Ćwiczenie 2. Interferometr Ronchiego - badanie jakości soczewek. Sensor Shack ahartmann a badanie frontów sferycznych i porównanie z falą płaską.
|
|
- Radosław Zawadzki
- 9 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 2 Interferometr Ronchiego - badanie jakości soczewek. Sensor Shack ahartmann a badanie frontów sferycznych i porównanie z falą płaską. Interferometr Twymana-Greena. Test ostrza noża.. Część teoretyczna 1. Aberracje soczewek refrakcyjnych Refrakcyjna soczewka skupiająca jest podstawowym elementem układów obrazujących, np.: aparatów fotograficznych, kamer oraz ludzkiego oka. Idealna soczewka cienka może być wykorzystana do obrazowania w sposób idealny, tj. bez aberracji geometrycznych i chromatycznych. W takim przypadku dowolny punkt przedmiotu jest obrazowany w punkt obrazu, płaszczyzna jest odwzorowywana w idealną płaszczyznę, kształt obrazu jest identyczny z kształtem przedmiotu. Dodatkowo wszystkie te warunki spełnione są dla dowolnej długości fali światła, czyli dla dowolnej barwy. W praktyce idealne soczewki nie istnieją i nawet najdoskonalsze wytworzone elementy obarczone są zestawem aberracji. Aberracja słowo wywodzące się z greki i łaciny oznaczające odchylenie od normy. Rodzaje aberracji, czyli wady soczewek zostały opisane matematycznie i sklasyfikowane przez Seidela w 1856 roku. W pierwszym przybliżeniu można podzielić je na: Aberracje geometryczne - skutkują deformacją uzyskanego obrazu, pogorszeniu ostrości. Aberracje chromatyczne - skutkują niepożądanymi zmianami zabarwienia obrazu, gdyż związane są z różnicami w jakości obrazowania dla różnych kolorów. W niniejszym ćwiczeniu skupimy się na zaobserwowaniu aberracji geometrycznych w układach obrazujących opartych na testowych skupiających soczewkach refrakcyjnych. Ludzkie oko stanowi prosty układ obrazujący o zmiennej mocy optycznej soczewki i stałej odległości obrazowej. Zakładając obserwację oddalonych przedmiotów można nawet założyć, że jest to jednosoczewkowy układ stało-ogniskowy o odległości przedmiotowej około 20 mm. Soczewka oka posiada wiele rodzajów silnych aberracji i na siatkówce rzutuje obraz pozostawiający wiele do życzenia zarówno pod względem geometrii jak i odbarwień chromatycznych. Tym niemniej mózg szybko uczy się kompensować te niedoskonałości i widzimy z zadowalającą ostrością i rozdzielczością, jeżeli niedoskonałości soczewki nie są zbyt duże. W przypadku fotografii i innych dziedzin techniki bazujących na obrazowaniu (np. widzenie maszynowe, inspekcje taśm produkcyjnych) zdecydowana większość aberracji musi być wyeliminowana lub skompensowana w optyce obrazującej. Z tego powodu od samych początków fotografii obserwuje się postęp w produkowaniu coraz doskonalszych soczewek i opartych na nich obiektywów. Strona 1 z 9
2 Aby określić aberrację występującą w danym układzie optycznym należy opisać zmiany kształtu frontu falowego wychodzącego ze źrenicy wyjściowej. Formalizm opisu aberracji geometrycznych, który jest obecnie używany, wyróżnia następujące aberracje: sferyczną, komatyczną, astygmatyzm, krzywiznę pola i dystorsję. W celu wykrycia rodzaju i wielkości aberracji w optyce instrumentalnej stosuje się wiele różnego rodzaju testów. Tutaj skupimy się na testach zakładających oświetlenie wiązką światła koherentnego (laserowego) i wykorzystujących interferencję frontu falowego zdeformowanego przez soczewkę. 2. Interferometr Ronchiego Popularnym i prostym testem jakości soczewek (w ogólności układów obrazujących) jest test Ronchiego, zaproponowany w 1920 roku przez Vasco Ronchiego. Monochromatyczna wiązka światła w postaci wycinka fali płaskiej oświetla badany układ optyczny (w naszym ćwiczeniu soczewkę lub obiektyw). Światło skupiane jest w ognisku. W pobliżu ogniska umieszczamy siatkę dyfrakcyjną, która rozszczepia padające światło na kilka frontów falowych, związanych z różnymi rzędami ugięcia (rząd 0, +1, -1 itp.). W wyniku odpowiedniego doboru okresu (gęstości) siatki, wspomniane fronty falowe interferują ze sobą tworząc obrazy interferencyjne, które możemy zarejestrować jako interferogramy. Kształt i orientacja prążków interferencyjnych determinuje rodzaj aberracji badanego układu. Na Rys. 1 przedstawiono schemat ideowy układu do przeprowadzenia testu Ronchiego. Badana soczewka Siatka dyfrakcyjna Obiektyw α Pł. obserwacji Rys 1. Schemat eksperymentu testu Ronchiego Jako Obiektyw może posłużyć ludzkie oko (obserwacja bezpośrednia) lub obiektyw aparatu cyfrowego. Można wykonać też obserwację interferogramu z pominięciem elementu Obiektyw. Wszystko zależy od relacji pomiędzy okresem siatki dyfrakcyjnej a aperturą i ogniskową badanego elementu optycznego. Okres siatki dyfrakcyjnej powinien być mniejszy bądź równy: P, NA Gdzie NA (apertura numeryczna) to sinus półkąta stożka świetlnego formowanego przez badaną soczewkę: NA sin( ). Kąt α został zaznaczony na Rys. 1. Strona 2 z 9
3 Interferogramy uzyskane z testu Ronchiego można interpretować na podstawie przykładowych, charakterystycznych wzorów widocznych na poniższym rysunku. Rys. 2. Przykładowe interferogramy testu Ronchiego soczewek o następujących aberracjach: a) rozogniskowanie; b) aberracja sferyczna; c) astygmatyzm pod kątem 45 ; d) koma pod kątem 0 ; e) koma pod kątem 45 ; f) koma pod kątem Test ostrza (ang. knife edge) W teście Ronchiego w płaszczyźnie bliskiej ogniskowej badanego elementu następowało wysłanianie światła periodyczną siatką dyfrakcyjną. W prostszej wersji można dokonać tego tylko jedną przesłoną umieszczoną w osi optycznej w pobliżu ogniska, tak jak pokazuje to Rys. 3. Jest to test ostrza (ang. knife edge test). Strona 3 z 9
4 Badana soczewka Ostrze Obiektyw i ekran Rys. 3. Geometria testu ostrza. Przesuwając ostrze wzdłuż osi optycznej wysłania się grupy promieni, przez uzyskuje się na ekranie obrazy interferencyjne podobne do tych z testu Ronchiego. W przypadku soczewki idealnej obraz interferencyjny powinien składać się z równoległych prążków, opisanych przez teoretyczną dyfrakcję na krawędzi prostej. W praktyce spotyka się bardziej skomplikowane wzory prążków. Rys. 4. przedstawia interferogramy dla soczewki obarczonej aberracją sferyczną. Strona 4 z 9
5 Rys. 4. Przykładowe interferogramy testu ostrza dla soczewki o aberracji sferycznej; NA=0,5; f=6000λ dla odległości ostrza od ogniska: a) -15λ; b) 0; c) +15λ; d) +20λ. 4. Test Shacka-Hartmanna Najbardziej rozpowszechniony w świecie sposób testowania płaskości frontu falowego to sensor Shacka-Hartmanna. Jest to bardzo precyzyjne urządzenie wykrywające niewielkie odchylenia badanego frontu falowego od płaskości. Kluczowym elementem testu S-H jest macierz mikrosoczewek, która ogniskuje mały fragment padającego pola świetlnego na niewielkim obszarze macierzy CCD. W przypadku padania na urządzenie pomiarowe idealnej fali płaskiej, na macierzy światłoczułej formowana jest regularna siatka punktów. W przypadku padania fali o pewnej deformacji, położenia punktów są nieznacznie zmienione: Na podstawie stopnia i kierunku przemieszczeń punktów oblicza się współczynniki aberracji Seidla. Zwykle dokonuje tego oprogramowanie wewnętrzne urządzeń. Zaletą tego sposobu jest brak wiązki referencyjnej (brak interferencji), przez co komercyjnie dostępne urządzenia realizujące wspomniany test są proste i kompaktowe. Wadą testu S-H jest konieczność stosowania wysokiej jakości macierzy mikro-soczewek, macierzy CCD wysokiej rozdzielczości oraz złożonego algorytmu obliczania deformacji na podstawie położenia punktów ogniskowych. Soczewka kompensująca Macierz CCD Badana soczewka Macierz mikro-soczewek Strona 5 z 9
6 Rys. 5.Geometria testu Shacka-Hartmanna. Najprostszym sposobem oszacowania aberracji w warunkach laboratoryjnych jest uzyskanie zdjęcia macierzy punktów przy założeniu oświetleniem najlepszą możliwą do sformowania falą płaską. W drugiej kolejności w wiązkę oświetlającą wstawia się badaną soczewkę wraz z drugą soczewką, której zadaniem jest skompensowanie krzywizny frontu falowego. Tak uzyskany quasi-płaski front oświetla sensor Shacka-Hartmanna. Rozsunięcie punktów ogniskowych na macierzy CCD determinuje rodzaj zniekształcenia wprowadzonego przez badaną soczewkę. Przykładowy rozkład punktów ogniskowych dla frontu falowego o złożonej aberracji przedstawia Rys. 6. Rys. 6. Punkty ogniskowe testu Shacka-Hartmanna dla złożonej aberracji. 5. Interferometr Macha-Zehndera Konfiguracją umożliwiającą bezpośrednią obserwację krzywizny frontu falowego jest konfiguracja Macha-Zehndera. Charakteryzuje się dołączoną wiązką odniesienia, przez co zaburzony front falowy interferuje z referencyjnym frontem płaskim. Kształt i gęstość Strona 6 z 9
7 prążków w bezpośredni sposób obrazuje charakter, orientację i natężenie aberracji. Geometrię pomiaru pokazuje poniższy Rys. 7. Podzielnik wiązki Badana soczewka Ekran Soczewka kompensująca Podzielnik wiązki Rys. 7. Geometria pomiaru aberracji soczewki z wykorzystaniem interferometru Macha-Zehndera. a b c d e f Rys. 8. Interferogramy soczewki z aberracją komatyczną uzyskane w interferometrze Macha-Zehndera dla zwiększającego się kąta padania wiązki odniesienia: a) -0,1; b) 0; c) 0,05; d) 0,0 ; e) 0,1; f) 0,1. 6. Interferometr Twymana-Greena Narzędziem umożliwiającym obserwację asymetrii kształtu soczewek skupiających jest interferometr Twymana-Greena z wstawionym elementem testowanym. Schemat urządzenia pokazuje Rys. 9. Strona 7 z 9
8 Zwierciadło Badana soczewka Fala płaska Zwierciadło f Ekran Rys. 9. Interferometr Twymana-Greena. Precyzyjne ustawianie układu wymaga dokładnego justowania z jednoczesną obserwacją prążków interferencyjnych. Jeżeli uzyskane na ekranie pole jest z pewnym przybliżeniem stałe, oznacza to, że justowanie powiodło się. Po nieznacznym rozogniskowaniu położenia elementu testowanego względem zwierciadła, można obserwować prążki koncentryczne wizualizujące asymetrię kształtu soczewki lub rozkładu jej współczynnika załamania. Przykładowe interferogramy przedstawia Rys. 10. Rys. 10 Interferogram obiektywu wysokiej jakości (z lewej) i soczewki sferycznej (z prawej). Widoczna asymetria kształtu soczewki sferycznej. Po nieznacznym skręceniu kąta jednego z ramion interferometru prążki uzyskują charakter pionowy i prawie równoległy, przy czym odstępstwo od równoległości można wiązać z aberracjami, którymi obarczona jest badana soczewka, wg Rys. 11. Strona 8 z 9
9 Rys. 11. Charakterystyczne kształty prążków interferencyjnych w interferometrze Twymana-Greena. Przebieg ćwiczenia 1. Obserwacja i rejestracja interferogramów soczewek i obiektywów testowych w układzie interferometru Ronchiego. 2. Zestawienie układu testu ostrza (knife edge) przy użyciu ostrza żyletki i zarejestrowanie obrazów dyfrakcyjnych w 3 charakterystycznych miejscach. 3. Zestawienie układu Shcaka-Hartmanna. Zarejestrowanie zdjęcia rozkładu punktów ogniskowych dla fali płaskiej. Wstawienie soczewki badanej i soczewki kompensującej. Wyrównanie frontu falowego przy pomocy etalonu. Zdjęcie punktów ogniskowych. Porównanie zdjęć poprzez wypozycjonowanie i odjęcie w programie graficznym. 4. Zestawienie układu interferometru Twymana-Green a. Obserwacja i rejestracja interferogramów soczewek i obiektywów testowych. 5. Zestawienie układu interferometru Macha-Zehndera. Obserwacja i rejestracja interferogramów soczewek i obiektywów testowych. 6. Interpretacja wyników badania tych samych soczewek czterema metodami. Sformułowanie wniosków na temat zgodności rezultatów. Literatura i źródła internetowe 1. Masud Mansuripur, Classical Optics and its Applications, Cambridge University Press (2009). 2. P. Hariharan, "Optical interferometry," Academic Press (2003). 3. Sidney F. Ray, "Applied photographic optics," Focal Press (2002). 4. Ł. Wróblewski, Zaprojektowanie, wykonanie i zbadanie dyfrakcyjnego sensora frontu falowego typu Shacka-Harmanna. Praca inżynierska na Wydziale Fizyki PW (2010) Malacara D., Optical shop testing, John Wiley & Sons, NY Mahajan, V. E., Aberration theory made simple, SPIE, Washington, E. Heht, A. Zajac, "Optics" Addison-Wesley Publishing Company Briers J. D. Optical testing, Optics and Laser in Engineering,vol. 32, p.111,1999 Strona 9 z 9
Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Ćwiczenie 4. Część teoretyczna
Ćwiczenie 4 Badanie aberracji chromatycznej soczewki refrakcyjnej i dyfrakcyjnej. Badanie odpowiedzi impulsowej oraz obrazowania przy użyciu soczewki sferycznej. Zbadanie głębi ostrości przy oświetleniu
Rys. 1 Schemat układu obrazującego 2f-2f
Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając
Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Ćwiczenie 11. Wprowadzenie teoretyczne
Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia
Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne
Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
Optyka instrumentalna
Optyka instrumentalna wykład 7 20 kwietnia 2017 Wykład 6 Optyka geometryczna cd. Przybliżenie przyosiowe Soczewka, zwierciadło Ogniskowanie, obrazowanie Macierze ABCD Punkty kardynalne układu optycznego
Optyka instrumentalna
Optyka instrumentalna wykład 7 11 kwietnia 2019 Wykład 6 Optyka geometryczna Równania Maxwella równanie ejkonału promień zasada Fermata, zasada stacjonarnej fazy (promienie podążają wzdłuż ekstremalnej
WOJSKOWA AKADEMIA TECHNICZNA
1 WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 43 WYZNACZANIE ABERRACJI SFERYCZNEJ SOCZEWEK I ICH UKŁADÓW Autorzy: doc. dr inż. Wiesław Borys dr inż.
Laboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018
Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Rys. 1 Geometria układu.
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
Rodzaje obrazów. Obraz rzeczywisty a obraz pozorny. Zwierciadło. Zwierciadło. obraz rzeczywisty. obraz pozorny
Rodzaje obrazów Obraz rzeczywisty a obraz pozorny cecha sposób powstania ustawienie powiększenie obraz rzeczywisty pozorny prosty odwrócony powiększony równy pomniejszony obraz rzeczywisty realna obecność
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
f = -50 cm ma zdolność skupiającą
19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.
Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,
Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera
ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale
Optyka geometryczna MICHAŁ MARZANTOWICZ
Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 3 Pryzmat Pryzmaty w aparatach fotograficznych en.wikipedia.org/wiki/pentaprism luminous-landscape.com/understanding-viewfinders
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA
Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego
Mikroskopy uniwersalne
Mikroskopy uniwersalne Źródło światła Kolektor Kondensor Stolik mikroskopowy Obiektyw Okular Inne Przesłony Pryzmaty Płytki półprzepuszczalne Zwierciadła Nasadki okularowe Zasada działania mikroskopu z
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
Wykład XI. Optyka geometryczna
Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie
Ćwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr)
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej
SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach
Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
+OPTYKA 3.stacjapogody.waw.pl K.M.
Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Optyka. Matura Matura Zadanie 24. Soczewka (10 pkt) 24.1 (3 pkt) 24.2 (4 pkt) 24.3 (3 pkt)
Matura 2006 Zadanie 24. Soczewka (10 pkt) Optyka W pracowni szkolnej za pomocą cienkiej szklanej soczewki dwuwypukłej o jednakowych promieniach krzywizny, zamontowanej na ławie optycznej, uzyskiwano obrazy
OPTYKA W INSTRUMENTACH GEODEZYJNYCH
OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.
Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
ĆWICZENIE 6. Hologram gruby
ĆWICZENIE 6 Hologram gruby 1. Wprowadzenie Na jednym z poprzednich ćwiczeń zapoznaliśmy się z cienkim (powierzchniowo zapisanym) hologramem Fresnela, który daje nam możliwość zapisu obiektu przestrzennego.
Ć W I C Z E N I E N R O-4
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,
BADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006 1. Cel
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis
Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.
Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności
Załamanie na granicy ośrodków
Załamanie na granicy ośrodków Gdy światło napotyka na granice dwóch ośrodków przezroczystych ulega załamaniu tak jak jest to przedstawione na rysunku obok. Dla każdego ośrodka przezroczystego istnieje
Wykład 6. Aberracje układu optycznego oka
Wykład 6 Aberracje układu optycznego oka Za tydzień termin składania projektów prac zaliczeniowych Rozogniskowanie Powody rozogniskowania: nieskorygowana wada refrakcyjna oka słaby bodziec (równomiernie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 9, 12.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 8 - przypomnienie
Hologram gruby (objętościowy)
Hologram gruby (objętościowy) Wprowadzenie teoretyczne Holografia jest bardzo rozległą dziedziną optyki i na pewno nie dziwi fakt, że istnieją hologramy różnego typu. W zależności od metody zapisu hologramu,
Pomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia
Obrazowanie za pomocą soczewki
Marcin Bieda Obrazowanie za pomocą soczewki (Instrukcja obsługi) Aplikacja została zrealizowana w ramach projektu e-fizyka, współfinansowanym przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ WADY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi wadami soczewek i pomiar aberracji sferycznej, chromatycznej i astygmatyzmu badanych soczewek. 2. Zakres wymaganych
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Ć W I C Z E N I E N R O-6
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO
Laboratorium Informatyki Optycznej ĆWICZENIE 7. Hologram gruby widoczny w zakresie 360
ĆWICZENIE 7 Hologram gruby widoczny w zakresie 360 1. Wprowadzenie Klasyczne hologramy są jak dotąd najlepszą metodą rejestracji obiektów trójwymiarowych. Dzięki pełnemu zapisowi informacji o obiekcie
PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE
Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 5 PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE 5.1 Cel ćwiczenia Zapoznanie się z zależnościami opisującymi kształt wiązki laserowej (mod
Soczewki. Ćwiczenie 53. Cel ćwiczenia
Ćwiczenie 53 Soczewki Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej. Obserwacja i pomiar wad odwzorowań
Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton
Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując
Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją
CZĘŚĆ A CZŁOWIEK Pytania badawcze: Różne sposoby widzenia świata materiał dla ucznia, wersja z instrukcją Czy obraz świata jaki rejestrujemy naszym okiem jest zgodny z rzeczywistością? Jaki obraz otoczenia
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał
Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski
Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane
Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.
Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)
Interferencja i dyfrakcja
Podręcznik metodyczny dla nauczycieli Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Optyka geometryczna. Podręcznik zeszyt ćwiczeń dla uczniów
Podręcznik zeszyt ćwiczeń dla uczniów Optyka geometryczna Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
6. Badania mikroskopowe proszków i spieków
6. Badania mikroskopowe proszków i spieków Najprostszy układ optyczny stanowią dwie współosiowe soczewki umieszczone na końcach tubusu (rysunek 42). Odwzorowanie mikroskopowe jest dwustopniowe: obiektyw
Wyznaczenie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.
Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.
Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia
Interferometr Michelsona
Marcin Bieda Interferometr Michelsona (Instrukcja obsługi) Aplikacja została zrealizowana w ramach projektu e-fizyka, współfinansowanym przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie
Wstęp do fotografii. piątek, 15 października 2010. ggoralski.com
Wstęp do fotografii ggoralski.com element światłoczuły soczewki migawka przesłona oś optyczna f (ogniskowa) oś optyczna 1/2 f Ogniskowa - odległość od środka układu optycznego do ogniska (miejsca w którym
Badanie zjawisk optycznych przy użyciu zestawu Laser Kit
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser
Propagacja światła we włóknie obserwacja pól modowych.
Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących
17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.
OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki
PL B1. Aberracyjny czujnik optyczny odległości w procesach technologicznych oraz sposób pomiaru odległości w procesach technologicznych
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229959 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 421970 (22) Data zgłoszenia: 21.06.2017 (51) Int.Cl. G01C 3/00 (2006.01)
Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
- 1 - OPTYKA - ĆWICZENIA
- 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2
Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,
Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Laboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela
ĆWICZENIE 3 Dwuekspozycyjny hologram Fresnela 1. Wprowadzenie Holografia umożliwia zapis pełnej informacji o obiekcie, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 8 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ. Wykaz przyrządów Transmisyjne siatki dyfrakcyjne (S) : typ A -0 linii na milimetr oraz typ B ; Laser lub inne źródło światła