STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
|
|
- Halina Niewiadomska
- 7 lat temu
- Przeglądów:
Transkrypt
1 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
2 Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne), skokowe (dyskretne), quasi ciągłe, ciągłe, jakościowe (niemierzalne).
3 Skale słabe, niemetryczne, jakościowe: nominalna (kategoryjna, wariantowa): dwudzielna (dychotomiczna): np. kobieta/mężczyzna, tak/nie, 0/1, wielodzielna (politomiczna): np. kolor, marka, gatunek, porządkowa (rangowa), np. oceny, preferencje, nie/raczej nie/nie mam zdania/raczej tak/tak silne, metryczne, ilościowe: przedziałowa (interwałowa), np. temperatura w skali Celsjusza, ilorazowa (stosunkowa), np. temperatura w skali Kelvina, zamknięte/otwarte, Zmienna ze skali mocniejszej może być rozpatrywana w skali słabszej, ale nie odwrotnie.
4 Badanie statystyczne pełne, częściowe, ciągłe, okresowe, doraźne, badania ankietowe, monograficzne, próbkowe (metoda reprezentacyjna). szacunki: interpolacja, ekstrapolacja, Etapy badania statystycznego: przygotowanie badania (cel, populacja, jednostka, metoda), obserwacja statystyczna, opracowanie i prezentacja materiału statystycznego, opis lub wnioskowanie statystyczne.
5 Szeregi statystyczne Szeregi statystyczne szczegółowe rozdzielcze czasowe punktowe przedziałowe momentów okresów przestrzenne
6 Szereg szczegółowy (wyliczający, dane indywidualne) 3590, 1520, 2340, 1460, 1990, 1830, 1830, 1520, 1460, 1990, 2612, 1520, 2340, 2145, 1460, 1830, 1520, 2299, 1460, 1460, 1520, 2145, 1990, 1830, 1990, 1830, 1460, 1460, 1660, 1660, 1830, 1990, 1460, 1520, 1830, 1830, 1460, 1460, 1460, 1460, 1660, 1520, 2340, 1460, 2045, 1520, 2145, 2145, 2299, 1660, 1520, 2340, 1520, 1520, 1460, 2145, 2145, 1460, 1460, 1520, 1460, 1460, 4960, 2612
7 Szereg rozdzielczy punktowy i x i n i Razem 64
8 Szereg rozdzielczy przedziałowy x i n i x i n i mniej niż i więcej 2
9 Empiryczny rozkład cechy wartości cechy: x i, i = 1,..., k, zakładamy dalej, że wartości są uporządkowane rosnąco: x min = x 1 < x 2 < < x k = x max, końce przedziałów klasowych: x 0i < x 1i, rozpiętość przedziału: h i = x 1i x 0i, środek przedziału: ẋ i = x 0i + x 1i. 2 liczebności: n i liczba obserwacji o wartościach równych x i, lub mieszczących się w i-tym przedziale klasowym, liczebność zbiorowości (próby, populacji): n = k n i, częstości: f i = n i n, k f i = 1,
10 Liczebność skumulowana, dystrybuanta empiryczna Liczebność skumulowana: liczba obserwacji nie większa od danej wartości cechy: n(x) = n i i:x i x Dystrybuanta empiryczna: frakcja (część) obserwacji nie większa od danej wartości cechy: F n (x) = i:x i x f i = n(x) n.
11 Liczba Liczebność Częstość Skumulowana Dystrybuanta zadań liczebność empiryczna x i n i f i n(x i ) F n (x i ) Suma 40 1
12 Miary opisu struktury poziom przeciętny (położenie, średni poziom wartości): średnia, mediana, dominanta (moda), zróżnicowanie (rozproszenie, dyspersja, zmienność): wariancja, odchylenie standardowe, odchylenie przeciętne, odchylenie ćwiartkowe, rozstęp, asymetria (skośność): skośność, współczynnik Yule a-kendalla, koncentracja (spłaszczenie): kurtoza, współczynnik Giniego, entropia,
13 Średnia arytmetyczna dla danych indywidualnych: x = 1 n n x i = x x n, n dla szeregów rozdzielczych punktowych: x = 1 n k x i n i = k x i f i, dla szeregów rozdzielczych przedziałowych: x = 1 n k x i n i = k x i f i. x min x x max, n x i = n x, n (x i x) = 0 (lub k (x i x)n i = 0 lub k ( x i x)n i = 0),
14 x i n i x i x i n i (20, 25] (25, 30] (30, 35] Σ x = = 28.
15 Mediana wartość środkowa, kwantyle Medianą z próby Me nazywamy taką wartość, że co najmniej połowa obserwacji ma wartość nie większą niż Me i równocześnie co najmniej połowa obserwacji ma wartość nie mniejszą niż Me. Inaczej: jest to najmniejsza wartość, dla której F n (Me) 1 2 lub rownoważnie n(me) n 2. dla szeregów szczegółowych: Me = x n+1 2 x n 2 + x n gdy n jest nieparzyste, gdy n jest parzyste. kwantylem empirycznym rzędu p, gdzie 0 < p < 1, nazywamy najmniejszą wartość q p cechy, dla której zachodzi: F n (q p ) p.
16 Kwantyle, kwartyle dla szeregów przedziałowych kwantyle aproksymujemy wzorem q p x 0p + [pn n(x 0p )] hp n p = x 0p + [p F n (x 0p )] n h p n p p rząd kwantyla, x0p dolna granica przedziału kwantyla: F n (x 0p ) p < F n (x 1p ), np liczebność przedziału kwantyla, hp szerokość przedziału kwantyla, n(x 0p ) liczebność skumulowana w przedziale poprzedzającym przedział kwantyla, Fn (x 0p ) wartość dystrybuanty empirycznej na końcu przedziału poprzedzającego przedział kwantyla, kwartyle: Q 1 = q 0.25, Q 2 = Me = q 0.5, Q 3 = q 0.75, w szczególności dla p = 1 2 otrzymujemy wzór dla mediany: [ ] [ n Me x 0M + 2 n(x 0M) hm 1 = x 0M + n M 2 F n(x 0M)] n h M n M
17 1 x i n i F n (x i ) (20, 25] (25, 30] (30, 35] Q 1 = 25 + [ ] , Me = 25 + [ ] , Q 3 = 30 + [ ]
18 Dominanta Dominantą (modą, modalną) nazywamy wartość zmiennej, która występuje najczęściej, można wyznaczać tylko w rozkładach jednomodalnych, w szeregach szczegółowych i punktowych jest to wartość cechy odpowiadająca największej liczebności, w szeregach przedziałowych aproksymujemy ją wzorem: D x 0D + n D n D 1 (n D n D 1 ) + (n D n D+1 ) h D, x 0D dolna granica przedziału dominanty (o największej liczebności), nd, n D 1, n D+1 odpowiednio liczebność przedziału dominanty, przedziału poprzedniego i następnego, hd rozpiętość przedziału dominanty. Wzór Pearsona : Me 1 3 D x.
19 25 x i n i (20, 25] 11 (25, 30] 23 (30, 35] D D = (23 11) + (23 16) Uwaga: w przypadku przedziałów o różnej szerokości liczebności n i zastępujemy gęstościami: g i = n i /h i.
20 Wariancja dla danych indywidualnych: S 2 = 1 n (x i x) 2 = 1 n xi 2 ( x) 2, n n dla szeregów rozdzielczych punktowych: S 2 = 1 k (x i x) 2 n i = 1 k xi 2 n i ( x) 2, n n dla szeregów rozdzielczych przedziałowych: S 2 = 1 k ( x i x) 2 n i = 1 k x 2 i n i ( x) 2, n n poprawka Shepparda: S 2 = S 2 h2 12,
21 odchylenie standardowe: S = S 2, współczynnik zmienności: odchylenie przeciętne: V = S x, d = 1 n x i x n ( d = 1 ) k x i x n i, n odchylenie ćwiartkowe: Q = Q 3 Q 1, 2 pozycyjny współczynnik zmienności: V = Q Me, rozstęp: R = x max x min, rozstęp ćwiartkowy (międzykwartylowy): IQR = Q 3 Q 1,
22 x = = 28, x i n i x i x i n i ( x i x) 2 ( x i x) 2 n i (20, 25] (25, 30] (30, 35] Σ S 2 = = 13.25, 50 S = , Q = 2.88, 2
23 Równość wariancyjna mamy informacje o k grupach: ich liczebności n i, średnie x i oraz wariancje (wewnątrzgrupowe) S 2 i, średnia ogólna, to średnia ważona liczebnościami: x = k x i n i k n i. liczbę S 2 ( x i ) = k ( x x i ) 2 n i k n i nazywamy wariancją międzygrupową, wariancja ogólna wyraża się wzorem: S 2 = S 2 i + S 2 ( x i ) = k S 2 i n i k n i + k ( x x i ) 2 n i k n i.
24 Moment zwykły rzędu r: m r = 1 n xi r, n Moment centralny rzędu r: M r = 1 n (x i x) r, n ( m k = 1 ) k xi r n i n ( M k = 1 ) k (x i x) r n i n
25 Asymetria klasyczny współczynnik asymetrii: współczynnik Yule a-kendalla: γ 3 = M 3 S 3, A Q = (Q 3 Q 2 ) (Q 2 Q 1 ) (Q 3 Q 2 ) + (Q 2 Q 1 ), współczynnik skośności Pearsona: A S = x D, S
26 Asymetria wartości dodatnie asymetria prawostronna wartości ujemne asymetria lewostronna
27 Kurtoza γ 4 = M 4 S 4 3, wartości dodatnie rozkład wysmukły (leptokurtyczny) wartości ujemne rozkład spłaszczony (platokurtyczny)
28 Krzywa koncentracji Lorenza, współczynnik Giniego linia łamana powstała z połączenia punktów o współrzędnych: ( j j (x 0, y 0 ) = (0, 0), (x j, y j ) = n, z ) i n, j = 1,..., n. z i dla szeregu rozdzielczego: (x 0, y 0 ) = (0, 0), ( j (x j, y j ) = n j i, z ) i n i n k, j = 1,..., k. z i n i podwojone pole obszaru między krzywą Lorenza a przekątną kwadratu jednostkowego nazywamy współczynnikiem koncentracji Giniego: nj=1 (2j n 1)z j G = n 2. z współczynnik Giniego przyjmuje wartości z przedziału [0, 1], gdzie 0 oznacza rozkład równomierny, a wartość 1 rozkład skupiony w pojedynczej wartości,
29 j z j j z i x j y j 2j n 1 (2j n 1)z j G = = = 0.82.
30 Źródło: en.wikipedia.org, dane: World Bank
31 Entropia dla zmiennej losowej dyskretnej: H = x p x ln(p x ), dla danych empirycznych w postaci szeregu rozdzielczego punktowego: k ( ) n i H = n ln ni, n Uwaga: przyjmujemy 0 ln(0) = 0, duża wartość entropii oznacza duże rozproszenie rozkład zbliżony do równomiernego mało informacji, Entropia nie bierze pod uwagę wartości tylko liczebności/prawdopodobieństwa.
32 Średnia harmoniczna Chcemy policzyć średnią wielkości stosunkowych (prędkość, gęstość, wydajność, zużycie na osobę, itp.) a i = b i c i, i = 1,..., k. Jeśli znamy wartości a i oraz c i, to b i = a i c i, zatem odpowiednia jest średnia arytmetyczna, ważona współczynnikami c i : ā = k b k i a i c i k = c k. i c i Jeśli znamy wartości a i oraz b i, to c i = b i a i, zaś właściwą średnią jest średnia harmoniczna z wagami b i : ā = k b i k c i = k b i. k b i a i
33 Średnia harmoniczna Jaka jest średnia gęstość zaludnienia w Trójmieście? Miasto Gdańsk Gdynia Sopot Ludność Gęstość zaludnienia Licząc (zwykłą) średnią arytmetyczną otrzymujemy: x = podczas gdy prawidłowy wynik, to = 1925, x H =
34 Średnia harmoniczna Przez n kolejnych dni kupujemy akcje pewnej spółki, po cenie x i w i-tym dniu, i = 1,..., n, za stałą kwotę c. Średnia cena zakupu jest średnią harmoniczną: n c n x H = n c = n 1. x i x i Przez n kolejnych dni sprzedajemy akcje pewnej spółki, w liczbie k sztuk każdego dnia, po cenie x i w i-tym dniu, i = 1,..., n. Średnia cena sprzedaży, to średnia arytmetyczna: n x i k n x i x = n =. k n Dla dowolnych 0 < x 1,..., x n zachodzi warunek: x H = n n 1 x i n x i = x. n
Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
Bardziej szczegółowoWykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Bardziej szczegółowoPodstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Bardziej szczegółowoPlan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Bardziej szczegółowoStatystyka. Opisowa analiza zjawisk masowych
Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im
Bardziej szczegółowoMIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy
MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji
Bardziej szczegółowoStatystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Bardziej szczegółowoMiary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Bardziej szczegółowoPróba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Bardziej szczegółowo1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Bardziej szczegółowoLaboratorium 3 - statystyka opisowa
dla szeregu rozdzielczego Laboratorium 3 - statystyka opisowa Agnieszka Mensfelt 11 lutego 2019 dla szeregu rozdzielczego Statystyka opisowa dla szeregu rozdzielczego Przykład wyniki maratonu Wyniki 18.
Bardziej szczegółowoStatystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Bardziej szczegółowoOpisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Bardziej szczegółowoStatystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Bardziej szczegółowoMiary statystyczne w badaniach pedagogicznych
Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane
Bardziej szczegółowo-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Bardziej szczegółowoSTATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Bardziej szczegółowoW1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Bardziej szczegółowoSTATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Dla opisania rozkładu badanej zmiennej, korzystamy z pewnych charakterystyk liczbowych. Dzielimy je na cztery grupy.. Określenie przeciętnej wartości
Bardziej szczegółowoSTATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Bardziej szczegółowoStatystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
Bardziej szczegółowoPodstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.
Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Bardziej szczegółowoPozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Bardziej szczegółowoStatystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
STATYSTYKA OPISOWA Literatura A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Bardziej szczegółowo1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Bardziej szczegółowoStatystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
Bardziej szczegółowoStatystyka Opisowa WK Andrzej Pawlak. Intended Audience: PWR
Statystyka Opisowa WK1.2017 Andrzej Pawlak Intended Audience: PWR POJĘCIA STATYSTYKI 1. Zbiór danych liczbowych pokazujących kształtowanie się określonych zjawisk i procesów (roczniki statystyczne). 2.
Bardziej szczegółowoPo co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Bardziej szczegółowoStatystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.
Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw
Bardziej szczegółowoW kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Bardziej szczegółowoĆwiczenia 1-2 Analiza rozkładu empirycznego
Ćwiczenia 1-2 Zadanie 1. Z kolokwium z ekonometrii studenci otrzymali następujące oceny: 5 osób dostało piątkę, 20 os. dostało czwórkę, 10 os. trójkę, a 3 osoby nie zaliczyły tego kolokwium. Należy w oparciu
Bardziej szczegółowoCharakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Bardziej szczegółowoWskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii
Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia
Bardziej szczegółowoSTATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
Bardziej szczegółowoStatystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Bardziej szczegółowoParametry statystyczne
I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n
Bardziej szczegółowo1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Bardziej szczegółowoWykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.
Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka
Bardziej szczegółowoStatystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Statystyka to nauka zajmująca się badaniem prawidłowości w procesach masowych, to jest takich, które realizują się na dużą skalę (np. procesy
Bardziej szczegółowoSTATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)
STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Bardziej szczegółowoStatystyczne metody analizy danych
Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem
Bardziej szczegółowoMiary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 6 marca 2018 1 MIARY ZMIENNOŚCI (inaczej: rozproszenia, rozrzutu, zróżnicowania, dyspersji) informuja o zróżnicowaniu jednostek zbiorowości
Bardziej szczegółowoMatematyka stosowana i metody numeryczne
Adam Wosatko Magdalena Jakubek Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 4 Podstawy statystyki 4. Wstęp Statystyka nauka o metodach badań właściwości populacji (zbiorowości),
Bardziej szczegółowoXi B ni B
Zadania ze statystyki cz.2 I rok Socjologii lic. Zadanie 1 Ustal dla danych zawartych w tabelach poniżej, prezentujących rozkład liczebności (ni) różnej wielkości gospodarstw domowych w dwóch populacjach,
Bardziej szczegółowoGraficzna prezentacja danych statystycznych
Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do
Bardziej szczegółowoStatystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Bardziej szczegółowoWprowadzenie Pojęcia podstawowe Szeregi rozdzielcze STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP.
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 września 2017 1 Wprowadzenie 2 Pojęcia podstawowe 3 Szeregi rozdzielcze Zwykle wyróżnia się dwa podstawowe działy statystyki: statystyka
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Bardziej szczegółowoBiostatystyka, # 1 /Weterynaria I/
Biostatystyka, # 1 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoMatematyka z el. statystyki, # 1 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 1 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Bardziej szczegółowoWykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.
Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE)
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 1 1 / 33 Warunki zaliczenia 1 Ćwiczenia OBOWIĄZKOWE (max. 3 nieobecności) 2 Zaliczenie
Bardziej szczegółowoAgata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Bardziej szczegółowoStatystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoMiary w szeregach. 1 Miary klasyczne. 1.1 Średnia Średnia arytmetyczna
Miary w szeregach 1 Miary klasyczne 1.1 Średnia 1.1.1 Średnia arytmetyczna Zad. 1 średnia dla szeregu rozdzielczego punktowego W tabeli zestawiono wyniki badań czasu wykonania 15 detali. Jest to szereg
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoAnaliza struktury i przeciętnego poziomu cechy
Analiza struktury i przeciętnego poziomu cechy Analiza struktury Pod pojęciem analizy struktury rozumiemy badanie budowy (składu) określonej zbiorowości, lub próby, tj. ustalenie, z jakich składa się elementów
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoPorównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?
1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.
Bardziej szczegółowoPodstawowe pojęcia statystyczne
Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk
Bardziej szczegółowoAnaliza zróżnicowania, asymetrii i koncentracji
Analiza zróżnicowania, asymetrii i koncentracji Miary zróżnicowania Miary średnie, chociaż reprezentują wszystkie jednostki badanej zbiorowości, nie dają wyczerpującej charakterystyki szeregu statystycznego,
Bardziej szczegółowoBadania Statystyczne
Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Bardziej szczegółowoSTATYSTYKA OPISOWA. Dr Alina Gleska. 28 września Instytut Matematyki WE PP
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 2 Wyróżniamy następujace miary statystyczne: POŁOŻENIA, które służa do określenia takiej wartości cechy, wokół której skupiaja
Bardziej szczegółowo99 wybranych pytań ze statystyki i odpowiedzi na nie
99 wybranych pytań ze statystyki i odpowiedzi na nie Artykuł pobrano ze strony eioba.pl 1. Podać określenie i przykłady zbiorowości statystycznej, generalnej i próbnej. Zbiorowość generalną stanowią wszystkie
Bardziej szczegółowoPOJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
Bardziej szczegółowoStatystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.
Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść
Bardziej szczegółowoZawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.20 2011 Zawartość Zawartość 1. Tworzenie szeregu rozdzielczego przedziałowego (klasowego)... 3 2. Podstawowy opis struktury... 3 3. Opis rozkładu jednej cechy szereg
Bardziej szczegółowoStatystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Statystyka jest jak kostium bikini: pokazuje wiele, ale nie pokazuje najważniejszego. Aaron Levenstein Jeśli
Bardziej szczegółowoWykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia
Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna
Bardziej szczegółowoZmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Bardziej szczegółowoStatystyka. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski
Statystyka Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Statystyka Statystyka: nauka zajmuj ca si liczbowym opisem zjawisk masowych oraz ich analizowaniem, zbiory informacji liczbowych. (Sªownik
Bardziej szczegółowoPopulacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
Bardziej szczegółowo4.2. Statystyczne opracowanie zebranego materiału
4.2. Statystyczne opracowanie zebranego materiału Zebrany i pogrupowany materiał badawczy należy poddać analizie statystycznej w celu dokonania pełnej i szczegółowej charakterystyki interesujących badacza
Bardziej szczegółowoRachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Współczynnik zmienności Klasycznym współczynnikiem (wskaźnikiem) zmienności zmiennej losowej X nazywamy wyrażenie gdzie E(X) 0. v k z (X) = D(X) E(X), Klasyczny
Bardziej szczegółowoDane i ich struktura Skale pomiarowe i ich przekształcanie. Mariusz Dacko
Dane i ich struktura Skale pomiarowe i ich przekształcanie Mariusz Dacko Zjawisko masowe staje się widoczne w dużej liczbie obserwacji (lecz jest niewidoczne w obserwacji pojedynczej) Zjawisko masowe jest
Bardziej szczegółowoEstymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Bardziej szczegółowoElementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoStatystyka to nauka o metodach badań (liczbowo wyrażalnych) własności zbiorowości. Próba. Próba Populacja. Próba
Statystyka Opisowa Wstępna analiza danych Rodzaje prezentacji danych Miary tendencji centralnej Miary zmienności (zróżnicowania) Miara asymetrii (skośności) Miara spłaszczenia Statystyka to nauka o metodach
Bardziej szczegółowoKARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4
KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)
Bardziej szczegółowoAnaliza statystyczna w naukach przyrodniczych
Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.
Bardziej szczegółowoStatystyczne metody analizy danych. Agnieszka Nowak - Brzezińska
Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne
Bardziej szczegółowoWykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja
Bardziej szczegółowoEstymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Bardziej szczegółowoStatystyczna analiza danych
Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie
Bardziej szczegółowoTransport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Studia stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Metody probabilistyczne w transporcie Nazwa modułu w języku angielskim Probabilistic
Bardziej szczegółowoStatystyka. Wykład 5. Magdalena Alama-Bućko. 20 marca Magdalena Alama-Bućko Statystyka 20 marca / 26
Statystyka Wykład 5 Magdalena Alama-Bućko 20 marca 2017 Magdalena Alama-Bućko Statystyka 20 marca 2017 1 / 26 Koncentracja Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności
Bardziej szczegółowoWSTĘP DO STATYSTYKI MATEMATYCZNEJ. D r h a b. i n ż. D a r i u s z P i w c z y ń s k i, p r o f. n a d z w. U T P
WSTĘP DO STATYSTYKI MATEMATYCZNEJ D r h a b. i n ż. D a r i u s z P i w c z y ń s k i, p r o f. n a d z w. U T P W Y D Z I A Ł H O D O W L I I B I O L O G I I Z W I E R Z Ą T STATYSTYKA Nauka poświęcona
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoWykład ze statystyki. Maciej Wolny
Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:
Bardziej szczegółowoKomputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Bardziej szczegółowo