SYSTEM ZASILANIA BEZPRZEWODOWEGO Z REZONANSOWYM PRZEKSZTAŁTNIKIEM SZEREGOWYM

Wielkość: px
Rozpocząć pokaz od strony:

Download "SYSTEM ZASILANIA BEZPRZEWODOWEGO Z REZONANSOWYM PRZEKSZTAŁTNIKIEM SZEREGOWYM"

Transkrypt

1 Atu MOADEWICZ SYSTEM ZASIANIA BEZPZEWODOWEGO Z EZONANSOWYM PZEKSZTAŁTNIKIEM SZEEGOWYM STESZCZENIE W efeacie pzedstawin scheat idewy systeu bezpzewdweg pzesyłu enegii. Syste ten że pacwać np. jak bezpzewdwy układy ładwania bateii pjazdów elektycznych. Pzedstawin del ateatyczny systeu az wyniki badań analitycznych. Wyknane zstały badania syulacyjne indukcyjneg systeu bezpzewdweg pzesyłu enegii z szeegwy pzekształtnikie eznanswy. Badania syulacyjne systeu pzepwadzne zstały dla óżnych etd stewania. Pzedstawin chaakteystykę względnej cy wyjściwej pzy zianach częsttliwści pacy pzekształtnika. Słwa kluczwe: pzekształtnik eznanswy, pzesył enegii, spzężenie indukcyjne. WSTĘP Pzekształtniki eznanswe znajdują caz szesze zastswanie jak pzetwnice wyskiej częsttliwści DC-DC czy też DC-AC stswane są w takich w takich dziedzinach jak gzejnictw indukcyjne czy bezpzewdwy / g inż. Atu MOADEWICZ e-ail: a.adewicz@iel.waw.pl Zakład Elektycznych Napędów Obabiakwych Instytut Elekttechniki PACE INSTYTUTU EEKTOTECHNIKI, zeszyt 3, 007

2 48 A. Madewicz bezstykwy pzesył enegii BPE. W stswanych becnie związaniach bezpzewdweg pzesyłu enegii wykzystuje się głównie spzęganie indukcyjne. W zastswaniach tych wyagane jest pzeważnie genewanie sinusidalnych pzebiegów częsttliwści kilkudziesięciu kilkuset khz pzy inialnej zawatści wyższych hanicznych. Kzyści, jakie płyną z zastswania układu eznansweg w systeach BPE t niejsze gabayty, żliwść pzełączania tanzystów w zeze pądu lub napięcia (ZCS, ZVS), niejszy pzi zakłóceń elektagnetycznych EMI. Cele atykułu jest analiza delu ateatyczneg systeu BPE az pównanie wybanych właściwści pzy stewaniu cą wyjściwą szeegweg falwnika eznansweg.. METODY STEOWANIA PZEKSZTAŁTNIKIEM D knwencjnalnych etd stewania pzekształtnika DC-DC żna zaliczyć następujące etdy: aplitudwą, częsttliwściwą FM, etdę Mdulacji Szekści Ipulsów PWM pzy stałej częsttliwści pzełączania az etdę PWM-FM z jednczesną dulacją częsttliwści. W celu zapewnienia inialnych stat pzełączania zawów, któe sną waz ze wzste częsttliwści pacy pzekształtnika, knieczny jest stswanie etd stewania zapewniających największą spawnść. Z wyieninych pwyżej etd stewania tylk etda aplitudwa zapewnia najniejsze staty pzełączania. W układach paktycznych gdzie w sygnałach steujących tanzystai w jednej gałęzi stka, występuje stefa atwa, etda aplitudwa zapewnia żliwść pzełączania tanzystów w waunkach ZCS (ang. ze cuent switching). Kutacja twada występuje jedynie w układzie egulacji stałeg napięcia zasilająceg, układ ten pacuje w waunkach NZCS. Częściwe lub zupełne dstąpienie d pzełączania w waunkach ZCS występuje w etdach dulacyjnych. Metdai, któe pzwalają uzyskać egulacje cy wyjściwej, pzy zachwaniu pzełączania tanzystów w waunkach kutacji iękkiej i wyskiej częsttliwści pacy pzekształtnika są etdy integacyjne []. Paca pzekształtnika w eznansie wyaga jednak zastswania badziej złżnych etd stewania i zabezpieczeń w pównaniu z etdai knwencjnalnyi. Między innyi ze względu na większe szybkść zian pądów i napięć występujących na eleentach -C. Wybó etdy jest, więc kpise piędzy złżnścią układu zasilania w etdzie AM, złżnścią układu stewania i zabezpieczeń pzy pacy pzekształtnika w waunkach eznansu a statai pzełączania zawów w etdach dulacyjnych FM, PWM.

3 Syste zasilania bezpzewdweg z eznanswy pzekształtnikie OPIS SYSTEMU BPE I MODE MATEMATYCZNY Na ysunku 3. pzedstawiny jest del systeu BPE z szeegwy pzekształtnikie eznanswy. Tansfat w systeie bezpzewdweg pzesyłu enegii składa się z dwóch niezależnych, uchych względe siebie dzeni. ys. 3.. Mdel systeu BPE z szeegwyi kndensatai eznanswyi dłącznyi d uzwjenia stny piewtnej i wtónej tansfata W układach knwencjnalnych, w któych tansfaty używane są w celu zapewnienia izlacji galwanicznej iędzy siecią a dbinikie lub też w celu dpaswania pądw-napięciweg, pble zpszenia stuienia agnetyczneg właściwie nie występuje, pnieważ cały stuień zayka się w dzeniu tansfata. Szczelina pwietzna, któa w systeie BPE zapewnia bezpzewdwść / bezstykwść zasilania dbiników znajdujących się p stnie wtónej tansfata, pwdując jedncześnie znaczące bniżenie spawnści i watści pzesyłanej enegii ze stny piewtnej na wtóną, pnieważ stuień zpszenia wzasta, a t pwduje wzst indukcyjnści zpszenia uzwjeń tansfata. Kpensacja indukcyjnści zpszenia tansfata, w pzedstawiny delu, zealizwana jest ppzez szeegwe dłączenie kndensatów eznanswych d uzwjeń tansfata p stnie piewtnej i wtónej. Pzekształtnik zasilany jest ze źódła napięcia stałeg E i geneuje na wyjściu napięcie pzeienne u ( ) pzebiegu pst- z t

4 50 A. Madewicz kątny. Pzebieg napięcia na pzekątnej pzekształtnika zapisany w szeegu Fuiea żna pzedstawić jak: 4 Ez u( t) sin( nωt ) () π n n,3,5... Częsttliwść dgań własnych bwdu, ys. 3. bez tłuienia wynsi: ω / C () a ipedancja falwa ρ / (3) C dbć bwdu Q ρ / (4) ac e Częsttliwść dgań własnych bwdu eznansweg wyaża się jak: ω ( / ( C ) α ) (5) gdzie wypadkwa indukcyjnść eznanswa, wypadkwa pjenść eznanswa bwdu, współczynnik tłuienia: e C C C α / (6) Napięcie na zaciskach pstwnika wyjściweg z filte pjenściwy w systeie BPE ys. 3. a chaakte fali pstkątnej (ys. 4, 5. [4]) a pąd chaakte fali sinusidalnej. Zakładając, że pzebieg pądu bwdu wtóneg jest sinusidalny aplitudzie I i pzesunięciu fazwy ϕ t pzebieg pądu zapisać żna ównanie: i t) I sin( ωt ) (7) ( ϕ

5 Syste zasilania bezpzewdweg z eznanswy pzekształtnikie... 5 natiast pzebieg napięcia na pzekątnej stka pstwniczeg zapisany w szeegu Fuiea żna pzedstawić jak: 4 U u ( t) sin ϕ π n n,3,5... ( nωt ) (8) Pijając wpływ wyższych hanicznych w napięciu wyjściwy u (t), piewsza haniczna pzyjuje następującą pstać : u 4 U ( t ϕ π ( ωt ϕ ) U ( ω ) t) sin sin (9) Pąd bwdu eznansweg jest pzekazywany d bciążenia ppzez stek didwy i filtwany pzez ównlegle pdłączny kndensat C 0, któeg pjenść jest znacznie większa d pjenści kndensatów eznanswych C, C. Pnieważ ppzez kndensat C 0 nie pzepływa składwa stała pądu wyjściweg pstwnika, t watść ustalna pądu płynąceg w bciążeniu 0 jest ppcjnalna d watści i (t). T (0) π T / I I sin( ω t ϕ ) dt I 0 Pzy załżeniu, że piewsza haniczna napięcia u (t) jest w fazie z pąde wtóny tansfata, pstwnik z filte pjenściwy zachwuje się jak tansfat ezystancji. Pównując ównania (9-0), watść ezystancji bciążenia spwadznej d bwdu pądu pzeienneg stny wtónej zapisać żna następując: U u( t) 8 e () i( t) π I Watść ezystancji: U () I

6 5 A. Madewicz wiec ównanie () zapisać żna jak: e π (3) ysunek 3. pzedstawia upszczny scheat delu systeu BPE pkazaneg na ys. 3.. eaktancje stny piewtnej i wtónej tansfata az eaktancja związana z indukcyjnścią wzajeną wynszą dpwiedni: ωs (4) ωsc ω s ωsc (5) ωs M (6) ω s częsttliwść pacy pzekształtnika. ys. 3.. Upszczny scheat systeu BPE z dele tansfata typu ównania na watść ipedancji pkazanych na ys. 3. są następujące: Zγ e j (7) Z β j j Z γ Z γ (8)

7 Syste zasilania bezpzewdweg z eznanswy pzekształtnikie α Z β j Z (9) Tansitancję napięciwą układu pzedstawineg na ys. 3. zapisać żna jak: γ α β Z Z Z G e V (0) Pdstawiając ównania (7-9) d ównania (0) wyażenie na tansitancje napięciwą układu pzyjuje pstać: e V e V G j G () W celu upszczenia zważań analitycznych, załżn jednakwą liczbę zwi N N az jednakwe gabayty dzeni stny piewtnej i wtónej tansfata. ównania pisujące zależnści piędzy indukcyjnściai składwyi tansfata az współczynnik spzężenia zapisać żna jak: n M n M M k k M M k / () Na pdstawie pwyższych załżeń eaktancje pisane ównaniai (4-5) są sbie ówne i pzyjują watść ze dla tej saej częsttliwści pacy pzekształtnika ω. / / / C C C ω (3)

8 54 A. Madewicz Pdstawiając ównanie (3) d ównań (4-5) eaktancje i zapisać żna jak: gdzie: ωs (4) ω ωs (5) ω ω ω s / ω (6) Z ównań (-6) wynika, że wzcnienie napięciwe układu jest ówne jednści dla częsttliwści pacy pzekształtnika ω. Współczynnik spzężenia agnetyczneg uzwjeń tansfata w systeie bezpzewdweg pzesyłu enegii ys. 3. że zieniać pdczas pacy pzekształtnika. Ziana współczynnika spzężenia k że być spwdwana zianą wielkści szczeliny piędzy dzeniai bądź też zianą czynnej pwiezchni pzekju stuienia agnetyczneg. Na pdstawie ównań (-6) wyażenie na watść tansitancji napięciwej układu pzekształcić żna d pstaci zależnej d współczynnika spzężenia: G V M ω k k ω Q ( ω ω ) ac ω ω k ω ω k ω e ω, Q ac ω / M ( ) e ω e (7, 8) Wyniki bliczeń analitycznych tansitancji napięciwej według ównania (7) pzy ziennej częsttliwści pacy pzekształtnika i dbci bwdu pzedstawin na ys Obliczenia wyknan dla czteech óżnych współ-

9 Syste zasilania bezpzewdweg z eznanswy pzekształtnikie ys Pzebiegi tansitancji napięciwej systeu BPE czynników spzężenia agnetyczneg k. Wyznaczne chaakteystyki gą być wykzystane d analizy i pjektwania systeu BPE az układu i algytu stewania. 4. BADANIA SYMUACYJNE Metda częsttliwściwa FM falwnik zasilany jest nieegulwany napięcie stały. Stewanie cą wyjściwą plega na zianie częsttliwści pzełączania zawów w stsunku d częsttliwści eznanswej bwdu. Maksyalna c wyjściwą falwnika uzyskuje się pzy pacy z częsttliwścią eznanswą. Chaakteystyczne pzedziały częsttliwści pacy falwnika stewaneg etdą częsttliwściwą t: Pzedział piewszy ω s < ω występują niekzystne kutacje twade DsT. Tanzyst załączany jest pzy

10 56 A. Madewicz pełny napięciu zasilania, pzejuje pąd bwdu eznansweg az pąd wsteczny didy. Kutacje iękkie typu TD, pąd kutuje w waunkach ZCS z tanzysta na ównległą didę. Pzedział dugi ω s > ω występują kutacje twade typu TsD. Kutacja zpczyna się wyłączenie pzewdząceg tanzysta. Kutacje iękkie DT, pąd kutuje w waunkach ZCS z didy na ównległy tanzyst. Paca w eznansie ω s ω występują kutacje iękkie typu TT, pąd kutuje natualnie na szeegwy tanzyst. a) ω s < ω b) ω s > ω ys. 4.. Pzebiegi czaswe pądów tanzystów i did az sygnałów steujących w pzekształtniku eznansie szeegwy stewany etdą FM

11 Syste zasilania bezpzewdweg z eznanswy pzekształtnikie Metda dulacji szekści ipulsów PWM. egulację cy wyjściwej uzyskuje się pzez zianę współczynnika wypełnienia dg ( t t ) d t / (9) dg zw gdzie: t dg całkwity czas wystewania diagnalneg w półfali pądwej, t zw całkwity czas wystewania zwaciweg w półfali pądwej. egulacja współczynnika wypełnienia plega na zianie pzesunięcia fazweg piędzy sygnałai steującyi pay tanzystów T-T w stsunku d sygnałów T3-T4. Wypełnienie sygnałów steujących jest 50 % a częsttliwść pacy jest stała. Pzy tej etdzie stewania występują identyczne jak w etdzie częsttliwściwej, pza stane pacy z częsttliwścią eznanswa w któej występują wszystkie dzaje kutacji twadej. ys. 4.. Pzebiegi czaswe pądów tanzystów i did az sygnałów steujących w pzekształtniku eznansie szeegwy stewany etdą PWM, pzesuniecie fazwe piędzy sygnałai steującyi wynsi 45, ω s ω Metda PWM-FM, stewanie jest badz pdbne d etdy PWM. egulacje cy wyjściwej uzyskuje się ppzez zianę częsttliwści i pzesunięcia fazweg piędzy sygnałai steującyi pay tanzystów T-T i T3-T4. Sygnał steujący jest tak dbany, aby kutacja jednej z gałęzi stka zachdziła w waunkach ZCS. Częsttliwść teg sygnału że być niejsza lub większa d częsttliwści eznanswej ω. Wyóżnić żna dwa

12 58 A. Madewicz pzedziały częsttliwści pacy falwnika w tej etdzie stewania. Pzedział piewszy ω s < ω tanzysty w jednej z gałęzi pzełączane są w waunkach ZSC, kutacja TT. W dugi półstku natiast występują niekzystne kutacje DsT az kutacje iękkie TD. Pzedział dugi ω s > ω tanzysty w jednej z gałęzi pzełączane są w waunkach ZSC, kutacja TT. W dugi półstku występują kutacje twade TsD az kutacje iękkie DT. a) ω s < ω b) ω s > ω ys Pzebiegi czaswe pądów tanzystów i did az sygnałów steujących w pzekształtniku eznansie szeegwy stewany etdą PWM-FM. Pzesuniecie fazwe piędzy sygnałai steującyi wynsi 90

13 Syste zasilania bezpzewdweg z eznanswy pzekształtnikie Metdy integacyjne. Jedny z pzykładów etd integacyjnych jest etda SIC (ang. Subhanic Integatin Cntl) [, 3]. Sygnały steujące falwnikie są kbinacją sygnałów częsttliwści eznanswej i jej subhanicznyi. egulacja pzepływu cy plega na skkwych zianach ω ω ω częsttliwści sygnału steująceg ( ω ). Ziany wystewania tanzystów dknywane są wyłącznie w chwilach pzejścia pzez ze 3 3 pądu w bwdzie eznanswy. Występujące kutacje iękkie t TT, TD, DT. Badania syulacyjne wyknan pzy załżeniu, że eleenty układu są idealne. Paaety delu: E z 00 V, C C 33.7 nf, 500 μh, k 0.85, C 0 μf, 0 Ω. (ys Ω) ys Pzebiegi czaswe pądów tanzystów i did az sygnałów steujących w pzekształtniku eznansie szeegwy stewany. egulacja cy ppzez ziany watści zadanej pądu p stnie piewtnej tansfata, pzekształtnik stewany etdą integacyjną SIC

14 60 A. Madewicz ys Wykes cy względnej w bwdzie bciążenia w zależnści d częsttliwści pacy pzekształtnika zasilająceg dla óżnych wielkści ipedancji falwej bwdu 5. WNIOSKI Jednstkwe wzcnienie napięciwe układu występuje dla częsttliwści pacy ω ω s / ω. Pnadt, jak wynika z pzedstawinych chaakteystyk watść G v pzy ω nie zależy d współczynnika spzężenia az bciążenia układu. Enegia pzesyłana ze źódła zasilania d bwdu bciążenia w pzedstawiny układzie a watść aksyalna, gdy pzekształtnik pacuje z częsttliwści eznanswą, a kutacja łączników zachdzi w waunkach ZCS. egulację napięcia wyjściweg az cy pzesyłanej d bciążenia uzyskać żna ppzez pacę układu w jedny z tzech pzedstawinych zakesów częsttliwści A, B, C. Zakesie A i C tansitancja napięciwa układu jest funkcją ntniczną. W zakesie A wzcnienie napięciwe układu śnie waz ze wzste częsttliwści a aksyalna c wyjściwa występuje pzy ω / 3. W zakesie C wzcnienie napięciwe aleje waz ze wzste częsttliwści. Tansitancja napięciwa w zakesie częsttliwści pacy C jest znacznie niej czuła na ziany współczynnika spzężenia agnetyczneg k. Klejną kzystną jest bak niekzystnych kutacji DsT, któe występują w pzstałych dwóch zakesach. Największe watści wzcnienia napięciweg siągnąć żna w zakesie B, jednakże tansitancja napięciwa układu G v jest tu nieliniwa i wykazuje badz dużą czułść na ziany współczynnika spzężenia k az bciążenia układu bezpzewdweg pzesyłu

15 Syste zasilania bezpzewdweg z eznanswy pzekształtnikie... 6 enegii. Zalecanyi pzedziałai częsttliwści pacy az etdai stewania pzekształtnika eznansweg w bezpzewdwy systeie pzesyłu enegii są: pzedział A etdy integacyjne i pzedział C etda częsttliwściwa. ITEATUA. bet W. Eicksn: Fundaentals f Pwe Electnics. Kluwe Acadeic Publishe, Matysik J.: Metdy stewania integacyjneg tanzystwych falwników napięcia klasy D z szeegwy bwde eznanswy. Wyd. PW, Waszawa Kaźiekwski M. P., Matysik J.: Wpwadzenie d elektniki i enegelektniki. Wyd. PW, Waszawa A. Madewicz: Pzekształtnik eznansie szeegwy w systeie bezpzewdweg pzesyłu enegii. Wybane wyniki badań syulacyjnych. IV Ogólnplska Knfeencja MiS-4, Kścielisk 9-3 czewca 006. ękpis dstaczn, dnia Opiniwał: d hab. inż. yszad Zapaśnik, pf. IE WIEESS ENEGY TANSMISSION SYSTEM WITH SEIES ESONANT CONVETE Atu MOADEWICZ ABSTACT The analytical esults f the tansfe gain and siulatin studies f seveal ethds f cntl f utput pwe in wieless enegy tansissin syste with seies esnant cnvete ae pesented in this pape. The expessin f the tansfe is deived. The chaacteistic elating illustated the utput pwe and switching fequency f seveal quality cicuit facts ae given.

DEMODULACJA AM /wkładki DA091B, DDA2/

DEMODULACJA AM /wkładki DA091B, DDA2/ DEMODULACJA AM /wkładki DA09B, DDA/ WSTĘP Tematem ćwiczenia są zagadnienia związane z dbiem infmacji pzesyłanej na dległść za pmcą fali nśnej. Badany jest -- pd kątem zasad pacy i właściwści - układ demdulata

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

METODY HODOWLANE - zagadnienia

METODY HODOWLANE - zagadnienia METODY HODOWLANE METODY HODOWLANE - zagadnienia 1. Mateatyczne pdstawy etd hdwlanych 2. Watść cechy ilściwej i definicje paaetów genetycznych 3. Metdy szacwania paaetów genetycznych 4. Watść hdwlana cechy

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu

Bardziej szczegółowo

Projektowanie generatorów sinusoidalnych z użyciem wzmacniaczy operacyjnych

Projektowanie generatorów sinusoidalnych z użyciem wzmacniaczy operacyjnych Instytut Autmatyki Prjektwanie generatrów sinusidalnych z użyciem wzmacniaczy peracyjnych. Generatr z mstkiem Wiena. ysunek przedstawia układ generatra sinusidalneg z mstkiem Wiena. Jeżeli przerwiemy sprzężenie

Bardziej szczegółowo

Obwody rezonansowe v.3.1

Obwody rezonansowe v.3.1 Politechnika Waszawska Instytut Radioelektoniki Zakład Radiokomunikacji WIEZOROWE STDIA ZAWODOWE ABORATORIM OBWODÓW I SYGNAŁÓW Obwody ezonansowe v.3. Opacowanie: d inż. Kaol Radecki Waszawa, kwiecień 008

Bardziej szczegółowo

należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło

należą do grupy odbiorników energii elektrycznej idealne elementy rezystancyjne przekształcają energię prądu elektrycznego w ciepło 07 0 Opacował: mg inż. Macin Wieczoek www.mawie.net.pl. Elementy ezystancyjne. należą do gupy odbioników enegii elektycznej idealne elementy ezystancyjne pzekształcają enegię pądu elektycznego w ciepło.

Bardziej szczegółowo

Quasi rezonansowy przekształtnik podwyższający napięcie z dławikiem sprzężonym

Quasi rezonansowy przekształtnik podwyższający napięcie z dławikiem sprzężonym Michał HARASMCZK Politechnika Białostocka, Kateda Automatyki i Elektoniki doi:0.599/48.07.06.8 Quasi ezonansowy pzekształtnik podwyższający napięcie z dławikiem spzężonym Steszczenie. Atykuł pzedstawia

Bardziej szczegółowo

ZAPOROWY QUASI REZONANSOWY PRZEKSZTAŁNIK PODWYŻSZAJĄCY NAPIĘCIE

ZAPOROWY QUASI REZONANSOWY PRZEKSZTAŁNIK PODWYŻSZAJĄCY NAPIĘCIE POZNAN UNVE RSTY OF TE CHNOLOGY ACADE MC JOURNALS No 9 Electical Engineeing 07 DO 0.008/j.897-0737.07.9.0007 Michał HARASMCZUK* ZAPOROWY QUAS REZONANSOWY PRZEKSZTAŁNK PODWYŻSZAJĄCY NAPĘCE W atykule pzedstawiono

Bardziej szczegółowo

Dwukierunkowy przekształtnik DC/AC/DC z izolacją galwaniczną i rezonansem szeregowym

Dwukierunkowy przekształtnik DC/AC/DC z izolacją galwaniczną i rezonansem szeregowym Paweł BUŁKOWSKI Politechnika Białostocka, Kateda Enegoelektoniki i Napędów Elektycznych doi:1.15199/48.16.5.4 Dwukieunkowy pzekształtnik D/A/D z izolacją galwaniczną i ezonansem szeegowym Steszczenie.

Bardziej szczegółowo

DARIUSZ SOBCZYŃSKI 1, JACEK BARTMAN 2

DARIUSZ SOBCZYŃSKI 1, JACEK BARTMAN 2 Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Infomatyka n 4/18/2016 www.eti.zeszow.pl DOI: 10.15584/eti.2016.4.53 DARIUSZ SOBCZYŃSKI 1, JACEK BARTMAN 2 Model symulacyjny pzeciwsobnego

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

Nagrzewnica indukcyjna cylindryczna, wzory na parametr tłumienia i dobroć

Nagrzewnica indukcyjna cylindryczna, wzory na parametr tłumienia i dobroć di:0.599/48.05.07.9 Rman EROŃS AGH Aademia Gónicz-Hutnicza w awie, ateda Enegeletnii i Autmatyi Systemów Pzetwazania Enegii agzewnica inducyjna cylindyczna, wzy na paamet tłumienia i dbć Steszczenie. Wypwadzn

Bardziej szczegółowo

Wzmacniacze tranzystorowe prądu stałego

Wzmacniacze tranzystorowe prądu stałego Wzmacniacze tanzystoo pądu stałego Wocław 03 kład Dalingtona (układ supe-β) C kład stosowany gdy potzebne duże wzmocnienie pądo (np. do W). C C C B T C B B T C C + β ' B B C β + ( ) C B C β β β B B β '

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA INDUKJA ELEKTROMAGNETYZNA W 83 ku, p dziesięciu latach wytwałych pób, M. Faadaywi udał się wykazać i keślić w jaki spsób zmienne ple magnetyczne pwduje pwstanie pla elektyczneg. Wyknał ekspeyment, któy

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI

LABORATORIUM ELEKTRONIKI LABOATOIUM ELEKTONIKI ĆWICENIE 2 DIODY STABILIACYJNE K A T E D A S Y S T E M Ó W M I K O E L E K T O N I C N Y C H 21 CEL ĆWICENIA Celem ćwiczenia jest paktyczne zapoznanie się z chaakteystykami statycznymi

Bardziej szczegółowo

OBWODY PRĄDU SINUSOIDALNEGO

OBWODY PRĄDU SINUSOIDALNEGO aboatoium Elektotechniki i elektoniki Temat ćwiczenia: BOTOM 06 OBODY ĄD SSODEGO omiay pądu, napięcia i mocy, wyznaczenie paametów modeli zastępczych cewki indukcyjnej, kondensatoa oaz oponika, chaakteystyki

Bardziej szczegółowo

. Ilorazy amplitud wyznacza się zazwyczaj z kątów ψ r. t ΙΙ. = 2 2 r

. Ilorazy amplitud wyznacza się zazwyczaj z kątów ψ r. t ΙΙ. = 2 2 r ELIPSOMETRIA Celem elipsmetii jest wyznaczenie stałych ptycznych i stuktualnych cienkich wastw i płaskich pwiezchni pzez pmia elipsy playzacji światła dbiteg lub pzepuszczneg. Pzy baku dwójłmnści i aktywnści

Bardziej szczegółowo

POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA

POLE MAGNETYCZNE: PRAWO GAUSSA, B-S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA POLE MAGNETYCZNE: PRAWO GAUSSA, -S TRANSFORMACJE RELATYWIST. POLA E-M STACJONARNE RÓWNANIA MAXWELLA Wpwadzenie Ple magnetyczne, jedna z pstaci pla elmg: wytwazane pzez zmiany pla elektyczneg w czasie,

Bardziej szczegółowo

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

2-2. i i. R O R i Av i. Bv o. R of. R if A f v s R S R L. i 2 v 1 v 2. h 11. h22. v o. v i. v s. v f A S. wzmacniacz napięciowy A [V/V] S A Uz.

2-2. i i. R O R i Av i. Bv o. R of. R if A f v s R S R L. i 2 v 1 v 2. h 11. h22. v o. v i. v s. v f A S. wzmacniacz napięciowy A [V/V] S A Uz. O T O I U M U K Ł D Ó W I N I O W Y H Ujemne sprzężenie zwrtne 4 Ćwiczenie pracwał Jacek Jakusz. Wstęp Ćwiczenie umżliwia pmiar i prównanie właściwści teg sameg wzmacniacza pracująceg w następujących kniguracjach:

Bardziej szczegółowo

Model pracy systemu wodociągowego z pompą napędzaną silnikiem indukcyjnym z regulowaną prędkością

Model pracy systemu wodociągowego z pompą napędzaną silnikiem indukcyjnym z regulowaną prędkością Kaziiez UZEK 1, Jacek RTMN 2,, nna KOZIOROWSK 2 Zakład Enegoelektoniki i Elektoenegetyki, Politechnika Rzeszowska (1), Instytut Techniki, Uniwesytet Rzeszowski (2) Model pacy systeu wodociągowego z popą

Bardziej szczegółowo

Podstawowe konstrukcje tranzystorów bipolarnych

Podstawowe konstrukcje tranzystorów bipolarnych Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii

Bardziej szczegółowo

podsumowanie (E) E l Eds 0 V jds

podsumowanie (E) E l Eds 0 V jds e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka i astronomia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póna Matua z OPERONEM Fizyka i astnia Pzi zszezny Listad 0 W ni niej szy sce a cie ce nia nia za dań twa tyc są e zen t wa ne zy kła d we aw ne d wie dzi. W te - g ty u za

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 1

INSTRUKCJA DO ĆWICZENIA NR 1 KATEDA EHANK STOSOWANEJ Wydział echaniczny POLTEHNKA LUBELSKA NSTUKJA DO ĆWZENA N PZEDOT TEAT OPAOWAŁ EHANKA UKŁADÓW EHANZNYH Badania analityczne układu mechaniczneg jednym stpniu swbdy D inż. afał usinek.

Bardziej szczegółowo

DYNAMIKA WÓD PODZIEMNYCH

DYNAMIKA WÓD PODZIEMNYCH DYNAMIKA WÓD PODZIEMNYCH ównanie Benullieg Spadek hydauliczny Współczynnik filtacji Paw Dacy`eg Pędkść filtacji, pędkść skuteczna Dpływ d wu Dpływ d studni zpatujemy 2 schematy: Dpływ z wastwy wdnśnej

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe Pzygotowanie do Egzaminu Potwiedzającego Kwalifikacje Zawodowe Powtózenie mateiału Opacował: mg inż. Macin Wieczoek Jednostki podstawowe i uzupełniające układu SI. Jednostki podstawowe Wielkość fizyczna

Bardziej szczegółowo

ZASTOSOWANIE AGREGATU PRĄDOTWÓRCZEGO I PRZEMIENNIKA CZĘSTOTLIWOŚĆI DO ROZRUCHU SILNIKA POMPY WODY ZASILAJĄCEJ W WARUNKACH AWARII KATASTROFALNEJ

ZASTOSOWANIE AGREGATU PRĄDOTWÓRCZEGO I PRZEMIENNIKA CZĘSTOTLIWOŚĆI DO ROZRUCHU SILNIKA POMPY WODY ZASILAJĄCEJ W WARUNKACH AWARII KATASTROFALNEJ Zeszyty Poblemowe aszyny Elektyczne 74/2006 29 Zbigniew Szulc, Politechnika Waszawska, Waszawa Kzysztof Fałdyga, Hous-Enegia, Waszawa ZASTOSOWAIE AGEGATU PĄDOTWÓCZEGO I PZEIEIKA CZĘSTOTLIWOŚĆI DO OZUCHU

Bardziej szczegółowo

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =?

PROPAGACJA BŁĘDU. Dane: c = 1 ± 0,01 M S o = 7,3 ± 0,1 g Cl 2 /1000g H 2 O S = 6,1 ± 0,1 g Cl 2 /1000g H 2 O. Szukane : k = k =? PROPAGACJA BŁĘDU Zad 1. Rzpuszczalnść gazów w rztwrach elektrlitów pisuje równanie Seczenwa: S ln = k c S Gdzie S i S t rzpuszczalnści gazu w czystym rzpuszczalniku i w rztwrze elektrlitu stężeniu c. Obliczy

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami

Bardziej szczegółowo

Podstawowe układy pracy tranzystora MOS

Podstawowe układy pracy tranzystora MOS A B O A T O I U M P O D S T A W E E K T O N I K I I M E T O O G I I Pdstawwe układy pracy tranzystra MOS Ćwiczenie pracwał Bgdan Pankiewicz 4B. Wstęp Ćwiczenie umżliwia pmiar i prównanie właściwści trzech

Bardziej szczegółowo

9. ŁĄCZNIKI STATYCZNE PRĄDU PRZEMIENNEGO

9. ŁĄCZNIKI STATYCZNE PRĄDU PRZEMIENNEGO 9. ŁĄCZNIKI STATYCZNE PRĄDU PRZEMIENNEGO 9.1. Cel I zakres ćwiczenia Celem ćwiczenia jest zapznanie się z budwą i pdstawwymi właściwściami łączników statycznych jednfazwych prądu przemienneg raz z mżliwściami

Bardziej szczegółowo

Teoria Przekształtników - kurs elementarny

Teoria Przekształtników - kurs elementarny Teria Przekształtników - kurs elementarny W5. PRZEKSZTAŁTNIKI IMPSOWE PRĄD STAŁEGO -(1) [ str199-16, str. 5 161-177, 6 str. 161-190-199] Jest t grupa przekształtników najliczniejsza bwiem znajuje zastswanie

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Elektrtechnika i Elektrnika Materiały Dydaktyczne Mc w bwdach prądu zmienneg. Opracwał: mgr inż. Marcin Jabłński mgr inż. Marcin Jabłński

Bardziej szczegółowo

CHARAKTERYSTYKI MECHANICZNE ELEKTRYCZNEGO UKŁADU ROZRUCHOWEGO SILNIKA SPALINOWEGO

CHARAKTERYSTYKI MECHANICZNE ELEKTRYCZNEGO UKŁADU ROZRUCHOWEGO SILNIKA SPALINOWEGO Józef PSZCZÓŁKOWSKI CHARAKTERYSTYKI MECHANICZNE ELEKTRYCZNEGO UKŁADU ROZRUCHOWEGO SILNIKA SPALINOWEGO W atykule schaakteyzwan napędzanie wału kbweg pzez zusznik jak pces diagnstyczny. Omówin waunki pacy

Bardziej szczegółowo

Rozkład temperatur i zmiany własności optycznych mikrolaserów pompowanych cylindryczną i gaussowską wiązką lasera półprzewodnikowego

Rozkład temperatur i zmiany własności optycznych mikrolaserów pompowanych cylindryczną i gaussowską wiązką lasera półprzewodnikowego 9 BIULETYN WAT OK XLIV, N 7 99 zkład tempeatu i zmiany własnści ptycznych miklaseów pmpwanych cylindyczną i gausswską wiązką lasea półpzewdnikweg SŁAWOMI KACZMAEK JAN MACZAK ZDZISŁAW JANKIEWICZ Instytut

Bardziej szczegółowo

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH 51 Aleksande Zaemba *, Tadeusz Rodziewicz **, Bogdan Gaca ** i Maia Wacławek ** * Kateda Elektotechniki Politechnika Częstochowska al. Amii Kajowej 17, 42-200 Częstochowa e-mail: zaemba@el.pcz.czest.pl

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE

ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE ĆWICZENIE 68 POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ TESLOMIERZA POLE MAGNETYCZNE Wpwadzenie Ple magnetyczne występuje wkół magnesów twałych, pzewdników z pądem, uchmych ładunków elektycznych a także wkół

Bardziej szczegółowo

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona

Wyznaczanie promienia krzywizny soczewki płasko-wypukłej metodą pierścieni Newtona Wyznaczanie poienia kzywizny soczewki płasko-wypukłej etodą pieścieni Newtona I. Cel ćwiczenia: zapoznanie ze zjawiskie intefeencji światła, poia poienia soczewki płasko-wypukłej. II. Pzyządy: lapa sodowa,

Bardziej szczegółowo

MODELOWANIE PRZEPŁYWU CIEPŁA W PRZEGRODACH Z INSTALACJAMI CENTRALNEGO OGRZEWANIA METODĄ BRZEGOWYCH RÓWNAŃ CAŁKOWYCH

MODELOWANIE PRZEPŁYWU CIEPŁA W PRZEGRODACH Z INSTALACJAMI CENTRALNEGO OGRZEWANIA METODĄ BRZEGOWYCH RÓWNAŃ CAŁKOWYCH MODELOWANIE PRZEPŁYWU CIEPŁA W PRZEGRODACH Z INSTALACJAMI CENTRALNEGO OGRZEWANIA METODĄ BRZEGOWYCH RÓWNAŃ CAŁKOWYCH Tmasz Janusz TELESZEWSKI, Sławmi Adam SORKO Wydział Budwnictwa i Inżynieii Śdwiska, Plitechnika

Bardziej szczegółowo

PODSTAWY FIZYKI DLA ELEKTRONIKÓW

PODSTAWY FIZYKI DLA ELEKTRONIKÓW WOJSKOWA AKADEMIA TECHNICZNA Antni Rgalski PODSTAWY FIZYKI DLA ELEKTRONIKÓW WARSZAWA 00 SPIS TREŚCI PRZEDMOWA 9 Rzdział. WPROWADZENIE 3.. Czym jest fizyka? 3.. Wstęp matematyczny 4... Pchdna funkcji 4...

Bardziej szczegółowo

Generator funkcyjny DDS MWG20 1Hz-20MHz

Generator funkcyjny DDS MWG20 1Hz-20MHz Infomacje o podukcie Utwozo 01-11-2017 eneato funkcyjny DDS MW20 1Hz-20MHz Cena : 260,00 zł N katalogowy : EN. MW20 Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji eneato

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi

Bardziej szczegółowo

Ogniwo wzorcowe Westona

Ogniwo wzorcowe Westona WZOZEC SEM - OGNWO WESTON mieszczne jest w szklanym naczyniu, w które wtpine są platynwe elektrdy. Ddatni i ujemny biegun gniwa stanwią dpwiedni rtęć (Hg) i amalgamat kadmu (Cd 9-Hg), natmiast elektrlitem

Bardziej szczegółowo

1. Na schemacie przedstawiono uzwojenia stojana silnika indukcyjnego połączone w

1. Na schemacie przedstawiono uzwojenia stojana silnika indukcyjnego połączone w nazwisk i imię.. data. 1. Na schemacie przedstawin uzwjenia stjana silnika indukcyjneg płączne w zygzak. gwiazdę z dstępnym punktem zerwym. trójkąt. gwiazdę bez dstępneg punktu zerweg. 2. Dane na tabliczce

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Teat ćwiczenia: ZASTOSOWANIE RACHUNKU WYRÓWNAWCZEGO

Bardziej szczegółowo

WPŁYW POWIERZCHNI OśEBROWANYCH KRZYśOWYCH WYMIENNIKÓW CIEPŁA NA SKUTECZNOŚĆ ODZYSKU CIEPŁA W UKŁADACH WENTYLACJI I KLIMATYZACJI

WPŁYW POWIERZCHNI OśEBROWANYCH KRZYśOWYCH WYMIENNIKÓW CIEPŁA NA SKUTECZNOŚĆ ODZYSKU CIEPŁA W UKŁADACH WENTYLACJI I KLIMATYZACJI WPŁYW POWIERZCHNI OśEBROWANYCH KRZYśOWYCH WYMIENNIKÓW CIEPŁA NA SKUTECZNOŚĆ ODZYSKU CIEPŁA W UKŁADACH WENTYLACJI I KLIMATYZACJI Andzej JEDLIKOWSKI a, Maciej SKRZYCKI a, Daia DENISIKHINA b a Wydział InŜynieii

Bardziej szczegółowo

SYSTEMY ELEKTROMECHANICZNE

SYSTEMY ELEKTROMECHANICZNE SYSTEMY ELEKTROMECHANICZNE kie. Elektotechnika, studia stopnia stacjonane, sem. 1, 010/011 SZKIC DO WYKŁADÓW SILNIKI BEZSZCZOTKOWE Z MAGNESAMI TRWAŁYMI (SBMT) (1) MODELE OBWODOWE DYNAMICZNE Mieczysław

Bardziej szczegółowo

Ć wiczenie 3 OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO

Ć wiczenie 3 OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO 49 1. Wiadoości ogólne Ć wiczenie 3 OBWODY JEDNOFAZOWE PĄD PZEMENNEGO 1.1. Wielkości opisujące prąd przeienny Wielkości sinusoidalne są jednoznacznie określone przez trzy wielkości: aplitudę, pulsację

Bardziej szczegółowo

Podstawowe konfiguracje wzmacniaczy tranzystorowych

Podstawowe konfiguracje wzmacniaczy tranzystorowych Podstawo koniacje wzmacniaczy tanzystoowych Wocław 05 Klasyikacja wzmacniaczy Ze wzlęd na zastosowany element steowany: -- lampo -- tanzystoo Klasyikacja wzmacniaczy Ze wzlęd na zakes częstotliwości wzmacnianych

Bardziej szczegółowo

Maszyny Bezszczotkowe z Magnesami Trwałymi. Systemy Elektromaszynowe dr inż. Michał MICHNA

Maszyny Bezszczotkowe z Magnesami Trwałymi. Systemy Elektromaszynowe dr inż. Michał MICHNA Maszyny Bezszczotkowe z Magnesami Twałymi Systemy Elektomaszynowe d inż. Michał MICHNA Plan pezentacji Rozwój maszyn elektycznych z MT Zastosowanie maszyn bezszczotkowych z MT Mateiały magnetycznie twałe

Bardziej szczegółowo

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226

Bardziej szczegółowo

E r. Cztery fundamentalne oddziaływania: 1. Grawitacyjne 2. Elektromagnetyczne 3. Słabe jądrowe 4. Silne Elektromagnetyzm , Q.

E r. Cztery fundamentalne oddziaływania: 1. Grawitacyjne 2. Elektromagnetyczne 3. Słabe jądrowe 4. Silne Elektromagnetyzm , Q. Cztey fundamentalne ddziaływania: 1. Gawitacyjne. Elektmagnetyczne 3. Słabe jądwe 4. Silne Elektmagnetyzm Elektycznść E, Q Magnetyzm B, Q M Równania Maxwella Wykład 6 015/16 1 ELEKTROSTATYKA Wykład 6 015/16

Bardziej szczegółowo

Teoria Przekształtników - kurs elementarny

Teoria Przekształtników - kurs elementarny Teria Przekształtników - kurs elementarny W5. PRZEKSZTAŁTNIKI IMPSOWE PRĄD STAŁEGO -(1) [2 str199-216, str. 5 161-177, 6 str. 161-190-199] Jest t grupa przekształtników najliczniejsza bwiem znajduje zastswanie

Bardziej szczegółowo

STRUKTURA STEROWANIA UKŁADEM TRÓJMASOWYM Z REGULATOREM STANU

STRUKTURA STEROWANIA UKŁADEM TRÓJMASOWYM Z REGULATOREM STANU Pace Naukowe Instytutu Maszyn, Napędów i Pomiaów Elektycznych N 69 Politechniki Wocławskiej N 69 Studia i Mateiały N 0 Kaol WRÓBEL* egulato stanu, układy tójmasowe, układy z połączeniem spężystym STRUKTURA

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Podstawowe konfiguracje wzmacniaczy tranzystorowych

Podstawowe konfiguracje wzmacniaczy tranzystorowych Politechnika Wocławska Podstawo koniacje wzmacniaczy tanzystoowych Wocław 00 Politechnika Wocławska Klasyikacja wzmacniaczy Ze wzlęd na zastosowany element steowany: -- lampo -- tanzystoo Politechnika

Bardziej szczegółowo

Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny)

Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny) inż. Michał Stzeszewski 0-006 Pzejowanie ciepła pzy konwekcji swobonej w pzestzeni oganiczonej (szczeliny) Zaania o saozielnego ozwiązania v. 0.. powazenie celu uposzczenia achunkowego ozwiązania zjawiska

Bardziej szczegółowo

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO 10.X.010 ĆWCZENE NR 70 A. POMARY FOTOMETRYCZNE Z WYKORZYSTANEM FOTOOGNWA SELENOWEGO. Zestaw pzyządów 1. Ogniwo selenowe.. Źódło światła w obudowie 3. Zasilacz o wydajności pądowej min. 5A 4. Ampeomiez

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

Grawitacyjna energia potencjalna gdy U = 0 w nieskończoności. w funkcji r

Grawitacyjna energia potencjalna gdy U = 0 w nieskończoności. w funkcji r Wykład z fizyki Piot Posykiewicz 113 Ponieważ, ważne są tylko ziany enegii potencjalnej, ożey pzyjąć, że enegia potencjalna jest ówna zeo w dowolny położeniu. Powiezchnia iei oże być odpowiedni wyboe w

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

Laboratorium elektroniki i miernictwa

Laboratorium elektroniki i miernictwa Ełk 24-03-2007 Wyższa Szkła Finansów i Zarządzania w Białymstku Filia w Ełku Wydział Nauk Technicznych Kierunek : Infrmatyka Ćwiczenie Nr 3 Labratrium elektrniki i miernictwa Temat: Badanie pdstawwych

Bardziej szczegółowo

2 Przykład C2a C /BRANCH C. <-I--><Flux><Name><Rmag> TRANSFORMER RTop_A RRRRRRLLLLLLUUUUUU 1 P1_B P2_B 2 S1_B SD_B 3 SD_B S2_B

2 Przykład C2a C /BRANCH C. <-I--><Flux><Name><Rmag> TRANSFORMER RTop_A RRRRRRLLLLLLUUUUUU 1 P1_B P2_B 2 S1_B SD_B 3 SD_B S2_B PRZYKŁAD A Utwozyć model sieci z dwuuzwojeniowym, tójfazowym tansfomatoem 110/0kV. Model powinien zapewnić symulację zwać wewnętznych oaz zadawanie watości początkowych indukcji w poszczególnych fazach.

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

INSTRUKCJA MONTAŻU przewodu grzejnego PSB typu 07-5801-XXXX

INSTRUKCJA MONTAŻU przewodu grzejnego PSB typu 07-5801-XXXX Przewód grzejny PSB typ 07-5801-XXXX INSTRUKCJA MONTAŻU przewdu grzejneg PSB typu 07-5801-XXXX Spis treści 1. Zastswanie.. str. 1 2. Dane techniczne.... str. 1 3. Zasady bezpieczeństwa..... str. 2 4. Wytyczne

Bardziej szczegółowo

E-20A POMIAR MOCY PRĄDU ZMIENNEGO METODĄ OSCYLO- SKOPOWĄ

E-20A POMIAR MOCY PRĄDU ZMIENNEGO METODĄ OSCYLO- SKOPOWĄ Ćwiczenie E-A POMIA MOY PĄDU ZMIENNEGO MEODĄ OSYO- SKOPOWĄ I. el ćwiczenia: Pmiar mcy prądu zmienneg za pmcą scylskpu, pmiar różnicy faz scylskpem, cena dkładnści metdy. II. Przyrządy: Oscylskp, nieznana

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Cztery fundamentalne oddziaływania

Cztery fundamentalne oddziaływania Cztey fundamentalne ddziaływania:. Gawitacyjne. lektmagnetyczne 3. Słabe 4. Silne jądwe lektmagnetyzm lektycznść, Q Magnetyzm B, Q M Równania Maxwella Wykład - Fizyka II 00/ LKTROSTATYKA Wykład - Fizyka

Bardziej szczegółowo

ZJAWISKO TERMOEMISJI ELEKTRONÓW

ZJAWISKO TERMOEMISJI ELEKTRONÓW ĆWICZENIE N 49 ZJAWISKO EMOEMISJI ELEKONÓW I. Zestaw przyrządów 1. Zasilacz Z-980-1 d zasilania katdy lampy wlframwej 2. Zasilacz Z-980-4 d zasilania bwdu andweg lampy z katdą wlframwą 3. Zasilacz LIF-04-222-2

Bardziej szczegółowo

STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN

STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN STANISŁAW KIRSEK, JOANNA STUDENCKA STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN THE STANDARDS OF AIR POLLUTION EMISSION FROM THE FUELS COMBUSTION

Bardziej szczegółowo

MATEMATYCZNE MODELOWANIE PROCESU SUSZENIA W NIERUCHOMYM ZŁOśU. CZĘŚĆ I. MODEL MATEMATYCZNY

MATEMATYCZNE MODELOWANIE PROCESU SUSZENIA W NIERUCHOMYM ZŁOśU. CZĘŚĆ I. MODEL MATEMATYCZNY InŜynieia Rolnicza 2/26 Maian Szaycz, Eueniusz Kaiński, Kail Jałoszyński Instytut InŜynieii Rolniczej Akadeia Rolnicza we Wocławiu MATEMATYCZNE MODELOWANIE PROCESU SUSZENIA W NIERUCHOMYM ZŁOśU. CZĘŚĆ I.

Bardziej szczegółowo

Stacja lutownicza 936DH

Stacja lutownicza 936DH Infomacje o podukcie Utwozo 28-09-2017 Stacja lutownicza 936DH Cena : 150,00 zł N katalogowy : 936DH Poducent : Zhaoxin Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji Stacja

Bardziej szczegółowo

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,

Bardziej szczegółowo

Generator funkcyjny DDS SDG1010 Siglent 10MHz

Generator funkcyjny DDS SDG1010 Siglent 10MHz Infomacje o podukcie Utwozo 19-01-2018 eneato funkcyjny DDS SD1010 Siglent 10MHz Cena : 1.200,00 zł N katalogowy : SD1010 Poducent : Siglent Dostępność : Niedostępny Stan magazynowy : < 0 Śednia ocena

Bardziej szczegółowo

Aktywny rozdzielacz zasilania x3 LM317

Aktywny rozdzielacz zasilania x3 LM317 Infomacje o podukcie Utwozo 29-01-2017 Aktywny ozdzielacz zasilania x3 LM317 Cena : 30,00 zł N katalogowy : ELEK-053 Poducent : Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji

Bardziej szczegółowo

BADANIE DYNAMICZNEGO TŁUMIKA DRGA

BADANIE DYNAMICZNEGO TŁUMIKA DRGA Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie

Bardziej szczegółowo

ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym

ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym ĆWIZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych R przy wyuszeniu sinusoidaie zienny. el ćwiczenia Zapoznanie się z rozpływe prądów, rozkłade w stanach nieustalonych w obwodach szeregowych

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

Podstawowe układy. pracy tranzystora MOS

Podstawowe układy. pracy tranzystora MOS A B O A T O I U M A N A O G O W Y C H U K Ł A D Ó W E E K T O N I C Z N Y C H Pdstawwe układy pracy tranzystra MOS Ćwiczenie pracwał Bdan Pankiewicz. Wstęp Ćwiczenie umżliwia pmiar i prównanie właściwści

Bardziej szczegółowo

POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki.

POLE MAGNETYCZNE. Prawo Ampera. 2 4πε. Cyrkulacją wektorab r po okręgu. Kierunek wektora B r reguła prawej ręki. POLE MAGNETYCZNE Paw Ampea Kieunek wekta eguła pawej ęki. l Cykulacją wekta p kęgu ds ds π 4πε c Mżna wykazać, że związek ten jest słuszny dla kntuu dwlneg kształtu bejmująceg pzewdnik. ds Rys. 6.. Całkę

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności

Bardziej szczegółowo

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny 58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola

Bardziej szczegółowo

Projektowanie wzmacniacza tranzystorowego OE

Projektowanie wzmacniacza tranzystorowego OE Pojetowanie wzacniacza tanzystooweo OE Poniżej pzedstawiono dwa pzyłady pojetu wzacniacza tanzystooweo pacująceo w oniuacji OE. Piewsze z zadań pzedstawia pojet uładu, tóeo zadanie jest uzysanie na zadanej

Bardziej szczegółowo

Wpływ błędów parametrów modelu maszyny indukcyjnej na działanie rozszerzonego obserwatora prędkości

Wpływ błędów parametrów modelu maszyny indukcyjnej na działanie rozszerzonego obserwatora prędkości Daniel WACHOWIAK Zbigniew KRZEMIŃSKI Politechnika Gdańska Wydział Elektotechniki i Automatyki Kateda Automatyki Napędu Elektycznego doi:1015199/48017091 Wpływ błędów paametów modelu maszyny indukcyjnej

Bardziej szczegółowo

Rys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1

Rys. 1. Ilustracja modelu. Oddziaływanie grawitacyjne naszych ciał z masą centralną opisywać będą wektory r 1 6 FOTON 6, Wiosna 0 uchy Księżyca Jezy Ginte Uniwesytet Waszawski Postawienie zagadnienia Kiedy uczy się o uchach ciał niebieskich na pozioie I klasy liceu, oawia się najczęściej najpiew uch Ziei i innych

Bardziej szczegółowo

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki 58 Prąd d zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w ziennych Opór r bierny Prąd d zienny Prąd d zienny 3 Prąd d zienny 4 Prąd d zienny 5 Prąd d zienny Przy stałej prędkości kątowej

Bardziej szczegółowo

POMIAR MOCY CZYNNEJ W OBWODACH TRÓJFAZOWYCH

POMIAR MOCY CZYNNEJ W OBWODACH TRÓJFAZOWYCH ĆWICZENIE NR POMIAR MOCY CZYNNEJ W OBWODACH TRÓJFAZOWYCH.. Cel ćwiczenia Celem ćwiczenia jest pznanie metd pmiaru mcy czynnej w układach trójfazwych... Pmiar metdą trzech watmierzy Metda trzech watmierzy

Bardziej szczegółowo