Analiza statystyczna w naukach przyrodniczych
|
|
- Beata Brzozowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Analiza statystyczna w naukach przyrodniczych
2 Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą. Aby coś powiedzieć o jakimś zjawisku należy je najpierw zbadać! Statystyka: obejmuje metody pozyskiwania, prezentacji i analizy danych Użycie statystyki do badania zjawisk sprawia, że badanie jest oparte na sprawdzonych i dopracowanych metodach
3 Statystyka jest tylko narzędziem pozwalającym sprawdzić nasze pomysły badawcze i wyjaśnić zjawiska
4 Podstawowe pojęcia Pojęcie statystyki Statystyka jest dyscypliną naukową, zajmującą się konstrukcją metod liczbowego opisu i wnioskowania o zjawiskach masowych. Z takiej definicji wynika, że należy wyróżnić tutaj dwa pojęcia: metodę i zjawisko masowe.
5 Podstawowe pojęcia Metoda statystyczna Jest to sposób badania liczbowego określonych zbiorowości, za pomocą odpowiednich narzędzi i procedur.
6 Podstawowe pojęcia Zjawisko masowe Zjawisko które często występuje, dotyczy ono więc wystarczająco dużej liczby jednostek. Dla odróżnienia, jednostkowym zjawiskiem jest pojedyncze, lub rzadko występujące zdarzenia. Niektóre zjawiska mogą być traktowane jednostkowo jak i masowo, w zależności od perspektywy z jakiej je analizujemy. Przykład: Przyjęcie do przedsiębiorstwa dla nowego pracownika jest zjawiskiem jednostkowym, natomiast dla działu kadr takie zdarzenie będzie jednym z wielu podobnych, a więc będzie traktowane jako zjawisko masowe.
7 Podstawowe pojęcia Zjawisko masowe cd. Dane zjawisko można zaliczyć do masowych, wówczas gdy miała miejsce duża liczba przypadków jego występowania, co umożliwia zaobserwowanie pewnych prawidłowości statystycznych. Obserwacja pojedynczej jednostki lub niewielkiego zespołu nie prowadzi do wykrycia prawidłowości zjawiska.
8 Podstawowe pojęcia Zbiorowość statystyczna (populacja) Zespół jednostek objętych badaniem statystycznym (np. istot żywych, przedmiotów, przedsiębiorstw, obszarów geograficznych, zjawisk), które mają chociaż jedną wspólną cechę, a różnią się z innych punktów widzenia.
9 Podstawowe pojęcia Zbiorowość statystyczna (populacja) cd. Przykład zbiorowości stat.: studenci określonego województwa, mają dwie cechy wspólne: mieszkają w tym samym województwie i studiują, różnią się między sobą rodzajem uczelni do jakich uczęszczają, ocenami, cechami osobowości, wyglądem, płcią itd. Zbiorowością stat. nie są np. krzesła w auli wykładowej o takim samym kształcie, kolorze, stopniu zużycia.
10 Podstawowe pojęcia Próba statystyczna z populacji (zbiorowość) Zbiór obserwacji statystycznych wybranych (zwykle wylosowanych) z populacji.
11 Podstawowe pojęcia Jednostka statystyczna Elementy składowe zbiorowości (próby) nazywane są jednostkami statystycznymi (jednostki badania, obserwacji).
12 Podstawowe pojęcia Liczebność zbiorowości (próby) Suma jednostek statystycznych ujmowana jest jako liczebność zbiorowości (oznaczana jest symbolem N)
13 Podstawowe pojęcia Cechy statystyczne Jednostka statystyczna w ramach zbiorowości statystycznej, charakteryzuje się wieloma właściwościami, czyli cechami statystycznymi. Cechy stałe (wspólne dla wszystkich jednostek danej zbiorowości): Nie podlegają analizie statystycznej Cechy zmienne (różnicujące jednostki między sobą: Podlegają analizie statystycznej
14 Podstawowe pojęcia Cechy zmienne rzeczowe czasowe przestrzenne
15 Podstawowe pojęcia Cechy zmienne rzeczowe czasowe przestrzenne
16 Podstawowe pojęcia
17 Podstawowe pojęcia
18 Podstawowe pojęcia przyjmują określone wartości liczbowe (np. wiek-w latach, wzrost-w cm, wskaźnik masy ciała BMI) mogą przyjmować wszystkie wartości liczb rzeczywistych z określonego przedziału liczbowego (np. koszt, wiek, waga) mogą być wyrażone tylko liczbami zmieniającymi się skokami, bez pośrednich wartości (np. liczba studentów na roku, liczba pracowników przedsiębiorstwa)
19 Podstawowe pojęcia
20 Podstawowe pojęcia nie można ich wyrazić za pomocą liczb, a jedynie słownie (np. płeć - kobieta, mężczyzna; kolor - czarny, biały, zielony, itd.) nie można ich ustawić w odpowiedniej kolejnością (np. płeć, grupa krwi, kolor oczu) cechy słownie dające się uporządkować w pewnej kolejności (np. wykształcenie, oceny egzaminów)
21 Etapy analizy statystycznej POPULACJA WYNIKI PRÓBA STAT. OBLICZENIA POMIARY ANALIZA
22 Etapy analizy statystycznej POPULACJA WYNIKI PRÓBA STAT. OBLICZENIA POMIARY ANALIZA
23 Próba statystyczna Próba statystyczna z populacji (zbiorowość) Zbiór obserwacji statystycznych wybranych (zwykle wylosowanych) z populacji.
24 Próba statystyczna Próba wybrana do badania musi być odpowiednia Wybór próby jest kluczowym etapem z punktu widzenia wiarygodności końcowych wyników DOBRZE POBRANA PRÓBKA JEST REPREZENTATYWNA!!!
25 Próba statystyczna Próba reprezentatywna: w dobry sposób odzwierciedla populację, z której została pobrana Dla zapewnienia reprezentatywności konieczna jest odpowiednia liczebność próby. Im większa próba, tym bardziej wiarygodne wyniki. Uwaga! Liczności nie można zwiększać w nieskończoność (koszty analiz!). Należy szukać optimum pomiędzy kosztami a wiarygodnością wyników.
26 Błędy pomiarów Błędy duże, grube, pomyłki Błędy systematyczne Błędy losowe
27 Błędy pomiarów Błędy duże, grube, pomyłki pomiary wyraźnie odstają od innych Wynikają z niedbałości lub ewidentnej pomyłki eksperymentatora, wyraźnej niesprawności sprzętu albo nieoczekiwanego zaburzenia układu pomiarowego Wynik pomiaru obarczony błędem grubym jest zazwyczaj łatwo zauważalny i należy go odrzucić.
28 Błędy pomiarów Błędy duże, grube, pomyłki błąd gruby x 0 wartość prawdziwa x i wyniki pomiarów (oznaczone symbolem )
29 Błędy pomiarów Błędy systematyczne Stałe lub zmienne, systematyczne odchylenie wyniku pomiaru od rzeczywistej wartości wielkości mierzonej (zwykle w tę samą stronę) Metody statystyczne nie mają tu zastosowania Powodowane niedoskonałością przyrządów pomiarowych, błędnym wyskalowaniem itp..
30 Błędy pomiarów Błędy systematyczne x 0 wartość prawdziwa x i wyniki pomiarów (oznaczone symbolem ) Przy powtarzaniu pomiaru występuje ta sama różnica między wartościami zmierzonymi a wartością rzeczywistą, natomiast rozrzut wyników poszczególnych pomiarów jest mały.
31 Błędy pomiarów Błędy losowe Losowe odchylenie wyniku pomiaru od rzeczywistej wartości wielkości mierzonej (w różne strony) powstaje na skutek działania czynników losowych jest miarą rozrzutu otrzymywanych wyników wokół wartości najbardziej prawdopodobnej. błędu przypadkowego w zasadzie nie da się wyeliminować a także nie da się go oszacować przed dokonaniem pomiaru po zakończeniu pomiaru dokonujemy oceny wielkości błędu losowego przy użyciu narzędzi statystycznych
32 Błędy pomiarów Błędy losowe x 0 wartość prawdziwa x i wyniki pomiarów (oznaczone symbolem ) fluktuacja warunków pomiaru (temperatura, ciśnienie, wilgotność, napięcie w sieci elektrycznej) obecność źródeł zakłócających; nieokreśloność mierzonej wielkości; niedoskonałość zmysłów obserwatora;
33 Metody opisu statystycznego Stosuje się je do wyników o relatywnie dużej liczebności (n>10) Określanie struktury danych (rozkładu) Mierniki statystyczne
34 Metody opisu statystycznego Stosuje się je do wyników o relatywnie dużej liczebności (n>10) Określanie struktury danych (rozkładu) Mierniki statystyczne
35 Określanie rozkładu danych HISTOGRAM Zawartość tłuszczu % w 65 różnych serach żółtych 31,820 33,100 33,780 34,650 34,870 35,530 36,750 32,010 33,120 33,790 34,690 34,880 35,620 36,680 32,010 33,260 33,790 34,690 34,900 35,780 36,780 32,050 33,260 33,790 34,720 34,920 35,790 36,850 32,230 33,280 33,820 34,720 34,960 35,860 38,520 32,600 33,300 33,820 34,810 35,090 36,120 32,950 33,360 33,860 34,810 35,120 36,250 33,030 33,540 33,950 34,810 35,160 36,560 33,050 33,560 34,210 34,860 35,280 36,560 33,060 33,750 34,220 34,870 35,290 36,590
36 Określanie rozkładu danych HISTOGRAM Procedura rysowania histogramu: 1. Posortowanie danych w porządku od najmniejszej do największej 2. Wyznaczenie wartości najmniejszej i największej: x min, x max
37 Określanie rozkładu danych HISTOGRAM Procedura rysowania histogramu: 3. Obliczenie szerokości zakresu, w jakim pojawiają się dane (rozstępu): R=x max -x min 4. Wyznaczenie liczby przedziałów: ilość przedziałów= pierwiastek(ilość pomiarów)
38 Określanie rozkładu danych HISTOGRAM Procedura rysowania histogramu: 5. Ustalenie szerokości przedziałów: szerokość przedziału=rozstęp/l-ba przedziałów
39 Określanie rozkładu danych HISTOGRAM Procedura rysowania histogramu: 6. Rozpisanie przedziałów i obliczenie, ile w każdym z nich znajduje się wyników: Przedział wartości Ilość wyników w przedziale (31,32] 1 (32,33] 6 (33,34] 21 (34,35] 17 (35,36] 10 (36,37] 9 (37,38] 0 (38,39] 1
40 Określanie rozkładu danych HISTOGRAM Procedura rysowania histogramu: 7. Narysowanie wykresu: w zależności od liczby wyników w poszczególnych przedziałach, rysuje się odpowiednią wysokość słupka.
41 Ilość wystąpień Określanie rozkładu danych HISTOGRAM (31,32] (32,33] (33,34] (34,35] (35,36] (36,37] (37,38] (38,39] Przedział
42 Typy rozkładów (histogramów)
43 Typy rozkładów (histogramów) Amodalny = skrajnie asymetryczny
44 Typy rozkładów (histogramów)
45 Metody opisu statystycznego Stosuje się je do wyników o relatywnie dużej liczebności (n>10) Określanie struktury danych (rozkładu) Mierniki statystyczne
46 Mierniki statystyczne Miary położenia Miary rozproszenia Miary kształtu rozkładu
47 Mierniki statystyczne Miary położenia Miary rozproszenia Miary kształtu rozkładu
48 Miary położenia Mierniki statystyczne Średnia arytmetyczna
49 Miary położenia Mierniki statystyczne Średnia geometryczna Stosuje się ją, gdy badamy dane w postaci logarytmów z wyników. Dane muszą być >0!!! Średnia geom. Jest zwykle < niż średnia arytm.
50 Mierniki statystyczne Miary położenia Mediana Wynik środkowy w zbiorze danych. Przy nieparzystej liczbie danych: x 1, x 2. x 3, x 4, x 5 Przy parzystej liczbie danych: x 1, x 2. x 3, x 4, x 5, x 6 Średnia arytmetyczna z dwóch wyników
51 Mierniki statystyczne Miary położenia Mediana Jeśli x Me : struktura wyników jest symetryczna Jeśli x < Me : struktura wyników jest prawostronnie asymetryczna Jeśli x > Me : struktura wyników jest lewostronnie asymetryczna
52 Mierniki statystyczne Miary położenia Kwantyle (w tym mediana) Kwantylami możemy dzielić zbiory na różne przedziały. Mediana dzieli zbiór danych na 2 części, czyli 50% wyników jest > niż Me a 50% jest < niż Me. Dzieląc zbiór na 4 części uzyskujemy kwantyle zwane kwartylami: kwartyl dolny i kwartyl górny. x 1, x 2. x 3, x 4, x 5, x 6 K d =k 0,25 Me K g =k 0,75
53 Mierniki statystyczne Miary położenia Kwantyle Jeśli dzielimy zbiór na 10 części: decyle Jeśli dzielimy zbiór na 100 części: percentyle
54 Mierniki statystyczne Miary położenia Miary rozproszenia Miary kształtu rozkładu
55 Miary rozproszenia Miary rozproszenia Wariancja Zróżnicowanie wyników UWAGA! Powyższy wzór obowiązuje, pod warunkiem, że mamy możliwość zbadania całej populacji (czyli mamy nieskończoną liczbę wyników), co jest PRAWIE NIGDY SPEŁNIONE
56 Miary rozproszenia Miary rozproszenia Przeciętna różnica między średnią a poszczególnymi wynikami Odchylenie standardowe UWAGA! Powyższy wzór obowiązuje, pod warunkiem, że mamy możliwość zbadania całej populacji (czyli mamy nieskończoną liczbę wyników), co jest PRAWIE NIGDY SPEŁNIONE
57 Miary rozproszenia Miary rozproszenia Odchylenie standardowe Ponieważ opisujemy rozkład opierając się jedynie na pewnej próbce wyników, pobranej z populacji, stosuje się estymator: σ x
58 Miary rozproszenia Miary rozproszenia Współczynnik zmienności Względna miara rozproszenia. σ
59 Miary rozproszenia Miary rozproszenia Przedział typowy σ σ Przedział wyników typowych. Ma on sens, gdy rozkład wyników jest zbliżony do symetrycznego. Zawiera ok. 68% wyników, pozostałe to wyniki nietypowe (małe lub duże)
60 Mierniki statystyczne Miary położenia Miary rozproszenia Miary kształtu rozkładu
61 Mierniki statystyczne Miary kształtu rozkładu Skośność Wskaźnik niesymetryczności rozkładu, nazywany jest często asymetrią Dla rozkładu symetrycznego wynosi 0!!! UWAGA! Powyższy wzór obowiązuje, pod warunkiem, że mamy możliwość zbadania całej populacji (czyli mamy nieskończoną liczbę wyników), co jest PRAWIE NIGDY SPEŁNIONE σ
62 Mierniki statystyczne Miary kształtu rozkładu Skośność Ponieważ opisujemy rozkład opierając się jedynie na pewnej próbce wyników, pobranej z populacji, stosuje się estymator: σ
63 Mierniki statystyczne Miary kształtu rozkładu Skośność Gdy > 0 : rozkład prawostronnie asymetryczny Gdy < 0 : rozkład lewostronnie asymetryczny Gdy = 0 : rozkład symetryczny
64 Mierniki statystyczne Miary kształtu rozkładu Kurtoza Spłaszczenie, wskaźnik opisujący kształt i wyniesienie rozkładu zmiennej. σ UWAGA! Powyższy wzór obowiązuje, pod warunkiem, że mamy możliwość zbadania całej populacji (czyli mamy nieskończoną liczbę wyników), co jest PRAWIE NIGDY SPEŁNIONE
65 Mierniki statystyczne Miary kształtu rozkładu Kurtoza Ponieważ opisujemy rozkład opierając się jedynie na pewnej próbce wyników, pobranej z populacji, stosuje się estymator: σ
66 Mierniki statystyczne Miary kształtu rozkładu Kurtoza Gdy > 0 : rozkład wysmukły, leptokurtyczny Gdy < 0 : rozkład spłaszczony, platokurtyczny Gdy = 0 : rozkład mezokurtyczny (normalny)
67 Liczebność próby POPULACJA WYNIKI PRÓBA STAT. OBLICZENIA POMIARY ANALIZA
68 Liczebność próby Przeprowadzając badania z populacji generalnej pobieramy próbę: n 100 próba b. duża n 30 próba duża 10 n < 30 próba mała n < 10 próba b. mała
MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Bardziej szczegółowoCharakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Bardziej szczegółowoSTATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Bardziej szczegółowoStatystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Bardziej szczegółowoSTATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Bardziej szczegółowoPodstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Bardziej szczegółowo1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Bardziej szczegółowo-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Bardziej szczegółowoStatystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Bardziej szczegółowoSTATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Bardziej szczegółowoMiary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Bardziej szczegółowoWykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Bardziej szczegółowoWykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Bardziej szczegółowoPozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Bardziej szczegółowoPróba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Bardziej szczegółowoStatystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
Bardziej szczegółowo1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Bardziej szczegółowoParametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Bardziej szczegółowoPopulacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Bardziej szczegółowoStatystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
Bardziej szczegółowoStatystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
Bardziej szczegółowoWydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Bardziej szczegółowoStatystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
Bardziej szczegółowoPobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Bardziej szczegółowo1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Bardziej szczegółowoStatystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Bardziej szczegółowoTypy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe
Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,
Bardziej szczegółowoW kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Bardziej szczegółowoStatystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
Bardziej szczegółowoOdchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Bardziej szczegółowoLaboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
Bardziej szczegółowoTeoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Bardziej szczegółowoWykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Bardziej szczegółowoStatystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Bardziej szczegółowoMiary statystyczne w badaniach pedagogicznych
Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane
Bardziej szczegółowoW1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Bardziej szczegółowoCzęsto spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:
Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Bardziej szczegółowoLABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Bardziej szczegółowoStatystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Bardziej szczegółowoPlan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Bardziej szczegółowoZad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Bardziej szczegółowoStatystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Bardziej szczegółowoOpisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Bardziej szczegółowoStatystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Bardziej szczegółowoWstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Bardziej szczegółowoZadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Bardziej szczegółowoStatystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński Opracowanie materiału statystycznego Szereg rozdzielczy częstości
Bardziej szczegółowoSTATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoMETODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II
METODOLOGIA BADAŃ HUMANISTYCZNYCH METODYKA NAUCZANIA JĘZYKA OBCEGO CZ.II Podział zmiennych Zmienne zależne zmienne, które są przedmiotem badania, których związki z innymi zmiennymi chcemy określić Zmienne
Bardziej szczegółowoPodstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.
Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Bardziej szczegółowoStatystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Bardziej szczegółowoPodstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Bardziej szczegółowoStatystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Bardziej szczegółowoPrzedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 2 marca 2009 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane wnioski.
Bardziej szczegółowoWeryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoZadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Bardziej szczegółowoINFORMATYKA W CHEMII Dr Piotr Szczepański
INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczny, błąd przypadkowy,
Bardziej szczegółowoStatystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
Bardziej szczegółowoW rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela
Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem
Bardziej szczegółowoSTATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach
Bardziej szczegółowoLABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Bardziej szczegółowoRÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Bardziej szczegółowoTestowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Bardziej szczegółowoStatystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki Cz. 1. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki Cz. 1. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński Wybrane cytowania "Statystyka to matematyczny kamuflaż błędu. Georges
Bardziej szczegółowoPo co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Bardziej szczegółowoWykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja
Bardziej szczegółowoWykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Bardziej szczegółowoAnaliza struktury i przeciętnego poziomu cechy
Analiza struktury i przeciętnego poziomu cechy Analiza struktury Pod pojęciem analizy struktury rozumiemy badanie budowy (składu) określonej zbiorowości, lub próby, tj. ustalenie, z jakich składa się elementów
Bardziej szczegółowoPodstawowe pojęcia statystyczne
Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk
Bardziej szczegółowoPODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio
Bardziej szczegółowoWykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.
Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często
Bardziej szczegółowoPodstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i
Bardziej szczegółowoStatystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
Bardziej szczegółowoEstymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Bardziej szczegółowoWprowadzenie 2010-10-20
PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania
Bardziej szczegółowoStatystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
Bardziej szczegółowoLISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów
LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,
Bardziej szczegółowoFizyka (Biotechnologia)
Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,
Bardziej szczegółowoWykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Bardziej szczegółowoPOJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
Bardziej szczegółowoNiepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru
iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem
Bardziej szczegółowoStatystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoMetody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Bardziej szczegółowoZadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
Bardziej szczegółowoĆwiczenia 1-2 Analiza rozkładu empirycznego
Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu
Bardziej szczegółowoStatystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Bardziej szczegółowoStatystyka. Wykład 1. Magdalena Alama-Bućko. 20 lutego Magdalena Alama-Bućko Statystyka 20 lutego / 19
Statystyka Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka 20 lutego 2017 1 / 19 Wykład : 30h Laboratoria : 30h (grupa B : 14:00, grupa C : 10:30, grupa E : 12:15) obowiazek
Bardziej szczegółowoWykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowo