Zestaw 1-1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp)!!!
|
|
- Klaudia Łuczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zestaw Napisz program pobierający od użytkownika liczbę całkowitą R (R>1) i liczbę rzeczywistą dodatnią S, a następnie informujący ile kolejnych liczb z ciągu 1, R-1, R 2-2, R 3-3, R 4-4, należy dodać, aby otrzymać liczbę nie mniejszą niż S, ale koniecznie nieparzystą, oraz o ile wynik tego dodawania będzie większy od S. Dla R=2 ciąg przyjmuje postać 1, 1, 2, 5, 12, 27,, więc sumy kolejnych wartości tworzą ciąg 1, 2, 4, 9, 21, 48, dla R=2 i S=9 otrzymamy wynik: liczb: 4, wynik rowny dla R=3 i S=30.5 otrzymamy wynik: liczb: 5, wynik wiekszy o Napisać program pobierający od użytkownika tekst o maksymalnej długości 100 znaków zawierający litery i spacje. Program wypisuje pobrany tekst, a następnie wypisuje wszystkie zawarte w nim wyrazy (rozumiane jako ciąg znaków nie zawierający spacji) mające długość maksymalną spośród wszystkich wyrazów tego tekstu. dla tekstu Ala ma las i dwa psy program wypisuje wyrazy: Ala las dwa psy dla tekstu ten program sprawdza wyrazy program wypisuje wyraz: sprawdza
2 Zestaw Napisz program, który pobiera od użytkownika dwie liczby całkowite p, q, 0<p<q a następnie wyświetla ciąg k 1, k 2,, k n skonstruowany według przepisu: k 1 to najmniejsza liczba naturalna k, taka że kp q, jeśli k 1 p-q > 0, to wykonujemy przypisania p = k 1 p - q, q = k 1 q i jako k 2 bierzemy znów najmniejszą liczbę naturalną k, taką że kp q; w przeciwnym razie konstrukcja jest skończona. jeśli k 2 p-q > 0, to wykonujemy przypisania p = k 2 p - q, q = k 2 q i jako k 3 bierzemy najmniejszą liczbę naturalną k, taką że kp q; w przeciwnym razie konstrukcja jest skończona. I tak dalej. p, q: p, q: Napisz program zamieniający napis składający się z cyfr występujących na przemian ze znakami działań '+' i ' ' na poprawny arytmetycznie wynik. Zakładamy, że napis zaczyna się i kończy cyfrą i że ma nie więcej niż 100 znaków. Przykład: Do obliczenia: Wynik: -1
3 Zestaw Konik polny potrafi wykonać skok o długości X cm. Po 10 takich skokach konik robi się trochę zmęczony i wykonuje skoki o połowę krótsze. Po kolejnych 10 skokach konik jest zmęczony jeszcze bardziej i znów jego skoki skracają się o połowę, i tak dalej. Gdy skoki konika staną się krótsze niż Y cm konik zatrzymuje się i odpoczywa. Napisz program pobierający od użytkownika liczbę metrów D jakie ma przebyć konik oraz wartości X i Y (mają to być liczby całkowite dodatnie) i informujący, czy konik da radę przebyć tę drogę bez odpoczynku, a jeśli tak to w ilu skokach. dla X=34 [cm], Y=2 [cm] i D=4 [m] otrzymamy wynik: tak, w 14 skokach dla X=34 [cm], Y=2 [cm] i D=7 [m] otrzymamy wynik: nie 2. Napisać program tworzący dynamicznie (po pobraniu od użytkownika wartości N będącej liczbą całkowitą dodatnią) tablicę N wartości całkowitych. Program pobiera od użytkownika wartości tablicy, wypisuje jej zawartość, a następnie wypisuje wszystkie takie rozłączne trójki elementów tej tablicy (gdzie trójki wybierane są tak, że pierwszy element tablicy jest pierwszym elementem pierwszej trójki, a dla tablicy o długości nie podzielnej przez 3 końcowe elementy tablicy mogą nie być elementami żadnej trójki), których średnia jest mniejsza od średniej z największej i najmniejszej wartości w tablicy. dla N=13 i tablicy program wypisze trójki: 2 3 4, 7 5 3, dla N=6, tablicy program wypisze trójkę: 1-2 2
4 Zestaw Napisać program pobierający od użytkownika wartości całkowite aż do podania wartości 0 kończącej pobieranie i wypisujący te trójki kolejno podawanych liczb, które zawierają tylko liczby podzielne przez liczbę całkowitą D, a średnia trójki jest większa od liczby całkowitej G (liczby D i G są podawane przez użytkownika na początku programu), oraz informację ile było takich trójek. dla D=5, G=6 i ciągu wypisywane są trójki i komunikat: Znalezionych trojek: 2 dla D=2, G=3 i ciągu wypisywany jest komunikat: Znalezionych trojek: 0 2. Napisać program tworzący dynamicznie (po pobraniu od użytkownika wartości N będącej liczbą całkowitą dodatnią) tablicę N wartości całkowitych. Program pobiera od użytkownika wartości tablicy, wypisuje jej zawartość, a następnie wypisuje wszystkie takie uporządkowane pary utworzone z elementów tablicy stojących na różnych pozycjach, w których nie występuje najmniejsza wartość z tablicy, a suma pary przekracza największą wartość w tablicy. dla N=4 i tablicy wypisane mają być pary: (1,2), (1,2), (2,1), (2,1) dla N=5 i tablicy wypisane mają być pary: (6,5), (6,8), (5,6), (5,8), (8,6), (8,5)
5 Zestaw Sójka robi zapasy na zimę i codziennie zbiera żołędzie. Dni są albo deszczowe albo słoneczne. Co trzeci dzień jest deszczowy i wtedy zbiera ona o połowę mniej niż gdyby dzień był słoneczny. Z dnia na dzień słońce zachodzi coraz szybciej i każdego dnia sójka zbiera mniej niż dnia poprzedniego. Dokładniej, jeśli pierwszego słonecznego dnia zebrała L żołędzi ( L 40 oraz L jest liczbą parzystą), to drugiego słonecznego dnia zbierze L - 2 żołędzi, trzeciego deszczowego dnia zbierze (L - 4)/2, czwartego słonecznego dnia zbierze L - 6 orzechów, piątego słonecznego dnia zbierze L - 8 żołędzi, szóstego deszczowego zbierze (L - 10)/2 itd. Ile żołędzi zbierze sójka w ciągu N dni (N 20 jest liczbą całkowitą)? Przykład: L = 40 i N = 10 Ilość żołędzi zebranych w kolejnych dni: 40, 38, 18, 34, 32, 15, 28, 26, 12, 22. Zatem łącznie zbierze 265 żołędzi. 2. Napisać program tworzący dynamicznie N elementową tablicę liczb całkowitych, gdzie N > 0 jest liczbą całkowitą podaną przez użytkownika. Wartości tablicy są podawane przez użytkownika, a następnie wypisywane. Program ma wypisać wszystkie takie ciągi kolejnych liczb parzystych występujących w tej tablicy, których długość jest maksymalna. Jeśli w tablicy są wyłącznie liczby nieparzyste, program zwraca informację: Brak liczb parzystych w tablicy. N = 8 tablica: odpowiedź: N = 12 tablica: odpowiedź: 4 6 8, 4 2 6
6 Zestaw Napisz program pobierający od użytkownika liczbę rzeczywistą R > 0. Następnie program pobiera liczby całkowite aż do podania liczby 0 kończącej pobieranie. Program wypisuje te trójki kolejno wczytanych liczb takie, że wszystkie liczby w trójce są nieparzyste, których średnia arytmetyczna jest większa od R. Jeśli takie pary nie występują program wypisuje komunikat: Brak takich par. R = 3.5 Wczytane liczby: Odpowiedź: (3, 5, 5) (7, 3, 1) R = 4.5 Wczytane liczby: Odpowiedź: Brak takich par. 2. Napisz program, w którym użytkownik podaje dwie liczby całkowite dodatnie M < 27 i N < 11 oraz hasło składające się wyłącznie z liter lub cyfr o maksymalnej długości 30 znaków. Program losuje M różnych liter i N różnych cyfr i podaje dla każdej z nich ilość wystąpień w haśle. Bierzemy pod uwagę tylko małe litery z angielskiego alfabetu. Przykład. hasło: 1232aba M = 2 N =3 Wylosowane litery i cyfry: a d a 2 razy, d 0 razy, 2 2 razy, 4 0 razy, 3 1 razy
7 Zestaw II Tworzymy folder na pulpicie o nazwie będącej numerem indeksu. W folderze zapisujemy tylko wszystkie pliki źródłowe (z rozszerzeniem.cpp ). Po skończonej pracy nie wyłączamy komputera. 1. Napisz program pobierający od użytkownika liczbę rzeczywistą R > 0. Następnie program pobiera liczby całkowite aż do podania liczby 0 kończącej pobieranie. Program wypisuje te pary kolejnych liczb nieparzystych, których średnia arytmetyczna jest większa od R. Jeśli takie pary nie występują program wypisuje komunikat: Brak takich par. R = 3.5 Wczytane liczby: Odpowiedź: (3, 5) (7, 3) R = 4.5 Wczytane liczby: Odpowiedź: Brak takich par. 2. Napisz program, w którym użytkownik podaje dwie liczby całkowite dodatnie M < 27 i N < 11 oraz hasło składające się wyłącznie z liter lub cyfr o maksymalnej długości 30 znaków. Program losuje M różnych liter i N różnych cyfr i podaje dla każdej z nich ilość wystąpień w haśle. Bierzemy pod uwagę tylko małe litery z angielskiego alfabetu. Przykład. hasło: 1232aba M = 2 N =3 Wylosowane litery i cyfry: a d a 2 razy, d 0 razy, 2 2 razy, 4 0 razy, 3 1 razy
8 Zestaw III Tworzymy folder na pulpicie o nazwie będącej numerem indeksu. W folderze zapisujemy tylko wszystkie pliki źródłowe (z rozszerzeniem.cpp ). Po skończonej pracy nie wyłączamy komputera. 1. W pewnej grze liczbowej bierze udział dwóch graczy. W każdej rundzie każdy gracz rzuca 2 sześciennymi kostkami do gry. Liczba punktów zdobyta w danej rundzie przez gracza jest równa sumie wyrzuconych oczek, jeśli oczka były różne. Jeśli oczka były takie same, to gracz dostaje 1 punkt karny (-1 punkt). Aktualny wynik gracza to łączna suma punktów zdobyta w trakcie dotychczas rozegranych rund. Gra kończy się rundą, w której jeden z graczy lub obaj (wtedy remis) przekroczy 50 punktów. Jeśli żaden z graczy po 30 rundach nie przekroczy 50 pkt, wtedy gra kończy się remisem. Napisz program symulujący tę grę. Dokładniej, w każdej rundzie komputer ma losować oczka w rzutach kostkami i podawać aktualne wyniki graczy. Przykłady. Runda 1. GraczA: 3 4 WynikA = 7 Gracz B: 2 2 WynikB = -1 Runda 2. GraczA: 6 6 WynikA = 6 Gracz B: 2 3 WynikB = Runda 20 GraczA: 3 5 WynikA = 51 Gracz B: 1 2 WynikB = 50 Wygrał GraczA. Runda 1. GraczA: 3 4 WynikA = 7 Gracz B: 2 2 WynikB = -1 Runda 2. GraczA: 6 6 WynikA = 6 Gracz B: 2 3 WynikB = Runda 30 GraczA: 3 5 WynikA = 50 Gracz B: 1 2 WynikB = 48 Remis 2. Napisać program, w którym użytkownik podaje liczby całkowite N > 1 i M > 0, tworzący dynamicznie N elementową tablicę liczb całkowitych. Elementy tablicy są podawane przez użytkownika, a następnie wypisywane. Program ma wypisać wszystkie pary nieuporządkowane utworzone z elementów tablicy stojących na różnych pozycjach takie, że jeden z elementów w parze jest parzysty oraz suma liczb w parze nie przekracza M. Jeśli takich par nie ma program zwraca komunikat: Brak takich par N = 5, M = 7 tablica: Odpowiedź: 2 3, 2 2, 2 5, 3 2, 2 5 N = 4, M = 6 tablica: Odpowiedź: Brak takich par.
Zestaw 2 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp)!!!
ZESTAWY A Zestaw 2 1. Napisać program pobierający od użytkownika wartości całkowite aż do podania wartości 0 kończącej pobieranie. W trakcie pobierania, dla każdych dwóch niezerowych ostatnio wczytanych
Bardziej szczegółowoZestaw 1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb)!!! trójki sąsiednich elementów tablicy
Zestaw 1 1. Napisać program pobierający od użytkownika liczbę całkowitą dodatnią R i liczbę rzeczywistą dodatnią S, a następnie informujący ile kolejnych liczb z ciągu 1, 1+R, 1+2R, 1+3R, należy dodać,
Bardziej szczegółowoZestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.
ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów
Bardziej szczegółowoZestaw 1: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: Zad. 2: 2,2,2 5,5,5,5,5,5 Zad.
Zestaw 1: procedurę Wstaw wstawiającą do sznura podanego jako parametr element zawierający liczbę podaną jako parametr tak, aby sznur był uporządkowany niemalejąco (zakładając, że sznur wejściowy jest
Bardziej szczegółowo1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące
Bardziej szczegółowoMatematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
Bardziej szczegółowoMoneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
Bardziej szczegółowoZestaw C-11: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp i.h)!!! Zad. 1: Zad. 2:
Zestaw C-11: funkcję usun rozpatrującą rozłączne trójki elementów sznura i usuwającą te z elementów trójki, które nie zawierają wartości najmniejszej w obrębie takiej trójki (w każdej trójce pozostaje
Bardziej szczegółowo----------------------------------------------------------------------------------------------------------------------------
Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi
Bardziej szczegółowoZdarzenie losowe (zdarzenie)
Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano
Bardziej szczegółowoZestaw 1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb)!!!
Zestaw 1 Zadeklarować niezawężony typ tablicowy T przechowujący wartości całkowite dodatnie. Napisać: Funkcję IlePodzielnych zwracającą wartość całkowitą będącą liczbą elementów tablicy typu T podanej
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
Bardziej szczegółowoKOMBINATORYKA I P-WO CZ.1 PODSTAWA
KOMBINATORYKA I P-WO CZ.1 PODSTAWA ZADANIE 1 (1 PKT) Pan Jakub ma marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i
Bardziej szczegółowoStatystyka podstawowe wzory i definicje
1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
Bardziej szczegółowo4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.
Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
Bardziej szczegółowoKurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka
1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:
Bardziej szczegółowoPzetestuj działanie pętli while i do...while na poniższym przykładzie:
Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Zadania pętla while i do...while: 1. Napisz program, który wczytuje od użytkownika liczbę całkowitą, dopóki podana liczba jest mniejsza
Bardziej szczegółowoDoświadczenie i zdarzenie losowe
Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
Bardziej szczegółowoAkademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 2017/18. Informatyka Etap III
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Olimpiada O Diamentowy Indeks AGH 017/18 Informatyka Etap III Zadania po 17 punktów Zadanie 1 Dla pewnej N-cyfrowej liczby naturalnej obliczono
Bardziej szczegółowoZadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,
Bardziej szczegółowoElementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka
Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Bardziej szczegółowoZestaw A-1: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: 4,3,3 2,2,1 Zad. 2: 3,3,3 Zad.
Zestaw A-1: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: Napisać pakiet rodzajowy udostępniający: typ Sznur będący dynamiczną listą łączoną, której elementy przechowują
Bardziej szczegółowoPrawdopodobieństwo
Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia
Bardziej szczegółowo= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.
Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne
Bardziej szczegółowoZdarzenia losowe i prawdopodobieństwo
Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne
Bardziej szczegółowoNapisz program, który dla podanej na standardowym wejściu temperatury w stopniach Fahrenheita wypisze temperaturę w stopniach Celsjusza.
ZADANIE 1 Stopnie Napisz program, który dla podanej na standardowym wejściu temperatury w stopniach Fahrenheita wypisze temperaturę w stopniach Celsjusza. MoŜesz wykorzystać wzór: C = 5 / 9 ( F - 32 )
Bardziej szczegółowoR_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
Bardziej szczegółowoPodstawy nauk przyrodniczych Matematyka
Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118
Bardziej szczegółowoWarunki logiczne instrukcja if
Warunki logiczne instrukcja if Prowadzący: Łukasz Dunaj, strona kółka: atinea.pl/kolko 1. Wejdź na stronę kółka, uruchom edytor i wpisz: use console; def test::main() { var y; y = 1; while (y
Bardziej szczegółowoKURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Bardziej szczegółowoKOMBINATORYKA. Problem przydziału prac
KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty
Bardziej szczegółowo1 Powtórzenie wiadomości
1 Powtórzenie wiadomości Zadanie 1 Napisać program, który w trybie dialogu z użytkownikiem przyjmie liczbę całkowitą, a następnie wyświetli informację czy jest to liczba parzysta czy nieparzysta oraz czy
Bardziej szczegółowoZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)
ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające
Bardziej szczegółowoRunda 5: zmiana planszy: < < i 6 rzutów.
1. Gry dotyczące systemu dziesiętnego Pomoce: kostka dziesięciościenna i/albo karty z cyframi. KaŜdy rywalizuje z kaŝdym. KaŜdy gracz rysuje planszę: Prowadzący rzuca dziesięciościenną kostką albo losuje
Bardziej szczegółowoScenariusz lekcji matematyki w klasie VI
Scenariusz lekcji matematyki w klasie VI Dział programowy: LICZBY WYMIERNE Temat lekcji: Powtórzenie działań na liczbach wymiernych. Cele główne: o powtórzenie i utrwalenie wiadomości i umiejętności z
Bardziej szczegółowoW. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W tym tekście zobaczymy rozwiązanie zadania 41 z Informatora o egzaminie maturalnym z matematyki od roku szkolnego 014/015 oraz rozwiązania
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.
W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas
Bardziej szczegółowoZadania język C++ Zad. 1. Napisz program wczytujący z klawiatury wiek dwóch studentów i wypisujący informację o tym, który z nich jest starszy.
Zadania język C++ Zad. 1 Napisz program wczytujący z klawiatury wiek dwóch studentów i wypisujący informację o tym, który z nich jest starszy. (Być moŝe są w tym samym wieku. Zrób w programie warunek,
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2014/15
Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40
Bardziej szczegółowoPole wielokąta. Wejście. Wyjście. Przykład
Pole wielokąta Liczba punktów: 60 Limit czasu: 1-3s Limit pamięci: 26MB Oblicz pole wielokąta wypukłego. Wielokąt wypukły jest to wielokąt, który dla dowolnych jego dwóch punktów zawiera również odcinek
Bardziej szczegółowoRachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Bardziej szczegółowoIteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony.
Iteracje Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracja inaczej zwana jest pętlą i oznacza wielokrotne wykonywanie instrukcji. Iteracje
Bardziej szczegółowo1. Napisz program wypisujący w kolejnych wierszach standardowego wyjścia pojedyncze słowa następującego napisu Bardzo dlugi napis. 2.
1. Napisz program wypisujący w kolejnych wierszach standardowego wyjścia pojedyncze słowa następującego napisu Bardzo dlugi napis. 2. Napisz program, który wczytuje ze standardowego wejścia liczbę całkowitą
Bardziej szczegółowo*W uproszczeniu: jest dziewięciu sędziów przyznających po dwie noty: za wartość techniczną i artystyczną (skala od 0.0 do 6.0)
Tablice Mamy napisać program obliczający średnią ocenę w łyżwiarstwie figurowym W uproszczeniu: jest dziewięciu sędziów przyznających po dwie noty: za wartość techniczną i artystyczną (skala od 0.0 do
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, lato 2014/15
Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z
Bardziej szczegółowoPodzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 25 lutego 2014 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest
Bardziej szczegółowoNazwa implementacji: Nauka języka Python wyrażenia warunkowe. Autor: Piotr Fiorek. Opis implementacji: Poznanie wyrażeń warunkowych if elif - else.
Nazwa implementacji: Nauka języka Python wyrażenia warunkowe Autor: Piotr Fiorek Opis implementacji: Poznanie wyrażeń warunkowych if elif - else. Nasz kalkulator umie już liczyć, ale potrafi przeprowadzać
Bardziej szczegółowoPRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
Bardziej szczegółowoSCENARIUSZ LEKCJI. Temat: Powtórzenie wiadomości z działu: Wyrażenia algebraiczne
Scenariusz lekcji matematyki : Wyrażenia algebraiczne kl. I gimnazjum Autor: mgr Beata Senka Nauczycielka matematyki w Zespole Szkół nr 1 w Pile SCENARIUSZ LEKCJI Temat: Powtórzenie wiadomości z działu:
Bardziej szczegółowodo instrukcja while (wyrażenie);
Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie
Bardziej szczegółowoZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2015/16
Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności
Bardziej szczegółowoP r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.
P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych
Bardziej szczegółowoLista 1. Prawdopodobieństwo klasyczne i geometryczne
Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej
Bardziej szczegółowo{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)
.. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem
Bardziej szczegółowoZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie
Bardziej szczegółowoLiczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.
Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;
Bardziej szczegółowoProgramowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2
Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 1 program Kontynuujemy program który wczytuje dystans i ilości paliwa zużytego na trasie, ale z kontrolą danych. A więc jeśli coś
Bardziej szczegółowoKlasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Bardziej szczegółowoSCENARIUSZE ZAJĘĆ KLASA 1 DIDASKO Ewa Kapczyńska, Krystyna Tomecka
TEMAT: Spotkanie z liczbą 12 Miesiąc: luty Tydzień nauki: 21 Kształtowanie umiejętności: edukacja matematyczna ( 7.2; 7.3; 7.4. ;7.5; 7.8), edukacja społeczna (5.4) Materiały i środki dydaktyczne: kartoniki
Bardziej szczegółowo01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Bardziej szczegółowo01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Bardziej szczegółowoZadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Bardziej szczegółowoInternetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
Bardziej szczegółowoWersja testu A 25 września 2011
1. Czy istnieje liczba całkowita dodatnia o sumie cyfr równej 399, podzielna przez a) 3 ; b) 5 ; c) 6 ; d) 9? 2. Czy równość (a+b) 5 = a 3 +3a 2 b+3ab 2 +b 3 jest prawdziwa dla a) a = 8/7, b = 1/7 ; b)
Bardziej szczegółowoPRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI
IMIE I NAZWISKO PRAWDOPODOBIEŃSTWO PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła
Bardziej szczegółowoProjekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Zadanie PP RP 1. Z pojemnika, w którym znajdują się cztery losy z numerami 112, 121, 211, 212 losujemy trzy razy po jednym losie, po każdym losowaniu zwracając wylosowany los do pojemnika. Oblicz prawdopodobieństwo,
Bardziej szczegółowo4. Funkcje. Przykłady
4. Funkcje Przykłady 4.1. Napisz funkcję kwadrat, która przyjmuje jeden argument: długość boku kwadratu i zwraca pole jego powierzchni. Używając tej funkcji napisz program, który obliczy pole powierzchni
Bardziej szczegółowoSkrypt 30. Prawdopodobieństwo
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.
Bardziej szczegółowoPrezydent wszystkich kombinacji czyli rzecz o filtrowaniu systemów Lotto
Prezydent wszystkich kombinacji czyli rzecz o filtrowaniu systemów Lotto Czy zastanawiałeś się kiedyś nad tym, że prawdopodobieństwo wylosowania dwóch liczb w lotto o określonej sumie nie jest jednakowe?
Bardziej szczegółowo01DRAP - klasyczna definicja prawdopodobieństwa
01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne
Bardziej szczegółowoSPRAWDZIAN KOMBINATORYKA
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI SPRAWDZIAN KOMBINATORYKA 12 GRUDNIA 2011 CZAS PRACY: 45 MIN. ZADANIE 1 Spośród liczb {1, 2, 3,..., 1000} losujemy jednocześnie dwie, które
Bardziej szczegółowoKlasa 6. Liczby dodatnie i liczby ujemne
Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie
Bardziej szczegółowoZBIÓR ZADAŃ MATURALNYCH Z MATEMATYKI
ZBIÓR ZADAŃ MATURALNYCH Z MATEMATYKI AUTORZY: Zespół w12i SPIS TREŚCI LICZBY RZECZYWISTE.2 FUNKCJE 11 CIĄGI...27 GEOMETRIA ANALITYCZNA.36 RACHUNEK PRAWDOPODOBIEŃSTWA, STATYSTYKA.44 1 LICZBY RZECZYWISTE
Bardziej szczegółowoKURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej
Bardziej szczegółowoLiczby całkowite. 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D Odczytaj, jakie liczby zaznaczono na osi liczbowej.
Liczby całkowite gr. A str. 1/4... imię i nazwisko...... klasa data 1. Liczbą przeciwną do 4 jest liczba: A. 1 4 B. 4 C. 4 D. 1 4 2. Odczytaj, jakie liczby zaznaczono na osi liczbowej. a =........ b =........
Bardziej szczegółowoZASADY GRY NAJCZĘSCIEJ GRYWANA GRA LICZBOWA NA ŚWIECIE DLA CAŁEJ RODZINY
12355541 Rummikub ZASADY GRY NAJCZĘSCIEJ GRYWANA GRA LICZBOWA NA ŚWIECIE DLA CAŁEJ RODZINY Dla 2 4 graczy w wieku od 7 lat Zawartość opakowania: 104 kostki do gry, ponumerowane od 1 do 13, w czterech kolorach
Bardziej szczegółowoLISTA 5. C++ PETLE for, while, do while
WSTEP DO INFORMATYKI I PROGRAMOWANIA LISTA 5. C++ PETLE for, while, do while Zadanie. Przeanalizuj działanie poniższego programu. cout
Bardziej szczegółowoInternetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone
Bardziej szczegółowoScenariusz zajęć. Moduł VI. Projekt Gra logiczna zgadywanie liczby
Scenariusz zajęć Moduł VI Projekt Gra logiczna zgadywanie liczby Moduł VI Projekt Gra logiczna zgadywanie liczby Cele ogólne: przypomnienie i utrwalenie poznanych wcześniej poleceń i konstrukcji języka
Bardziej szczegółowoJak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?
Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji? Porada niniejsza traktuje o tzw. elementach kombinatoryki. Często zdarza się, że rozwiązujący zadania z tej dziedziny mają problemy
Bardziej szczegółowoPomorski Czarodziej 2016 Zadania. Kategoria C
Pomorski Czarodziej 2016 Zadania. Kategoria C Poniżej znajduje się 5 zadań. Za poprawne rozwiązanie każdego z nich możesz otrzymać 10 punktów. Jeżeli otrzymasz za zadanie maksymalną liczbę punktów, możesz
Bardziej szczegółowoNazwa implementacji: Nauka języka Python pętla for. Autor: Piotr Fiorek
Nazwa implementacji: Nauka języka Python pętla for Autor: Piotr Fiorek Opis implementacji: Poznanie innego rodzaju pętli, jaką jest pętla for w języku Python. Składnia pętli for jest następująca: for
Bardziej szczegółowoPROGRAMOWANIE W C++ ZADANIA
PROGRAMOWANIE W C++ ZADANIA Włodzimierz Gajda Rozdział 7 PĘTLE 7.1 PĘTLA FOR: rysowanie wzorków. ZADANIE 7.1.1 Napisz program drukujący na ekranie 19 gwiazdek: ******************* ZADANIE 7.1.2 Napisz
Bardziej szczegółowoMatematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 6/10 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to
Bardziej szczegółowoPRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
Zadania zamknięte (0- pkt) Zadanie Jeżeli a = log 6 to a jest równe: 4 A. B. C. - Zadanie Warunek x ; 8 jest rozwiązaniem nierówności: A. x + 5 > B. x 5 C. x 5 x + 5 Zadanie Wskaż warunek, który opisuje
Bardziej szczegółowoĆwiczenia nr 11. Translatory. Wprowadzenie teoretyczne
J.Nawrocki, M. Antczak, A. Hoffa, S. Wąsik Plik źródłowy: 08cw11-tr.doc; Data: 2009-01-15 09:47:00 Ćwiczenia nr 11 Translatory Wprowadzenie teoretyczne Wiele dokumentów wprowadzających do języków Lex oraz
Bardziej szczegółowolekcja 8a Gry komputerowe MasterMind
lekcja 8a Gry komputerowe MasterMind Posiadamy już elementarną wiedzę w zakresie programowania. Pora więc zabrać się za rozwiązywanie problemów bardziej złożonych, które wymagają zastosowania typowych
Bardziej szczegółowoMATURA Przygotowanie do matury z matematyki
MATURA 01 Przygotowanie do matury z matematyki Część X: Statystyka, kombinatoryka i rachunek prawdopodobieństwa ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy
Bardziej szczegółowoNapisz program wypisujący na standardowym wyjściu następujący napis: Napis zawierający różne dziwne znaczki // \ \$ &%.
ZADANIE 1. ZADANIE 2. ZADANIE 3. ZADANIE 4. ZADANIE 5. ZADANIE 6. ZADANIE 7. ZADANIE 8. ZADANIE 9. ZADANIE 10. ZADANIE 11. Napisz program wypisujący na standardowym wyjściu następujący napis: Napis zawierający
Bardziej szczegółowoa. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);
03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której
Bardziej szczegółowoInstytut Matematyczny. Uniwersytetu Wrocławskiego TEST KWALIFIKACYJNY. 1 października 2007 r.
Instytut Matematyczny Uniwersytetu Wrocławskiego TEST KWALIFIKACYJNY 1 października 2007 r. Nazwisko Imię Numer Indeksu 201 Wersja testu A 1 października 2007 r. 1. a. T N b. T N c. T N d. T N 2. a. T
Bardziej szczegółowoMateriały dla finalistów
Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy
Bardziej szczegółowoPrzykładowe zadania na kółko matematyczne dla uczniów gimnazjum
1 Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum Zagadnienia, które uczeń powinien znać przy rozwiązywaniu opisanych zadań: zastosowanie równań w zadaniach tekstowych, funkcje i ich monotoniczność,
Bardziej szczegółowo