Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów
|
|
- Grzegorz Czech
- 7 lat temu
- Przeglądów:
Transkrypt
1 Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006
2 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami róŝnych typów hologramów. 2. Holografia Holografia to rejestracja i odtwarzanie frontów falowych obiektów. W przeciwieństwie do fotografii, hologram odtwarza trójwymiarowy obraz obiektu. Hologram obiektu moŝna zarejestrować wyłącznie za pomocą światła laserowego. Odtworzenie obrazu z hologramu zwykle realizuje się równieŝ za pomocą światła laserowego (taką samą wiązką światła co przy rejestracji). Istnieją jednak pewne rodzaje hologramów, które odtwarzają obraz w świetle białym (jak np. hologram tęczowy). W fotografii na kliszy fotograficznej rejestruje się płaski obraz obiektu, w holografii zaś na kliszy holograficznej zapisuje się prąŝki interferencyjne powstałe wskutek interferencji fali obiektu i fali odniesienia. Rekonstrukcja hologramu jest prosta gdyŝ, aby otrzymać trójwymiarowy obraz obiektu wystarczy hologram (wywołana i utrwalona klisza) oświetlić wiązką fali odniesienia, taką samą jak ta wykorzystana podczas rejestracji. Na rys. 1 przedstawiono schematycznie zapis i rekonstrukcję hologramu obiektu, zaś rys. 2 pokazuje kształt prąŝków interferencyjnych zarejestrowanych w hologramie. Istnieje wiele rodzajów hologramów, zaleŝnie od sposobu rejestracji i odtwarzania oraz uŝytych materiałów holograficznych, itd. W ćwiczeniu badane będą hologramy amplitudowe i fazowe. Hologram amplitudowy to taki, w którym prąŝki interferencyjne zapisane są za pomocą zmiennej gęstości optycznej płyty holograficznej. Rys. 1. Rejestracja hologramu a) i rekonstrukcja hologramu powstanie obrazu pozornego b). Laboratorium optycznego przetwarzania informacji i holografii Strona 2
3 Rys. 2. Przykładowa fotografia zarejestrowanych na hologramie prąŝków interferencyjnych. Znaczy to, Ŝe prąŝki te powstają wskutek zaczerniania i rozjaśniania kliszy lub płyty, jak w zwykłej fotografii. Hologram amplitudowy moduluje amplitudę fali odniesienia podczas rekonstrukcji obrazu, a wydajność dyfrakcyjna, czyli stopień jasności obrazu, jest niewielka. Hologram fazowy jest przeźroczysty a prąŝki interferencyjne zapisane są w nim w postaci zmiany fazy płyty holograficznej (moŝe to być zmiana współczynnika załamania światła lub zmiana grubości płyty). Hologram fazowy ma bardzo duŝą wydajność dyfrakcyjną a odtwarzane obrazy są bardzo jasne. Hologram tęczowy moŝna odtwarzać w świetle białym, otrzymuje się go poprzez dwukrotną rejestrację za pomocą lasera, z wykorzystaniem szczeliny. UŜycie szczeliny przy drugiej rejestracji hologramu umoŝliwia jego odtwarzanie i oglądanie w świetle białym, ale jednocześnie niweluje paralaksę pionową Hologram tęczowy jest więc trójwymiarowy tylko w kierunku poziomym. Hologramy tęczowe są najbardziej rozpowszechnionymi i najbardziej znanymi hologramami. Stosuje się je na kartach kredytowych, identyfikatorach, biletach wstępu, itp., w celu zabezpieczenia przed fałszerstwem. Hologram Fouriera jest zwykłym hologramem rejestrowanym i odtwarzanym światłem lasera ale zarejestrowany jest w nim nie obiekt lecz transformata Fouriera obiektu. Hologramy Fouriera odtwarzają obraz tylko wtedy, gdy po oświetleniu hologramu Fouriera wiązką odniesienia obraz będzie Laboratorium optycznego przetwarzania informacji i holografii Strona 3
4 obserwowany w tylnej płaszczyźnie ogniskowej soczewki. Odtworzone obrazy są rzeczywiste i względem siebie sprzęŝone, rys. 3. Rys. 3. Obraz odtworzony z hologramu Fouriera. W ćwiczeniu będą badane właściwości hologramu Fouriera wykonanego techniką komputerową Do wykonania tego hologramu wykorzystano metodę Lohmanna graficznego zapisu amplitudy i fazy. Zasadę zapisu hologramu lohmannowskiego wyjaśnia rys. 4. a) b) c) Rys. 4. Zasada kodowania amplitudy i fazy metodą Lohmanna a), fragment hologramu zakodowanego metodą Lohmanna b), komputerowy rysunek negatywu hologramu c). Laboratorium optycznego przetwarzania informacji i holografii Strona 4
5 Płaszczyzna częstotliwości przestrzennych hologramu podzielona jest na kwadratowe sektory o szerokości ν x ν x y, zwane komórkami dyskretyzacji. KaŜdej próbce G ν xn = G n ν, m ν ) odpowiada jedna komórka dyskretyzacji o środku w punkcie próbkowania ( x y = n ν ν = m ν. Zbiór wszystkich kwadratowych komórek tworzy siatkę próbkowania. x ym y Wartość amplitudy A i fazy ϕ w danym punkcie próbkowania jest odwzorowana w postaci przeźroczystej prostokątnej apertury na nieprzeźroczystym tle. Wysokość apertury W ν jest y proporcjonalna do wartości amplitudy A, natomiast faza ϕ jest określona wielkością przesunięcia P ν środka apertury względem środka komórki. Podczas odtwarzania hologramu lohmanowskiego x pojawiają się obrazy w róŝnych rzędach dyfrakcyjnych, jak w siatce dyfrakcyjnej. Jest to spowodowane dyskretno-binarnym charakterem struktury hologramu Lohmanna. Podczas wykonywania ćwiczenia oglądane będą obrazy pozorne i obrazy rzeczywiste odtwarzane z hologramów. W wypadku obrazów pozornych hologram powinien być oświetlony rozszerzoną wiązką lasera. Obraz rzeczywisty moŝna zobaczyć tylko wówczas gdy hologram oświetli się nie rozszerzoną wiązką lasera i ekran obserwacyjny umieści się na drodze wiązki odtworzonej. 3. Zadania do wykonania 3.1. Odtwarzanie komputerowego hologramu Fouriera. W układzie optycznym filtru przestrzennego zaobserwować: komputerowy zapis hologramu Fouriera, w kodzie Lohmanna, zrekonstruowany obraz holograficzny za pomocą soczewki realizującej transformatę Fouriera, wskazać zrekonstruowany obraz, obraz sprzęŝony oraz składową nieugiętą równieŝ niosącą informację o obiekcie, zwrócić uwagę na wyŝsze rzędy dyfrakcyjne powstające w tego typu hologramie. Laboratorium optycznego przetwarzania informacji i holografii Strona 5
6 3.2. Odtwarzanie obrazu pozornego hologramu amplitudowego i fazowego. Rozszerzoną wiązkę lasera oświetlić całą płaszczyznę hologramu, Obserwować obraz pozorny ortoskopowy hologramu, zwrócić uwagę na paralaksę pionową i poziomą hologramu Odtwarzanie obrazu rzeczywistego hologramu amplitudowego i fazowego. Nie rozszerzoną wiązką lasera oświetlić wybrany punkt hologramu. Na ekranie umieszczonym przed hologramem obserwować pseudoskopowy obraz rzeczywisty obiektu, Zmieniając miejsce oświetlenia hologramu zwrócić uwagę na zmianę perspektywy oglądanego obrazu Badanie holograficznej siatki dyfrakcyjnej. Przebadać sposób odchylania wiązki laserowej przez holograficzne siatki dyfrakcyjne 600 linii/mm i 900 linii/mm Obserwacja hologramów tęczowych. Zwrócić uwagę na obraz obiektu odtwarzany przez hologram tęczowy: obraz pozorny i rzeczywisty występują jednocześnie, ostrość obrazu w zaleŝności od odległości od płaszczyzny hologramu, barwy obrazu zaleŝne od miejsca odtworzonej szczeliny, w którą patrzymy, określić stopień paralaksy pionowej i poziomej odtworzonego obrazu. Oznaczenia elementów optycznych na rysunkach: FP filtr przestrzenny, Sk soczewka kolimująca, E ekran, O obiekt (przeźrocze), SF soczewka realizująca transformatę Fouriera, So soczewka realizująca obraz obiektu, Sp soczewka powiększająca obserwowany obraz. Laboratorium optycznego przetwarzania informacji i holografii Strona 6
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk
Bardziej szczegółowoLaboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska
Bardziej szczegółowoLaboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera
ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę
Bardziej szczegółowoĆwiczenie 11. Wprowadzenie teoretyczne
Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia
Bardziej szczegółowoĆwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne
Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią
Bardziej szczegółowoRys. 1 Geometria układu.
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Bardziej szczegółowoĆwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Bardziej szczegółowoLaboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 2. Dyfrakcja światła w polu bliskim i dalekim
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie. Dyfrakcja światła w polu bliskim i dalekim Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk
Bardziej szczegółowoRejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.
HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia
Bardziej szczegółowoĆWICZENIE 6. Hologram gruby
ĆWICZENIE 6 Hologram gruby 1. Wprowadzenie Na jednym z poprzednich ćwiczeń zapoznaliśmy się z cienkim (powierzchniowo zapisanym) hologramem Fresnela, który daje nam możliwość zapisu obiektu przestrzennego.
Bardziej szczegółowoĆWICZENIE 5. HOLOGRAM KLASYCZNY TYPU FRESNELA
ĆWICZENIE 5. HOLOGAM KLASYCZNY TYP FESNELA Wstęp teoretyczny Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej przez falę elektromagnetyczną
Bardziej szczegółowoĆwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr)
Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Bardziej szczegółowoLaboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 1. Przestrzenna filtracja szumu optycznego
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 1. Przestrzenna filtracja szumu optycznego Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk
Bardziej szczegółowoLaboratorium Informatyki Optycznej ĆWICZENIE 7. Hologram gruby widoczny w zakresie 360
ĆWICZENIE 7 Hologram gruby widoczny w zakresie 360 1. Wprowadzenie Klasyczne hologramy są jak dotąd najlepszą metodą rejestracji obiektów trójwymiarowych. Dzięki pełnemu zapisowi informacji o obiekcie
Bardziej szczegółowoĆwiczenie 3. Koherentne korelatory optyczne
Ćwiczenie 3 Koherentne korelatory optyczne 1. Wprowadzenie Historycznie jednym z waŝniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę zdjęć lotniczych lub
Bardziej szczegółowoBadanie zjawisk optycznych przy użyciu zestawu Laser Kit
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser
Bardziej szczegółowoMetody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Bardziej szczegółowoLaboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela
ĆWICZENIE 3 Dwuekspozycyjny hologram Fresnela 1. Wprowadzenie Holografia umożliwia zapis pełnej informacji o obiekcie, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe
Bardziej szczegółowoĆwiczenie 3. Wybrane techniki holografii. Hologram podstawy teoretyczne
Ćwiczenie 3 Wybrane techniki holografii Hologram podstawy teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym. Dzięki temu można m.in. odtwarzać trójwymiarowe obiekty w ich naturalnym,
Bardziej szczegółowoĆwiczenie H2. Hologram Fresnela
Pracownia Informatyki Optycznej Wydział Fizyki PW Ćwiczenie H Hologram Fresnela 1. Wprowadzenie Holografia jest metodą zapisu całkowitej informacji o oświetlonym obiekcie. ejestracja informacji niesionej
Bardziej szczegółowoĆwiczenie 12. Wprowadzenie teoretyczne
Ćwiczenie 12 Hologram cyfrowy. I. Wstęp Wprowadzenie teoretyczne Ze względu na sposób zapisu i odtworzenia, hologramy można podzielić na trzy grupy: klasyczne, syntetyczne i cyfrowe. Hologramy klasyczny
Bardziej szczegółowoWYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Bardziej szczegółowoFala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Bardziej szczegółowoPROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Hologramy generowane komputerowo - CGH Widmo obrazu: G x, y FT g x, y mające być zapisane na hologramie, dyskretyzujemy
Bardziej szczegółowoBADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
Bardziej szczegółowoRys. 1 Schemat układu obrazującego 2f-2f
Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając
Bardziej szczegółowoLaboratorium Optyki Falowej
Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski
Bardziej szczegółowoĆwiczenie 4. Część teoretyczna
Ćwiczenie 4 Badanie aberracji chromatycznej soczewki refrakcyjnej i dyfrakcyjnej. Badanie odpowiedzi impulsowej oraz obrazowania przy użyciu soczewki sferycznej. Zbadanie głębi ostrości przy oświetleniu
Bardziej szczegółowoInterferencja i dyfrakcja
Podręcznik metodyczny dla nauczycieli Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Bardziej szczegółowoMikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Bardziej szczegółowoPomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
Bardziej szczegółowoBADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
Bardziej szczegółowoOptyka Fourierowska. Wykład 9 Hologramy cyfrowe
Optyka Fourierowska Wykład 9 Hologramy cyfrowe Hologramy generowane w komputerze Hologramy poza zapisem intefererujących fal koherentnych można wyliczyć za pomocą komputera i wydrukować na ploterze lub
Bardziej szczegółowoLABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Układy holograficzne: Odbiciowe Transparentne Fourierowskie Tęczowe Kolorowe grube Plazmoniczne Hologramy generowane
Bardziej szczegółowoInterferencja i dyfrakcja
Podręcznik zeszyt ćwiczeń dla uczniów Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Bardziej szczegółowoMODULATOR CIEKŁOKRYSTALICZNY
ĆWICZENIE 106 MODULATOR CIEKŁOKRYSTALICZNY 1. Układ pomiarowy 1.1. Zidentyfikuj wszystkie elementy potrzebne do ćwiczenia: modulator SLM, dwa polaryzatory w oprawie (P, A), soczewka S, szary filtr F, kamera
Bardziej szczegółowoHOLOGRAFIA CEL ĆWICZENIA APARATURA ZAGADNIENIA DO KOLOKWIUM (INSTRUKCJA + PROPONOWANA LITERATURA) ZADANIA DO PRZYGOTOWANIA
H HOLOGRAFIA CEL ĆWICZENIA Ćwiczenie jest doświadczeniem z dziedziny interferometrii i rejestracji obrazów trójwymiarowych. W trakcie ćwiczenia wykonywane są hologramy typu odbiciowego, objętościowego
Bardziej szczegółowoHologram gruby (objętościowy)
Hologram gruby (objętościowy) Wprowadzenie teoretyczne Holografia jest bardzo rozległą dziedziną optyki i na pewno nie dziwi fakt, że istnieją hologramy różnego typu. W zależności od metody zapisu hologramu,
Bardziej szczegółowoĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Bardziej szczegółowoOscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Bardziej szczegółowoWYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis
Bardziej szczegółowoPomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
Bardziej szczegółowoInterferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Bardziej szczegółowoInterferencja. Dyfrakcja.
Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal
Bardziej szczegółowoRys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM
Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 2 ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM 2.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie z teorią dwustopniowego
Bardziej szczegółowoLaboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny
Bardziej szczegółowoĆwiczenie 2. Fotografia integralna. Wprowadzenie teoretyczne. Rysunek 1 Macierz mikro soczewek. Emulsja światłoczuła
Ćwiczenie 2 Fotografia integralna Wprowadzenie teoretyczne Ćwiczenie ma charakter wybitnie eksperymentalny, w związku z tym nie wymaga skomplikowanego przygotowania teoretycznego. Jego celem jest między
Bardziej szczegółowoOscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Bardziej szczegółowoĆwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Bardziej szczegółowoLaboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych
ĆWICZENIE 1 Optyczna filtracja sygnałów informatycznych 1. Wprowadzenie Przyjmijmy że znamy pole świetlne w płaszczyźnie ( ) czyli że znamy rozkład jego amplitudy i fazy we wszystkich punktach gdzie określony
Bardziej szczegółowoĆwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej
Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja
Bardziej szczegółowoLaboratorium Informatyki Optycznej ĆWICZENIE 5. Sprzęganie fazy
ĆWICZENIE 5 Sprzęganie fazy 1. Wprowadzenie Ćwiczenie polega na praktycznym wykorzystaniu zjawiska sprzęgania fazy. Efekt sprzężenia fazy realizowany będzie w sposób holograficzny. Podstawowym zadaniem
Bardziej szczegółowoBadania elementów i zespołów maszyn laboratorium (MMM4035L)
Badania elementów i zespołów maszyn laboratorium (MMM4035L) Ćwiczenie 23. Zastosowanie elektronicznej interferometrii obrazów plamkowych (ESPI) do badania elementów maszyn. Opracowanie: Ewelina Świątek-Najwer
Bardziej szczegółowoRóżne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
Bardziej szczegółowoZASTOSOWANIE LASERÓW W HOLOGRAFII
ZASTOSOWANIE LASERÓW W HOLOGRAFII Holografia - dzia optyki zajmuj cy si technikami uzyskiwania obrazów przestrzennych metod rekonstrukcji fali (g ównie wiat a, ale te np. fal akustycznych). Przez rekonstrukcj
Bardziej szczegółowoURZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS
URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS Urządzenie słuŝące do pokazu krzywych Lissajous powstających w wyniku składania mechanicznych drgań harmonicznych zostało przedstawione na rys.
Bardziej szczegółowoPOLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane
FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika
Bardziej szczegółowo20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.
Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego
Bardziej szczegółowoĆWICZENIE 5/6 HOLOGRAM SYNTETYCZNY
ĆWICZENIE 5/6 HOLOGRAM SYNTETYCZNY Wstęp teoretyczny Celem ćwiczeń laboratoryjnych z cyklu "Holografia Syntetyczna" jest przygotowanie sceny przestrzennej oraz obliczenie tworzonego przez nią rozkładu
Bardziej szczegółowoĆwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Bardziej szczegółowoWykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoPODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof
PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA prof. dr hab. inż. Krzysztof Patorski Krzysztof Niniejsza część wykładu obejmuje wprowadzenie do dyfrakcji, opis matematyczny z wykorzystaniem
Bardziej szczegółowoOptyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).
Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako
Bardziej szczegółowoWyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Bardziej szczegółowoPomiar ogniskowych soczewek metodą Bessela
Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.
Bardziej szczegółowoJak się przekonać, że światło jest falą domowe laboratorium optyki laserowej
Logo designed by Armella Leung, www.armella.fr.to Jak się przekonać, że światło jest falą domowe laboratorium optyki laserowej Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 4 Bydgoszcz Eureka!
Bardziej szczegółowoLaboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację
Bardziej szczegółowoWyznaczanie ogniskowej soczewki za pomocą ławy optycznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych
Bardziej szczegółowoTransformacje optyczne Transformata Fouriera w optyce
Fizyka Ogólna Wyk»adu 13 1 Dany jest odcinek AB. Transformacje optyczne Transformata Fouriera w optyce JeÑli odcinek ten jest normalny do Ñwiat»a pochodzacego ze ïród»a znajdujacego si w niesko½czonoñci
Bardziej szczegółowoDYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
DYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE I. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali świetlnej, szerokości szczeliny
Bardziej szczegółowoRys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.
Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)
Bardziej szczegółowoWykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
Bardziej szczegółowoSpis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1
Spis treści 1. Cyfrowy zapis i synteza dźwięku... 2 2. Schemat blokowy i zadania karty dźwiękowej... 4 UTK. Karty dźwiękowe. 1 1. Cyfrowy zapis i synteza dźwięku Proces kodowania informacji analogowej,
Bardziej szczegółowoLaboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki
Bardziej szczegółowoZagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.
msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów
Bardziej szczegółowoHOLOGRAFIA CEL ĆWICZENIA PROPONOWANY PRZEBIEG ĆWICZENIA ZAGADNIENIA DO KOLOKWIUM (INSTRUKCJA + PROPONOWANA LITERATURA)
HOLOGRAFIA CEL ĆWICZENIA Ćwiczenie jest doświadczeniem z dziedziny interferometrii oraz rejestracji obrazów trójwymiarowych. W trakcie ćwiczenia konstruowany jest interferometr Michelsona oraz są wykonywane
Bardziej szczegółowoOPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia
Bardziej szczegółowoInterferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona
Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem
Bardziej szczegółowoLABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie
Bardziej szczegółowoĆw.6. Badanie własności soczewek elektronowych
Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki
Bardziej szczegółowoWyznaczanie wartości współczynnika załamania
Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania
Bardziej szczegółowoĆ W I C Z E N I E N R O-3
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.
Bardziej szczegółowoĆw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów
16 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 16. Skalowanie mikroskopu i pomiar małych przedmiotów Wprowadzenie Mikroskop jest przyrządem optycznym dającym znaczne powiększenia małych przedmiotów
Bardziej szczegółowoĆwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne
Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek
Bardziej szczegółowoTemat ćwiczenia: Zasady stereoskopowego widzenia.
Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Zasady stereoskopowego widzenia. Zagadnienia 1. Widzenie monokularne, binokularne
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Bardziej szczegółowoLaboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia
Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Bardziej szczegółowoProblemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Bardziej szczegółowoPL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)
Bardziej szczegółowoPrawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Bardziej szczegółowoZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Bardziej szczegółowopobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
Bardziej szczegółowo17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.
OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o
Bardziej szczegółowo