Miary statystyczne w badaniach pedagogicznych
|
|
- Kacper Sikorski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Miary statystyczne w badaniach pedagogicznych
2 Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane są częstości ich występowania; tworzony jest metodą punktową lub przedziałową Kumulacyjny - który powstaje przez zsumowanie liczebności odpowiadających kolejnym wariantom badanej cechy
3 Szereg szczegółowy Liczba błędów popełnionych w dyktandzie przez uczniów dyslektycznych poddanych terapii {3,3,4,4,4,4,4,5,5,6}
4 Szereg rozdzielczy Tworzony metodą punktową służy do przedstawiania rozkładu wartości zmiennych skokowych Liczba dzieci w rodzinie Liczba dzieci w rodzinie Liczba rodzin
5 Szereg rozdzielczy Tworzony metodą przedziałową służy do przedstawiania rozkładu wartości zmiennych ciągłych Liczba punktów uzyskanych przez uczniów w teście wiadomości z historii Liczba uzyskanych punktów Liczba uczniów
6 Szereg kumulacyjny x xi f fc
7 Rozkłady zmiennych Rozkłady symetryczne i asymetryczne (lewostronne lub prawostronne) Rozkłady jednomodalne, bimodalne i wielomodalne Rozkłady wysmukłe i spłaszczone
8 Rozkład symetryczny Najczęściej występują w nim wartości średnie, a skrajne, czyli najmniejsze i największe, rzadko.
9 Rozkłady asymetryczne Prawostronny Lewostronny
10 Rozkłady modalne Bimodalny Wielomodalny
11 Rozkłady wysmukłe i spłaszczone Wysmukły Spłaszczony
12 Podstawowe miary statystyczne Miary tendencji centralnej: średnia arytmetyczna, średnia ważona, dominanta, mediana Miary dyspersji (rozproszenia): obszar zmienności, współczynnik zmienności, odchylenie ćwiartkowe, odchylenie przeciętne, odchylenie standardowe, wariancja Miary asymetrii: współczynnik asymetrii
13 Miary tendencji centralnej Obliczanie średniej ważonej dla szeregu punktowego x 1 f 1 + x 2 f 2 + x 3 f x n f n x - = = xf f 1 + f 2 + f f n N x - = dla szeregu rozdzielczego x i1 f 1 + x i2 f 2 + x i3 f x in f n f 1 + f 2 + f f n = x i f N
14 Zadanie na obliczenie średniej ważonej Liczba nauczycieli w szkole (x) (szereg punktowy) Liczba szkół (f) xf N = 47 xf = 898 x - = = 19,1 19
15 Zadanie na obliczenie średniej ważonej Liczba godzin pozalekcyjnych (x) (szereg rozdzielczy) Liczba szkół (f) Środki przedziałów (xi) x i f N = 74 x i f = 1021 x - = = 13,8 14
16 Miary tendencji centralnej Mediana Wartość środkowa, która dzieli zbiorowość na dwie równe części: część dolną z wartościami mniejszymi lub równymi medianie część górną z wartościami równymi medianie lub od niej większymi
17 Miary tendencji centralnej Obliczanie mediany Me = x o + i fa ( N 2 - fb ) x o i fa - dolna granica przedziału, gdzie znajduje się mediana - wielkość przedziału klasowego - liczebność przedziału, gdzie znajduje się mediana fb - liczebność skumulowana w przedziale poprzedzającym przedział mediany
18 Zadanie na obliczenie mediany Zarobki (x) Odsetek nauczycieli (f) fc ,2 18, ,1 36, ,4 54, ,9 71, ,9 86, ,0 94, ,6 98, ,2 99, ,5 99, ,2 100 N = 100%
19 Zadanie na obliczenie mediany Wyliczenie mediany ze wzoru Me = , ,3 ( ) = ,86 x (50-36,3) = ,86 x 13,7 = ,78 = 1549, Interpretacja: 50% badanych nauczycieli zarabia poniżej 1500 zł miesięcznie, a pozostałe 50% więcej niż 1500 zł miesięcznie.
20 Miary tendencji centralnej Dominanta Dominanta zwana jest też modalną lub modą; oznacza wartość występującą najczęściej w badanej grupie, wartość typową. W szeregu punktowym dominantą jest wartość o najwyższej liczebności, a w szeregu rozdzielczym trzeba wyznaczyć ją według wzoru.
21 Miary tendencji centralnej Obliczanie dominanty według wzoru (fa fb) D = x o + i (fa fb) + (fa fd) x o - dolna granica przedziału, gdzie znajduje się dominanta i - rozpiętość przedziału fa fb fd - liczebność przedziału, gdzie znajduje się dominanta - liczebność przedziału poprzedzającego przedział dominanty - liczebność przedziału następującego po przedziale dominanty Uwaga! Kiedy brak jest przedziału poprzedzającego przedział dominanty, to fb=0, a jeśli brak przedziału następującego po przedziale dominanty, to fd=0
22 Zadanie na obliczenie dominanty Uczniowie uczestniczący w zajęciach wyrównawczych według wieku Wiek uczniów (x) Liczba uczniów (f) N = 90
23 Zadanie na obliczenie dominanty Obliczanie dominanty według wzoru D = (28 17) (28 17)+(28 19) = x = x 0,55 = ,1 = 12, = Interpretacja: najwięcej badanych uczniów uczestniczących w zajęciach wyrównawczych miało 12 lat.
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Podstawy statystyki - ćwiczenia r.
Zadanie 1. Na podstawie poniższych danych wyznacz i zinterpretuj miary tendencji centralnej dotyczące wysokości miesięcznych zarobków (zł): 1290, 1500, 1600, 2250, 1400, 1600, 2500. Średnia arytmetyczna
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Statystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Opisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Parametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Statystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.
Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Miary w szeregach. 1 Miary klasyczne. 1.1 Średnia Średnia arytmetyczna
Miary w szeregach 1 Miary klasyczne 1.1 Średnia 1.1.1 Średnia arytmetyczna Zad. 1 średnia dla szeregu rozdzielczego punktowego W tabeli zestawiono wyniki badań czasu wykonania 15 detali. Jest to szereg
Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Analiza struktury i przeciętnego poziomu cechy
Analiza struktury i przeciętnego poziomu cechy Analiza struktury Pod pojęciem analizy struktury rozumiemy badanie budowy (składu) określonej zbiorowości, lub próby, tj. ustalenie, z jakich składa się elementów
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Zakład Ubezpieczeń Społecznych Departament Statystyki. Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku.
Zakład Ubezpieczeń Społecznych Departament Statystyki Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2010 roku. Warszawa 2010 I. Badana populacja. W marcu 2010 r. emerytury
Ćwiczenia 1-2 Analiza rozkładu empirycznego
Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Analiza zróżnicowania, asymetrii i koncentracji
Analiza zróżnicowania, asymetrii i koncentracji Miary zróżnicowania Miary średnie, chociaż reprezentują wszystkie jednostki badanej zbiorowości, nie dają wyczerpującej charakterystyki szeregu statystycznego,
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii
Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Miary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 MIARY ZMIENNOŚCI (inaczej: rozproszenia, rozrzutu, zróżnicowania, dyspersji) informuja o zróżnicowaniu jednostek zbiorowości
Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.
Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka
Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?
1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.
STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)
STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26
Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych
Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Statystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR
Statystyka Opisowa WK1.2017 Andrzej Pawlak Intended Audience: PWR POJĘCIA STATYSTYKI 1. Zbiór danych liczbowych pokazujących kształtowanie się określonych zjawisk i procesów (roczniki statystyczne). 2.
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Xi B ni B
Zadania ze statystyki cz.2 I rok Socjologii lic. Zadanie 1 Ustal dla danych zawartych w tabelach poniżej, prezentujących rozkład liczebności (ni) różnej wielkości gospodarstw domowych w dwóch populacjach,
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.
Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.
Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2014 roku. Warszawa 2014 Opracowała: Ewa Karczewicz
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2013 roku. Warszawa 2013 Opracowała: Ewa Karczewicz
STATYSTYKA OPISOWA. Dr Alina Gleska. 28 września Instytut Matematyki WE PP
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 2 Wyróżniamy następujace miary statystyczne: POŁOŻENIA, które służa do określenia takiej wartości cechy, wokół której skupiaja
Biostatystyka, # 1 /Weterynaria I/
Biostatystyka, # 1 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
Statystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
4.2. Statystyczne opracowanie zebranego materiału
4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza
Porównywanie populacji
3 Porównywanie populacji 2 Porównywanie populacji Tendencja centralna Jednostki (w grupie) według pewnej zmiennej porównuje się w ten sposób, że dokonuje się komparacji ich wartości, osiągniętych w tej
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2015 roku. Warszawa 2015 Opracowała: Ewa Karczewicz
1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe
Wyniki egzaminu gimnazjalnego 2014/2015 część humanistyczna język polski
Wyniki egzaminu gimnazjalnego 2014/2015 część humanistyczna język polski Gimnazjum w Pietrowicach Wielkich X 2015 Opracowała Wyniki egzaminu gimnazjalnego `2015 część humanistyczna j. polski 90 85 80 75
Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2018 roku
Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2018 roku D DEPARTAMENT STATYSTYKI I PROGNOZ AKTUARIALNYCH Warszawa 2018 Opracowała: Ewa Karczewicz Naczelnik Wydziału Badań
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska
Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne
Dane i ich struktura Skale pomiarowe i ich przekształcanie. Mariusz Dacko
Dane i ich struktura Skale pomiarowe i ich przekształcanie Mariusz Dacko Zjawisko masowe staje się widoczne w dużej liczbie obserwacji (lecz jest niewidoczne w obserwacji pojedynczej) Zjawisko masowe jest
Wykład dla studiów doktoranckich IMDiK PAN. Biostatystyka I. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW
Wykład dla studiów doktoranckich IMDiK PAN Biostatystyka I dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Program wykładu w skrócie 1. Wprowadzenie: rozkład empiryczny,
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Statystyka to nauka zajmująca się badaniem prawidłowości w procesach masowych, to jest takich, które realizują się na dużą skalę (np. procesy
Zmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji i podwyższeniu świadczeń najniższych w marcu 2017
Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych
Zakład Ubezpieczeń Społecznych Departament Statystyki i Prognoz Aktuarialnych Struktura wysokości emerytur i rent wypłacanych przez ZUS po waloryzacji w marcu 2012 roku. Warszawa 2012 I. Badana populacja
Wyniki egzaminu gimnazjalnego 2016/2017 część humanistyczna język polski
Wyniki egzaminu gimnazjalnego 2016/2017 część humanistyczna język polski Gimnazjum w Pietrowicach Wielkich XI 2017 Opracowała Wyniki egzaminu gimnazjalnego `2017 Rozkład punktów w powiecie Strona 2 Wyniki
INFORMACJE O WYNIKACH EGZAMINU ZAWODOWEGO W KWALIFIKACJI M.11. EKSPLOATACJA ZŁÓŻ PODZIEMNYCH
INFORMACJE O WYNIKACH EGZAMINU ZAWODOWEGO W KWALIFIKACJI M.11. EKSPLOATACJA ZŁÓŻ PODZIEMNYCH W WOJEWÓDZTWIE ŚLĄSKIM sesja sierpień-wrzesień Jaworzno 2013 SPIS TREŚCI 1. TERMIN EGZAMINU POTWIERDZAJĄCEGO
Matematyka stosowana i metody numeryczne
Adam Wosatko Magdalena Jakubek Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 4 Podstawy statystyki 4. Wstęp Statystyka nauka o metodach badań właściwości populacji (zbiorowości),
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja
Podstawowe definicje statystyczne
Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
RAPORT ZBIORCZY z diagnozy umiejętności matematycznych
RAPORT ZBIORCZY z diagnozy umiejętności matematycznych przeprowadzonej w klasach szóstych szkół podstawowych Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy
RAPORT z diagnozy Matematyka na starcie
RAPORT z diagnozy Matematyka na starcie przeprowadzonej w klasach czwartych szkoły podstawowej Analiza statystyczna Wyjaśnienie Wartość wskaźnika Liczba uczniów Liczba uczniów, którzy przystąpili do sprawdzianu
ANALIZA JAKOŚCIOWA I ILOŚCIOWA TESTÓW SZKOLNYCH MATERIAŁ SZKOLENIOWY
ANALIZA JAKOŚCIOWA I ILOŚCIOWA TESTÓW SZKOLNYCH MATERIAŁ SZKOLENIOWY Instrukcja przeprowadzania analiz badań edukacyjnych i sporządzania raportów po badaniach. Cele prowadzenia analiz jakościowych i ilościowych
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
RAPORT z diagnozy umiejętności matematycznych
RAPORT z diagnozy umiejętności matematycznych przeprowadzonej w klasach pierwszych szkół ponadgimnazjalnych 1 Analiza statystyczna Wskaźnik Liczba uczniów Liczba punktów Łatwość zestawu Wyjaśnienie Liczba
Statystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezioska Podstawowe pojęcia STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów)
POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Współczynnik zmienności Klasycznym współczynnikiem (wskaźnikiem) zmienności zmiennej losowej X nazywamy wyrażenie gdzie E(X) 0. v k z (X) = D(X) E(X), Klasyczny
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych.
Wykład 2. 1. Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. 3. Wykresy: histogram, diagram i ogiwa. Prezentacja materiału statystycznego Przy badaniu struktury zbiorowości punktem
Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
99 wybranych pytań ze statystyki i odpowiedzi na nie
99 wybranych pytań ze statystyki i odpowiedzi na nie Artykuł pobrano ze strony eioba.pl 1. Podać określenie i przykłady zbiorowości statystycznej, generalnej i próbnej. Zbiorowość generalną stanowią wszystkie
XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009
XXXI MARATON WARSZAWSKI Warszawa, 27.09.2009 Alex.Celinski@gmail.com Rozkład wyników Przedziały 30-minutowe Lp. Przedział Liczebność Częstość czasowy Liczebność Częstość skumulowana skumulowana 1 2:00-2:30
STATYSTYKA POWTÓRZENIE WIADOMOŚCI
STATYSTYKA POWTÓRZENIE WIADOMOŚCI ZADANIE Średnia arytmetyczna wszystkich liczb pierwszych należacych do przedziału, 9) A) B), C) D), ZADANIE Średnia licz,,,,9,9,, jest liczba A) B), C) D), ZADANIE Diagram