy etapy: Ustalenie liczby klas oraz wielkości przedziałów klasowych Przyporządkowanie danych przyjętym przedziałom klasowym Zliczanie liczby jednostek w każdej klasie Liczba klas k zależy przede wszystkim od liczby obserwacji n Stosowane bywająnastępujące wzory pomocne do szacowania liczby przedziałów budowanego szeregu rozdzielczego: lub k=1+3,322 log n k = n
33 Szereg rozdzielczy uwagi praktyczne Każdy przedział klasowy ma dolną i górną granicę Różnice pomiędzy tymi granicami nazywa się rozpiętością (szerokością) przedziału klasowego. Przy równej rozpiętości przedziałów, liczebności są porównywalne. Częstośćjest to iloraz liczby elementów zbioru zakwalifikowanych do danej klasy przez liczbęwszystkich elementów zbioru Uwaga: Ostatecznie badacz podejmuje decyzje o wartościach granic, szerokości przedziałów klasowych i ich liczbie, kierując sięwiedząmerytorycznąo badanym zjawisku, Przykład: W kartotekach pacjentów notowana jest data urodzenia, ta informacja pozwala zbadać cechę jaką jest ich wiek.
34 Numer klasy Szereg rozdzielczy prosty analiza struktury wiekowej pacjentów Granice przedziałów klasowych dolna górna Środek przedziału Liczność klasy Częstość LP a b x i n i ni/n , , , , , , , , ,01 Suma 105 1
35 Wykresy histogram licz ebność wiek
36 Histogram zmiennej płaca brutto zmiana liczby klas
37 Zmiana dolnej wartości pierwszej klasy Od zera Od minimum
38 Badania statystyczne - rodzaje Badania pełne obejmująwszystkie elementy populacji, np. na przeglądzie uzębienia danego pacjenta można określić dokładną liczbę zębów i ich stan Badania częściowe badania elementów próbki statystycznej, mają szerokie zastosowania i są: konieczne w przypadku populacji nieskończonej, stosowane w populacjach skończonych bardzo licznych stosowane w przypadkach badań niszczących
39 Populacja i próba statystyczna Populacjajest to zbiór wszystkich elementów reprezentujących analizowany problem (zjawisko). Może byćzbiorem skończonym, przeliczalnym lub nieprzeliczalnym. Próba statystyczna to podzbiór właściwy elementów z badanej populacji
40 Badania statystyczne próby losowe Losowy dobór próby polega na tym, że o fakcie znalezienia sięposzczególnych elementów populacji w próbie decyduje przypadek. Jest to taki sposób wyboru przy którym spełnione są następujące dwa warunki; każda jednostka populacji ma dodatnie, znane prawdopodobieństwo znalezienia sięw próbie istnieje możliwośćustalenia prawdopodobieństwa znalezienia sięw próbie dla każdego zespołu elementów populacji
41 O błędach w badaniach statystycznych Badania, zarówno pełne jak i częściowe, zawsze obciążone są błędami, związanymi z: organizacjąeksperymentu, niedokładnościąpomiarową, przetwarzaniem wyników, w badaniach częściowych z niedokładnością odwzorowania struktury populacji w strukturę próbki
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Bardziej szczegółowoWykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Bardziej szczegółowoW1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Bardziej szczegółowoPodstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Bardziej szczegółowo1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Bardziej szczegółowoPróba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Bardziej szczegółowoSTATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Bardziej szczegółowoPlan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Bardziej szczegółowoStatystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
Bardziej szczegółowoStatystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Bardziej szczegółowoCharakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Bardziej szczegółowoW kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela
Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem
Bardziej szczegółowoStatystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
Bardziej szczegółowo-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Bardziej szczegółowoStatystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Bardziej szczegółowoPodstawowe pojęcia statystyczne
Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk
Bardziej szczegółowoPo co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Bardziej szczegółowoPozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Bardziej szczegółowoStatystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Bardziej szczegółowoStatystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
Bardziej szczegółowoMIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Bardziej szczegółowoPopulacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Bardziej szczegółowoSTATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Bardziej szczegółowoElementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoSTATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Bardziej szczegółowoMiary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Bardziej szczegółowoStatystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
Bardziej szczegółowoLaboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
Bardziej szczegółowoMiary statystyczne w badaniach pedagogicznych
Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane
Bardziej szczegółowozbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)
STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach
Bardziej szczegółowo1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Bardziej szczegółowoAnaliza struktury i przeciętnego poziomu cechy
Analiza struktury i przeciętnego poziomu cechy Analiza struktury Pod pojęciem analizy struktury rozumiemy badanie budowy (składu) określonej zbiorowości, lub próby, tj. ustalenie, z jakich składa się elementów
Bardziej szczegółowoStatystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Bardziej szczegółowoParametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Bardziej szczegółowo1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Bardziej szczegółowoSTATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)
STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Statystyka to nauka zajmująca się badaniem prawidłowości w procesach masowych, to jest takich, które realizują się na dużą skalę (np. procesy
Bardziej szczegółowoGraficzna prezentacja danych statystycznych
Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do
Bardziej szczegółowoStatystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
Bardziej szczegółowoWykład ze statystyki. Maciej Wolny
Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:
Bardziej szczegółowoStatystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR
Statystyka Opisowa WK1.2017 Andrzej Pawlak Intended Audience: PWR POJĘCIA STATYSTYKI 1. Zbiór danych liczbowych pokazujących kształtowanie się określonych zjawisk i procesów (roczniki statystyczne). 2.
Bardziej szczegółowoWykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Bardziej szczegółowoPodstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.
Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników
Bardziej szczegółowoĆwiczenia 1-2 Analiza rozkładu empirycznego
Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu
Bardziej szczegółowoWykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja
Bardziej szczegółowoWykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Bardziej szczegółowoSTATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
Bardziej szczegółowoYou created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE)
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 1 1 / 33 Warunki zaliczenia 1 Ćwiczenia OBOWIĄZKOWE (max. 3 nieobecności) 2 Zaliczenie
Bardziej szczegółowoOpisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Bardziej szczegółowoStatystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Bardziej szczegółowoPOJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Bardziej szczegółowoStatystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Bardziej szczegółowoWprowadzenie Pojęcia podstawowe Szeregi rozdzielcze STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP.
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 września 2017 1 Wprowadzenie 2 Pojęcia podstawowe 3 Szeregi rozdzielcze Zwykle wyróżnia się dwa podstawowe działy statystyki: statystyka
Bardziej szczegółowo4.2. Statystyczne opracowanie zebranego materiału
4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza
Bardziej szczegółowoWykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Bardziej szczegółowoStatystyczne metody analizy danych. Agnieszka Nowak - Brzezińska
Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne
Bardziej szczegółowoAgata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Bardziej szczegółowoXi B ni B
Zadania ze statystyki cz.2 I rok Socjologii lic. Zadanie 1 Ustal dla danych zawartych w tabelach poniżej, prezentujących rozkład liczebności (ni) różnej wielkości gospodarstw domowych w dwóch populacjach,
Bardziej szczegółowoBadania Statystyczne
Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoWskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii
Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia
Bardziej szczegółowoTransport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Studia stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Metody probabilistyczne w transporcie Nazwa modułu w języku angielskim Probabilistic
Bardziej szczegółowoZmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
Bardziej szczegółowoBiostatystyka, # 1 /Weterynaria I/
Biostatystyka, # 1 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoStatystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki Cz. 1. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki Cz. 1. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński Wybrane cytowania "Statystyka to matematyczny kamuflaż błędu. Georges
Bardziej szczegółowoWykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii
Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą
Bardziej szczegółowoWykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.
Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często
Bardziej szczegółowoPodstawowe pojęcia cd. Etapy badania statystycznego
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Podstawowe pojęcia cd. Etapy badania statystycznego Wykład 2 Dr inż. Adam Deptuła I ZiP-ns. Podstawowe pojęcia Badanie statystyczne Pełne Częściowe Badanie
Bardziej szczegółowoStatystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoStatystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Bardziej szczegółowoMiary w szeregach. 1 Miary klasyczne. 1.1 Średnia Średnia arytmetyczna
Miary w szeregach 1 Miary klasyczne 1.1 Średnia 1.1.1 Średnia arytmetyczna Zad. 1 średnia dla szeregu rozdzielczego punktowego W tabeli zestawiono wyniki badań czasu wykonania 15 detali. Jest to szereg
Bardziej szczegółowoMiary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 MIARY ZMIENNOŚCI (inaczej: rozproszenia, rozrzutu, zróżnicowania, dyspersji) informuja o zróżnicowaniu jednostek zbiorowości
Bardziej szczegółowoSCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Bardziej szczegółowoStatystyka. Wykład 1. Magdalena Alama-Bućko. 20 lutego Magdalena Alama-Bućko Statystyka 20 lutego / 19
Statystyka Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka 20 lutego 2017 1 / 19 Wykład : 30h Laboratoria : 30h (grupa B : 14:00, grupa C : 10:30, grupa E : 12:15) obowiazek
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoStatystyka. Wykład 1. Magdalena Alama-Bućko. 26 lutego Magdalena Alama-Bućko Statystyka 26 lutego / 34
Statystyka Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka 26 lutego 2018 1 / 34 Wykład : 30h Laboratoria : 30h egzamin w sesji letniej (po uprzednim zaliczeniu ćwiczeń)
Bardziej szczegółowoStatystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Bardziej szczegółowoMatematyka stosowana i metody numeryczne
Adam Wosatko Magdalena Jakubek Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 4 Podstawy statystyki 4. Wstęp Statystyka nauka o metodach badań właściwości populacji (zbiorowości),
Bardziej szczegółowoStatystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
Bardziej szczegółowoPorównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?
1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.
Bardziej szczegółowoAnaliza statystyczna w naukach przyrodniczych
Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.
Bardziej szczegółowoMatematyka z el. statystyki, # 1 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoInteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
Bardziej szczegółowoStatystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Statystyka jest jak kostium bikini: pokazuje wiele, ale nie pokazuje najważniejszego. Aaron Levenstein Jeśli
Bardziej szczegółowoDane i ich struktura Skale pomiarowe i ich przekształcanie. Mariusz Dacko
Dane i ich struktura Skale pomiarowe i ich przekształcanie Mariusz Dacko Zjawisko masowe staje się widoczne w dużej liczbie obserwacji (lecz jest niewidoczne w obserwacji pojedynczej) Zjawisko masowe jest
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowo