Techniki symulacji w budowie maszyn
|
|
- Kornelia Andrzejewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Instytut Technologii Mechanicznej Techniki symulacji w budowie maszyn Ćwiczenie laboratoryjne nr 1: Symulacja zmian poziomu cieczy w zbiorniku oraz układzie zbiorników Opracowanie: Karol Miądlicki, mgr inż.
2 Część wprowadzająca 1. Modelowanie i symulacja Modele matematyczne(abstrakcyjne) to zbiór powiązań między zmiennymi, na podstawie, których można przewidzieć(symulować) w przybliżony sposób jakiś aspekt rzeczywistości. Modelem matematycznym przedstawiającym układy ciągłe są najczęściej równania różniczkowe, opisujące jego działanie. W powyższej definicji należy zwrócić szczególną uwagę na pojęcie przybliżony. Ponieważ metody numeryczne wykorzystywane do rozwiązywania równań lub częściej układów równań różniczkowych zawsze obarczone są błędem, który m.in. zależy od: Wybranej metody numerycznej Dokładności programu, w którym przeprowadzamy symulację(ile bitów poświęcanych jest na przedstawienie liczby dziesiętnej w postaci binarnej) Commented [KM1]: Dające się opisać funkcją ciągłą. kcje_jednej_zmiennej_rzeczywistej/130-ciaglosc_funkcji Odpowiednio zbudowany model matematyczny umożliwia zbadanie działania układu(modyfikację parametrów, wartości wejściowych, wyznaczenie wyjściowych) bez potrzeby budowy/przebudowy modelu realnego(fizycznego). Obliczeniowy proces badania odpowiedzi modelu, o określonych parametrach, na zmianę wybranych wielkości wejściowych zwykło się nazywać symulacją(komputerową). Modelowanie i symulacja znalazły szerokie zastosowanie m.in. w projektowaniu układów sterowania. 2. Model matematyczny zbiornika z odpływem grawitacyjnym Modele układów hydraulicznych opisują mechanikę ruchu cieczy w strukturach zawierających zbiorniki i elementy przepływowe w postaci: rur, zaworów, zwężek, pomp. Ciecze poruszają się w nich pod wpływem sił, np. siły grawitacji lub różnicy ciśnień. Szybkość przepływu cieczy przez dany przekrój obiektu to natężeniem przepływu f(t). Może być zdefiniowany, jako: Jednostka objętości na jednostkę czasu [ m3 s ] f(t) = dv Jednostka masy na jednostkę czasu [ kg ] jest używana, jeżeli płyn w układzie zmienia s gęstość f(t) = dm 2.1 Zbiornik ze swobodnym wypływem Zbiorniki o różnych kształtach i sztywnej konstrukcji są głównymi elementami układów hydraulicznych. Wypływ swobodny polega na tym, że ciecz wylatuje ze zbiornika pod
3 wpływem własnego ciężaru. Ilość wypływającej cieczy zależy od pola powierzchni przekroju wypływu oraz ilości cieczy znajdującej się w zbiorniku. Zyskuje ona energię kinetyczną kosztem energii potencjalnej cieczy w zbiorniku (równanie Bernoullego). Commented [KM2]: Im wyższy poziom cieczy(h) w zbiorniku tym więcej zgormadzonej w nim energii potencjalnej. Ta metoda gromadzenia energii jest wykorzystywana m.in. w elektrowniach szczytowopompowych. nowiec Rys1. Przykład zbiorników ze swobodnym wypływem Objaśnienia zmiennych: f u (t) = q we przepływ wejściowy(to, co wpływa do zbiornika) f y (t) = q wy przepływ wyjściowy(to, co wypływa ze zbiornika) Δf(t) = dv ilość cieczy w zbiorniku w konkretnej chwili t V objętość cieczy w zbiorniku V_c objętość cieczy wypływającej przez otwór h wysokość cieczy w zbiorniku A pole powierzchni dna zbiornika(zależy od kształtu zbiornika) C pole powierzchni przekroju wypływu v prędkość wypływającej cieczy g przyśpieszenie ziemskie Aby otrzymać model matematyczny zbiornika w postaci równania różniczkowego najpierw należy wykonać bilans przepływów: a) Ilość cieczy w zbiorniku zależy od różnicy między natężeniem przepływów(ile cieczy wpływa a ile wypływa): Δf(t) = f u (t) f y (t) = dv b) Aby otrzymać zależność wysokości cieczy od przepływów należy rozpisać objętość: (1)
4 po podstawieniu V do wzoru 1 V = h A Δf(t) = f u (t) f y (t) = dv dh = A c) Następnie zależy wyznaczyć przepływ wyjściowy: dv c f y (t) = dv c = C dl dl = dv c C wykorzystując zasadę zachowania energii: mgh = mv2 2 v = 2gh a ponieważ prędkość to pierwsza pochodna przemieszczenia to: v = dl = dv c C = 2gh f y (t) = dv c = C 2gh d) Zakładamy, że przepływ wejściowy do zbiornika jest stały, więc bilans zbiornika: Δf(t) = A dh = f u(t) C 2gh dh = 1 A (f u(t) C 2gh) Jak widać z powyższych rozważań natężenie przepływu nie zależy od kształtu zbiornika, ale od powierzchni otworu wyjściowego i poziomu cieczy. Ponao dla w przypadku zbiornika zamkniętego należy jeszcze wziąć pod uwagę ciśnienie cieczy w zbiorniku. Commented [KM3]: A jest stałą, więc można wyciągnąć je przed pochodną Commented [KM4]: dl przemieszczenie cieczy. Można porównać do h w zbiorniku, jeśli wypływ przekręcimy o 90 stopni. Commented [KM5]: W zamkniętym układzie energia potencjalna równa się energii kinetycznej 2.2 Układ zbiorników Rys2. Przykład układu zbiorników ze swobodnym wypływem] W układzie tym do zbiornika pierwszego o powierzchni A1 dostarczana jest ciecz o natężeniu dopływ f u. Poziom cieczy w zbiorniku jest zmienny i wynosi h1. Do zbiornika drugiego ciecz
5 przepływa poprzez otwór o powierzchni B z natężeniem f 12. Powierzchnia drugiego zbiornika wynosi A2, a poziom cieczy wynosi h2. Ciecz z drugiego zbiornika jest odprowadzana za pomocą otworu o powierzchni C z natężeniem wypływu f y. Wypływ cieczy jest swobodny. Wszelkie wyprowadzenia są identyczne jak dla jednego zbiornika. Jedyną różnicą jest wspólny przepływ f 12. a) Równania bilansu przepływu dla zbiorników: dv 1 = A 1 dh 1 = f u(t) f 12 (t) dv 2 = A 2 dh 2 = f 12(t) f y (t) b) Wyprowadzenie wspólnego przepływu jest bardzo podobne jak dla wypływu pojedynczego zbiornika. Różnica polega na tym, że szybkość przepływu zależy od różnicy poziomów h x w zbiornikach. Ponieważ zbiornik drugi nie posiada innego dopływu niż ze zbiornika pierwszego poziom wody w nim zawsze będzie niższy niż w pierwszym. f 12 (t) = dv B = B 2gh x = B 2g h 1 h 2 sgn(h 1 h 2 ) c) Po podstawieniach i przekształceniach końcowe równania bilansu są następujące: dh 1 = 1 A 1 (f u (t) B 2g h 1 h 2 sgn(h 1 h 2 )) Commented [KM6]: Pole przekroju przepływu miedzy zbiornikami Commented [KM7]: Pod pierwiastkiem muszą znajdować się wartości dodatnie Commented [KM8]: Funkcja signum. dh 2 = 1 A 2 (B 2g h 1 h 2 sgn(h 1 h 2 ) C 2gh 2 ))
6 Zadania do ćwiczenia laboratoryjnego 1. Wprowadzić do środowiska Matlab/Simulink następujące równania i przeprowadzić symulację dla ustawień symulacji Fixed oraz Variable step: a. sin(x) + cos(x) b. sin(x) + sin(x + π) przy użyciu bloczku sine wave c. sin(x) + sin(x + π) przy użyciu bloczku trigonometric function d. sin (x/y) + cos (sin (x/z) ) + x y Commented [KM9]: Simulink>Simulation>Model configuration parameters 2. Zamodelować w środowisku Matlab/Simulink przedstawiony zbiornik. Przy ustawieniach Fixed-step, Fixed-step size: 10^-4: 3. Dla zamodelowanego zbiornika przeprowadzić po 2 symulacje zmieniając parametry: A, C, gdzie: a. q in const b. q in const załączany bloczkiem manual switch c. q in funkcja sin d. q in funkcja sin załączana bloczkiem manual switch 4. DODATKOWE: Zamodelować w środowisku Matlab/Simulink przedstawiony układ zbiorników i a następnie przeprowadzić symulację jak w punkcie 3 uwzględniając parametry A1, A2, B, C:
7 Bloczki ze środowiska Matlab/Simulink wykorzystywane na laboratorium Bloczek Opis Uwagi Oscyloskop wyświetla przebieg sygnału Sumator Po dwukrotnym kliknięciu na bloczek> parameters(trybik)>history>odznaczyć opcję Limit data points to last Całkowanie Upper stauration limit: 500 Lower saturation limit: 0 Wzmocnienie sygnału Można używać do dzielenia Mnożenie sygnałów Funkcja sinus Sin(x) x podaje się na wejściu bloczku Pierwiastek Wartość bezwzględna Funkcja signum Generator funkcji sin Impuls jednostkowy Multiplekser sygnałów Do wyświetlania kilku sygnałów na jednym scope
8 Dzielenie sygnałów Stała
9 Wymagania do sprawozdania 1. Schematy równań z zadania pierwszego i wyniki w postaci wykresów wyjaśnić skąd biorą się różnice w wynikach zależnie od metody num i co z tego wynika. 2. Schemat w simulinku zamodelowanego zbiornika. Opisać, co oznacza, która zmienna oraz dobrać tak parametry, aby parametry i czasy napełniania zbiornika były w miarę realne. 3. Przeprowadzić symulacje jak w zad Zadanie 4 jest dla chętnych, wpływa tylko pozytywnie na ocenę. 5. We wnioskach proszę uwzględnić jak zmiana każdego z parametrów wpływa na ustalenie się poziomu w zbiorniku/zbiornikach. Pamiętać o właściwych jednostkach. 6. Sprawozdania muszą być wykonane samodzielnie! Najlepiej jak każdy by przyjął inne wartości zmiennych i parametrów. Commented [KM10]: Sine wave, a trig function Commented [KM11]: Przepływy, wysokości, przekroje itp. nie są bezwymiarowe. Commented [KM12]: Naprawdę widać kiedy są przerabiane! Pytania i uwagi do skryptu proszę kierować na maila lub postawiać w komentarzach na stronie www. Oceny i uwagi do otrzymanych sprawozdań będę się starał umieszczać na bieżąco w zakładce Studenci.
Techniki symulacji w budowie maszyn
Instytut Technologii Mechanicznej Techniki symulacji w budowie maszyn Ćwiczenie laboratoryjne nr 2: Symulacja zmian temperatury w pomieszczeniu Opracowanie: Karol Miądlicki, mgr inż. Część wprowadzająca
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa TECHNIKI REGULACJI AUTOMATYCZNEJ Laboratorium nr 2 Podstawy środowiska Matlab/Simulink część 2 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie
MECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Rys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Aerodynamika i mechanika lotu
Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych
Zasady dynamiki Newtona
Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem
Dynamika układów hydraulicznych. dr hab. inż. Krzysztof Patan
Dynamika układów hydraulicznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele układów hydraulicznych opisują mechanikę ruchu cieczy w obwodach zawierających zbiorniki i elementy przepływowe w postaci
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub
MECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd
Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone
Zastosowania Równania Bernoullego - zadania
Zadanie 1 Przez zwężkę o średnicy D = 0,2 m, d = 0,05 m przepływa woda o temperaturze t = 50 C. Obliczyć jakie ciśnienie musi panować w przekroju 1-1, aby w przekroju 2-2 nie wystąpiło zjawisko kawitacji,
PRACA. MOC. ENERGIA. 1/20
PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej
J. Szantyr - Wykład 3 Równowaga płynu
J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania
Zajęcia laboratoryjne
Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 10 Badania porównawcze układów sterowania i regulacji prędkością odbiornika hydraulicznego Opracowanie: H. Kuczwara, Z. Kudźma, P. Osiński,
J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych
J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-
WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH
WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar
ROZWIĄZUJEMY ZADANIA Z FIZYKI
ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,
Identyfikacja i modelowanie struktur i procesów biologicznych
Identyfikacja i modelowanie struktur i procesów biologicznych Laboratorium 1: Modele ciągłe. Model Lotki-Volterry. mgr inż. Urszula Smyczyńska AGH Akademia Górniczo-Hutnicza 1. Ćwiczenie 1: Rozwiązanie
E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku
MATERIAŁY POMOCNICZE
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Projekt hierarchicznego systemu sterowania zaopatrywania w wodę ETAP
Instrukcja do ćwiczeń laboratoryjnych. Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing
Instrukcja do ćwiczeń laboratoryjnych Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing Wstęp teoretyczny Poprzednie ćwiczenia poświęcone były sterowaniom dławieniowym. Do realizacji
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Ćwiczenie Nr 2. Temat: Zaprojektowanie i praktyczna realizacja prostych hydraulicznych układów sterujących i napędów
Ćwiczenie Nr 2 Temat: Zaprojektowanie i praktyczna realizacja prostych hydraulicznych układów sterujących i napędów 1. Wprowadzenie Sterowanie prędkością tłoczyska siłownika lub wału silnika hydraulicznego
Analiza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
WIROWANIE. 1. Wprowadzenie
WIROWANIE 1. Wprowadzenie Rozdzielanie układów heterogonicznych w polu sił grawitacyjnych może być procesem długotrwałym i mało wydajnym. Sedymentacja może zostać znacznie przyspieszona, kiedy pole sił
Podstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Modelowanie matematyczne elementów systemu sterowania (obwody elektryczne, mechaniczne
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Modelowanie matematyczne elementów systemu sterowania (obwody elektryczne, mechaniczne
Zasada działania maszyny przepływowej.
Zasada działania maszyny przepływowej. Przyrost ciśnienia statycznego. Rys. 1. Izotermiczny schemat wirnika maszyny przepływowej z kanałem miedzy łopatkowym. Na rys.1. pokazano schemat wirnika maszyny
2. Modele matematyczne obiektów hydraulicznych
Spis treści 1. Wstęp.... 5 2. Modele matematyczne obiektów hydraulicznych..... 6 2.1. Opis zbiornika o kształcie kulistym. 6 2.2. Model matematyczny zbiornika o kształcie kulistym.. 7 2.3. Opis zbiornika
Uruchamianie Aby uruchomić środowisko Simulink należy wpisać w command window Matlaba polecenie simulink lub kliknąć na pasku zadań ikonę programu:
SIMULINK 1 Zawartość O środowisku... 1 Uruchamianie... 1 Idea tworzenia modeli... 2 Pierwszy prosty model figury Lissajou... 2 Drugi prosty model wahadło matematyczne... 6 O środowisku Simulink jest częścią
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Modelowanie wybranych zjawisk fizycznych
Ryszard Myhan Modelowanie zjawiska tarcia suchego Suwaka porusza się w poziomych prowadnicach, gdzie x=x(t) oznacza przesunięcie suwaka względem nieruchomej prowadnicy w kierunku zgodnym z kierunkiem siły
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest
v p dr dt = v dr= v dt
Rozpędzanie obiektów Praca sił przy rozpędzaniu obiektów b W = a b F dr = a m v dv dt dr = k v p dr dt =v dr=v dt m v dv = m v 2 k 2 2 m v p 2 Wyrażenie ( mv 2 / 2 )nazywamy energią kinetyczną rozpędzonego
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Regulacja dwupołożeniowa.
Politechnika Krakowska Wydział Inżynierii Elektrycznej i Komputerowej Zakład eorii Sterowania Regulacja dwupołożeniowa. Kraków Zakład eorii Sterowania (E ) Regulacja dwupołożeniowa opis ćwiczenia.. Opis
Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.
Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje
REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ.
REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ. Reakcją hydrodynamiczną nazywa się siłę, z jaką strumień cieczy działa na przeszkodę /zaporę / ustawioną w jego linii działania. W technicznych
Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie,
Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział. Składanie ruchów... 11 Rozdział 3. Modelowanie zjawisk fizycznych...43 Rozdział 4. Numeryczne całkowanie, czyli obliczanie pracy w polu grawitacyjnym
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
5 Równania różniczkowe zwyczajne rzędu drugiego
5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium
Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.
WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA
WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
1. Opis teoretyczny regulatora i obiektu z opóźnieniem.
Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie:. Opis teoretyczny regulatora i obiektu z opóźnieniem. W regulacji dwupołożeniowej sygnał sterujący przyjmuje dwie wartości: pełne załączenie i wyłączenie...
Kinematyka płynów - zadania
Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
MECHANIKA II. Dynamika układu punktów materialnych
MECHANIKA II. Dynamika układu punktów materialnych Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z
Treści dopełniające Uczeń potrafi:
P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć
Zadanie 1. Zadanie 2.
Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie
Badania modelowe przelewu mierniczego
LABORATORIUM MECHANIKI PŁYNÓW Badania modelowe przelewu mierniczego dr inż. Przemysław Trzciński ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZ. BMiP, PŁOCK Płock 2007 1. Cel ćwiczenia Celem
Sposoby modelowania układów dynamicznych. Pytania
Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,
Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości
LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK
W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
OZNACZANIE ŚREDNIEJ MASY CZĄSTECZKOWEJ POLIMERU WSTĘP Lepkość roztworu polimeru jest z reguły większa od lepkości rozpuszczalnika. Dla polimeru lepkość graniczna [η ] określa zmianę lepkości roztworu przypadającą
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Sterowanie w programie ADAMS regulator PID. Przemysław Sperzyński
Sterowanie w programie ADAMS regulator PID Przemysław Sperzyński Schemat regulatora K p e t e t = u zad t u akt (t) M = K p e t + K i e t + K d de(t) u zad uakt M K i e t K d de t Uchyb regulacji człony
Obraz Ziemi widzianej z Księżyca
Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 5. POMIARY NATĘŻENIA PRZEPŁYWU GAZÓW METODĄ ZWĘŻOWĄ 1. Cel ćwiczenia
Laboratorium nr 1. Diagnostyka z wykorzystaniem modelu. 2 Detekcja uszkodzeń na podstawie modeli obiektu
Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Diagnostyka procesów i systemów 1 Cel ćwiczenia. Prowadzący: Marcel Luzar 1 Laboratorium nr 1 Diagnostyka z wykorzystaniem modelu
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych
Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 17 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego -
Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna
Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium Ćwiczenie 1 Badanie aktuatora elektrohydraulicznego Instrukcja laboratoryjna Opracował : mgr inż. Arkadiusz Winnicki Warszawa 2010 Badanie
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 18 stycznia 018 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60. 85% 51pkt. Uwaga! 1. Za poprawne rozwiązanie
Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr 5 Charakterystyka rozdzielacza hydraulicznego. Opracowanie: Z.Kudźma, P. Osiński J. Rutański, M. Stosiak Wiadomości wstępne Rozdzielacze
Metoda elementów skończonych
Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
METODA ELEMENTÓW SKOŃCZONYCH.
METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.
Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita
Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie
Zajęcia laboratoryjne
Zajęcia laboratoryjne Napęd Hydrauliczny Instrukcja do ćwiczenia nr 2 Metody sterowania prędkością odbiornika hydraulicznego w układach z pompą stałej wydajności sterowanie dławieniowe Opracowanie: Z.
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl
AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA
AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA OBLICZANIE POCZĄTKOWEJ WYSOKOŚCI METACENTRYCZNEJ PODCZAS OPERACJI BALASTOWYCH Zajęcia laboratoryjne z przedmiotu: