Instrukcja 2 Syntetyczna turbulencja
|
|
- Ksawery Duda
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wprowadzenie Instrukcja 2 Syntetyczna turbulencja W symulacjach przepływów turbulentnych z użyciem metod typu RANS wielkości turbulentne są modelowane np. przez dołączenie do równań przepływu dwóch dodatkowych równań na energię kinetyczną turbulencji oraz jej tempo dyssypacji. W rezultacie, przy zadawaniu warunków brzegowych na wlocie do obszaru, trzeba jedynie zadać profil prędkości oraz postawić warunek brzegowy dla tych dodatkowych wielkości. Np. specyfikujemy intensywność turbulencji i stosunek lepkości turbulentnej do lepkości molekularnej. Natomiast w mteodach typu LES (Large Eddy Simulation) oraz metodach hybrydowych opartych na technice LES jest to niewystarczające ze względu na fakt, że część skal turbulentnych jest jawnie rozwiązywana, tzn., że muszą istnieć w rozwiązywanym polu prędkości. Muszą zatem być te zaburzenia turbulentne obecne w profilu wlotowym. Powszechnie stosuje się trzy metody zapewnienia tego, by w symulowanym polu prędkości przepływu pojawiły się fluktuacje turbulentne. Niejednokrotnie, gdy metody typu LES lub DNS (direct numerical simulation) służą do symulacji przepływu turbulentnego w kanale, stosuje się periodyczne warunki brzegowe na wlocie i wylocie, dzięki czemu symulowany jest tak naprawdę przepływ przez nieskończenie długi kanał. W czasie takiej symulacji albo wprowadza się w sposób sztuczny delikatne zaburzenie lub polega na błędach zaokrągleń i numerycznych, które dla przepływu z odpowiednio dużą liczbą Reynoldsa stanowią wystarczające zaburzenie do zdestabilizowania przepływu i wygenerowania turbulencji. Jest to jednak metoda mało praktyczna, gdy chcemy mieć odpowiednie, zaburzone pole prędkości na wlocie do obszaru od samego początku symulacji. Zdestabilizowanie bowiem przepływu powyższą metodą bywa wcale nie takie proste. Drugą metodą jest wprowadzenie na wlocie fluktuacji uzyskanych wcześniej z poprzedzającej symulacji DNS np. przepływu w kanale. W tym celu trzeba jednak dysponować takimi danymi i poświęcić czas (również czas komputera) na wykonanie takiej symulacji dającej przepływ z odpowiednimi parametrami wielkości turbulentnych. Trzecia metoda, którą my się zajmiemy, to metoda wygenerowania syntetycznej (sztucznej) turbulencji na wlocie. Wymaga ona jedynie podania kilku parametrów określających turbulencję i generuje losowe pole zaburzeń prędkości, które spełnia podstawowe założenia zarówno równań przepływowych, jak też fizykę zjawiska turbulencji. 1 Sformułowanie teoretyczne Idea metody generacji syntetycznych fluktuacji turbulentnych jest bardzo prosta. Zasadza się na następujących założeniach: 1. Każdą funkcję lub pole (np. pole prędkości) da się przedstawić za pomocą szeregu Fouriera. Można więc fluktuacje turbulentne zadać szeregiem Fouriera składającym się z odpowiednio wielu wyrazów o wielu różnych długościach fali. Te długości fali w sensie przestrzennym będą odpowiadać różnym wymiarom liniowym tworów turbulentnych. 2. W sformułowaniu każdego z wyrazów szeregu Fouriera występuje wektor falowy, kąt przesunięcia fazowego oraz wersor określający kierunek wektora prędkości tego zaburzenia. Wielkości te będą generowane w sposób losowy. 1
2 3. Przy powyższym losowaniu (zakładamy, że turbulencja ma charakter niedeterministyczny) należy tylko zadbać o to, by wytworzyć turbulencję o takiej intensywności, jaką zadajemy na wlocie do obszaru, aby zaburzenia o poszczególnych długościach fali odzwierciedlały fizyczny rozkład gęstości energii w funkcji liczby falowej (widmo Karmana, hipoteza K41) oraz dodatkowo spełniały równania przepływu (równanie ciągłości, a zatem warunek bezdywergentności pola prędkości, a zatem pola wygenerowanych zaburzeń). 4. W ten sposób generujemy odpowiednio wiele niezależnych losowych pól zaburzeń (tyle, ile będzie kroków czasowych w naszej symulacji). Oczywiście w fizycznej turbulencji pole prędkości w nowej chwili jest zależne od tego, co działo się przed chwilą, toteż na koniec między niezależnymi polami wprowadzamy odpowiednią korelację w czasie, która zapewni płynność zmian w czasie. Prześledźmy teraz powoli na wzorach sposób, w jaki generuje się syntetyczną turbulencję. Określamy ogólną postać syntetycznego pola prędkości jako v ( x) = 2 ˆ u n cos( κ n x + ψ n ) σ n gdzie û n, κ n, ψ n, σ n oznaczają odpowiednio amplitudę, wektor falowy i przesunięcie fazowe oraz wersor kierunku n-tego modu Fouriera. Następnie trzeba określić największą i najmniejszą liczbę falową (czyli najmniejszą i największą długość fali), jakie będą obecne w generowanym spektrum. Z rozdzielczości siatki obliczeniowej (spostrzeżenia, że nie da się jednego sinusa reprezentować na mniej niż dwóch oczkach siatki) wynika, że maksymalna sensowna dla nas liczba falowa wynosi κ max = 2π 2 gdzie oznacza wielkość oczka siatki. Najmniejszą liczbę falową zaś definiujemy jako κ 1 = κ e p gdzie κ e to liczba falowa związana z najbardziej energetycznymi falami ze spektrum von Karmana, a to współczynnik powinien być większy od jedności, aby w spektrum były obecne mody o długości fali większej od długości fali najbardziej energetycznych modów. Dobrą wartością jest p = 2. Długość fali odpowiadającej modom niosącym największą energię można określić ze wzoru κ e = α9π 55L t gdzie α = 1.453, a turbulentna skala długości może być określona tak samo jak w symulacjach RANS jako jedna dziesiąta grubości warstwy przyściennej. Kolejnym krokiem na drodze do generacji syntetycznej turbulencji jest podzielenie całego zakresu liczb falowych na N modów rozłożonych równomiernie, każdy o wielkości κ. Ze wzoru na spektrum von Karmana możemy określić amplitudę każdego z modów jako û = (E(κ) κ) 1/2 gdzie u 2 rms (κ/κ e ) 4 E(κ) = c E κ e [1 + (κ/κ e ) 2 e[ 2(κ/κη)] ] 17/6 2
3 κ = (κ i κ i ) 1/2 κ η = ɛ 1/4 ν 3/4 Współczynnik c E otrzymujemy przez scałkowanie widma energii turbulencji po wszystkich liczbach falowych co daje gdzie k = 0 E(κ)dκ c E = 4 π Γ(17/6) Γ(1/3) = Γ(z) = 0 e z x z 1 dz Wróćmy do algorytmu. Wylosowanie kątów ϕ, ψ oraz α z przedziału od 0 do 2π oraz θ z przedziału od 0 do π (patrz rysunek poniżej oraz wzory poniżej) pozwala określić zarówno składowe wektora falowego, przesunięcie fazowe oraz kierunek, jakim skierowane jest w przestrzeni dane zaburzenie prędkości. Ostateczny wzór na wektor fluktuacji w danym punkcie przestrzeni ma postać gdzie v 1 = 2 v 2 = 2 v 3 = 2 û n cos(β n )σ 1 û n cos(β n )σ 2 û n cos(β n )σ 3 β n = k n 1 x 1 + k n 2 x 2 + k n 3 x 3 W powyższym niezmiernie istotne jest, aby wektor σ dla danego modu był prostopadły do wektora falowego tego modu. Ten warunek gwarantuje, że tak otrzymane pole prędkości będzie na pewno polem bezdywergentnym, a więc spełniającym równanie ciągłości. I powtórzmy jednocześnie otrzymanie samej amplitudy z widma von Karmana gwarantuje nam też, że nasza syntetycznie generowana turbulencja ma fizyczny, zgodny z prawdziwą, rozkład energii w poszczególnych długościach fali. To już niemal wszystko. W ten sposób jesteśmy w stanie wygenerować dowolnie dużo niezależnych od siebie pól fluktuacji turbulentnych, które spełniają stawiane wymagania. Niemniej, aby te pola stanowiły użyteczny warunek brzegowy dla symulacji, musimy wprowadzić jeszcze korelację w czasie między nimi w myśl tego, że oczywiście to, co dzieje się na wlocie do obszaru chwilę później w bardzo dużej mierze zależy od tego, co działo się przed chwilą. Tak więc gotowe fluktuacje na wlocie będą generowane jako średnia ważona pola zaburzeń z poprzedniego kroku czasowego (z odpowiednio dużą wagą) oraz nowego pola zaburzeń z inną wagą (najczęściej znacznie mniejszą ze względu na małą separację czasową). Ostatecznie pole zaburzeń ( V ) m dla m-tej chwili czasowej generuje się ze wzoru (V 1) m = a(v 1) m 1 + b(v 1) m 3
4 Rysunek 1: Określenie położeń wektorów w oparciu o wylosowane kąty (rys. z Lars Davidson, Fluid mechanics, turbulent flow and turbulence modeling ) (V 2) m = a(v 2) m 1 + b(v 2) m (V 3) m = a(v 3) m 1 + b(v 3) m gdzie współczynniki określa się ze wzoru a = exp( t/t ), b = (1 a 2 ) 0.5. oznacza tutaj skalę czasową turbulencji i tym samym korelacja w czasie (mówiąca o tym, jak mocno obecny stan jest skorelowany ze stanem sprzed czasu τ wstecz) jest równa exp( τ/t ). Na sam koniec do samych zaburzeń turbulentnych należy dodać deterministyczny profil prędkości z wlotu tak, aby otrzymać gotowy warunek brzegowy. Przedstawiają to poniższe wzory. 2 Zadania v 1 (0, x 2, x 3, t) = V 1 (x 2, x 3 ) + V 1(x 2, x 3, t) v 2 (0, x 2, x 3, t) = V 2 (x 2, x 3 ) + V 2(x 2, x 3, t) v 3 (0, x 2, x 3, t) = V 3 (x 2, x 3 ) + V 3(x 2, x 3, t) Otwórz w programie Microsoft Visual Studio dostarczony projekt z kodem źródłowym programu do generowania syntetycznej turbulencji na wlocie do obszaru obliczeniowego. Prześledźmy teraz wspólnie uważnie cały kod, zwracając uwagę na częste w kodzie komentarze. Zwróć szczególną uwagę na linie od 298 do 350. Znajdują się tam wykomentowane linie rozpoczynające się od słowa //Uzupełnij:. Twoim zadaniem będzie wypełnić te linie poprawnym kodem źródłowym i wykonać poniższe ćwiczenia. 4
5 Ćwiczenie 1 Korzystając z funkcji Wykres, wyświetl na ekranie spektrum energii turbulencji von Karmana. Osie odciętych i rzędnych niech będą wyskalowane liniowo. Wykomentuj kod tworzący powyższy wykres i obejrzyj to samo widmo w skali podwójnie logarytmicznej. Ćwiczenie 2 Wykomentuj całość kodu związanego z Ćwiczeniem 1. Wyświetl na ekranie wykres przedstawiający jedną realizację losowego pola fluktuacji turbulentnych. Zwróć uwagę na linię 266 w kodzie źródłowym, która pozwala ci na łatwe zapisanie do tablic u, v, w jednej z realizacji. Zmień kilka razy liczbę modów nmodes od bardzo małych (rzędu 3-5) do kilkuset. Czy zauważasz jakieś różnice w charakterze generowanych zaburzeń? Tym razem zmień wartość parametru qm (zarówno w dół, jak i w górę). Uruchom kilkukrotnie program, oglądając przy tym wykres generowanych zaburzeń. Czy na skali osi rzędnych zauważasz jakieś zmiany? Na koniec zmień zdefiniowaną w parametrach grubość warstwy przyściennej delta. Sprawdź kilka różnych wartości, wyświetl wykresy i przyjrzyj się charakterowi generowanych fluktuacji. Ćwiczenie 3 Uzupełnij w kodzie programu linijki, które pozwolą skorelować w czasie niezależne od siebie realizacje pól zaburzeń w całą historię fluktuacji turbulentnych, jakie można jako gotowy warunek dodać do deterministycznego profilu prędkości na wlocie. Otwórz programem Excel dwa pliki z wygenerowanymi fluktuacjami (plik z korelacją w czasie i bez korelacji w czasie). Dla kilku różnych okresów separacji w czasie wykreśl, korzystając z Excela przebieg autokorelacji danej składowej prędkości w wybranym punkcie w przestrzeni. O definicję autokorelacji zapytaj prowadzącego. W Excelu dla jednej chwili czasowej wygeneruj ostateczne pole prędkości, które można w symulacji zadać jako warunek brzegowy na wlocie, czyli taki, który zawiera zarówno deterministyczny profil prędkości, jak też losowe pole zaburzeń dla danej chwili czasu. 3 Rozwiązanie // CWICZENIA ////////////////////////////////////////////////////////////////////////////////// // Ad. 1. Obejrzyj spektrum von Karmana double *spektrum, *logomega; spektrum = new double[nmodes]; logomega = new double[nmodes]; 5
6 for(int i = 0; i<nmodes; ++i) spektrum[i] = amp/wnre*pow(wnr[i]/wnre,4.0)/(pow(1+pow(wnr[i]/wnre,2.0),17./6.)) *exp(-2*pow(wnr[i]/wnreta,2.0)); Wykres(wnr, spektrum, nmodes, "Omega", "Spektrum"); for(int i = 0; i<nmodes; i++) logomega[i] = log(wnr[i]); spektrum[i] = log(amp/wnre*pow(wnr[i]/wnre,4.0)/(pow(1+pow(wnr[i]/wnre,2.0),17./6.)) *exp(-2*pow(wnr[i]/wnreta,2.0))); Wykres(logomega, spektrum, nmodes, "ln Omega", "ln Spektrum"); delete [] spektrum; delete [] logomega; ///////////////////////////////////////////////////////////////////////////////// // Ad. 2. Przyjrzyj się jednej realizacji dla różnych parametrów // Obejrzyjmy realizacje zapisana w tablicach u, v, w Wykres(z, u, nz-1, "z", "u_prim"); ///////////////////////////////////////////////////////////////////////////////// // Ad. 3. Stworz korelacje w czasie double a, b; double dt = 0.01; double T = 1; for(int m = 1; m<nstep; ++m) a = exp(-dt/t); b = sqrt(1-a*a); for(int k = 0; k<nz-1; ++k) ut[k][m] = a*ut[k][m-1] + b*ut[k][m]; vt[k][m] = a*vt[k][m-1] + b*vt[k][m]; wt[k][m] = a*wt[k][m-1] + b*wt[k][m]; ///////////////////////////////////////////////////////////////////////////////// 6
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
KATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować
Informatyka I Lab 06, r.a. 2011/2012 prow. Sławomir Czarnecki. Zadania na laboratorium nr. 6
Informatyka I Lab 6, r.a. / prow. Sławomir Czarnecki Zadania na laboratorium nr. 6 Po utworzeniu nowego projektu, dołącz bibliotekę bibs.h.. Największy wspólny dzielnik liczb naturalnych a, b oznaczamy
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
Układ RLC z diodą. Zadanie: Nazwisko i imię: Nr. albumu: Grzegorz Graczyk. Nazwisko i imię: Nr. albumu:
Politechnika Łódzka TIMS Kierunek: Informatyka rok akademicki: 2009/2010 sem. 3. grupa II Zadanie: Układ z diodą Termin: 5 I 2010 Nr. albumu: 150875 Nazwisko i imię: Grzegorz Graczyk Nr. albumu: 151021
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Aerodynamika I. wykład 2: 2: Skośne fale uderzeniowe iifale rozrzedzeniowe. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa
Aerodynamika I Skośne fale uderzeniowe i fale rozrzedzeniowe naddźwiękowy przepływ w kanale dla M = 2 (rozkład liczby Macha) 19 maja 2014 Linie Macha Do tej pory, rozważaliśmy problemy dynamiki gazu, które
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I
Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość
Wstęp do komputerów kwantowych
Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne
. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Definicje i przykłady
Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest
Projekt Metoda Elementów Skończonych. COMSOL Multiphysics 3.4
Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dawid Trawiński Wojciech Sochalski Wydział: BMiZ Kierunek: MiBM Semestr: V Rok: 2015/2016 Prowadzący: dr hab. inż. Tomasz
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.
Podpis prowadzącego SPRAWOZDANIE
Imię i nazwisko.. Grupa. Data. Podpis prowadzącego. SPRAWOZDANIE LABORATORIUM POFA/POFAT - ĆWICZENIE NR 1 Zadanie nr 1 (plik strip.pro,nazwa ośrodka wypełniającego prowadnicę - "airlossy") Rozważamy przypadek
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej
Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu
J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2
J. Szantyr Wykład nr 0 Warstwy przyścienne i ślady W turbulentnej warstwie przyściennej można wydzielić kilka stref różniących się dominującymi mechanizmami kształtującymi przepływ. Ogólnie warstwę można
Ćwiczenia 05. Sylwester Arabas (ćwiczenia do wykładu prof. Szymona Malinowskiego) 9. listopada 2010 r.
FFT w u: fft() Ćwiczenia 05 Sylwester Arabas (ćwiczenia do wykładu prof. Szymona Malinowskiego) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 9. listopada 2010 r. Zadanie 5.1 : wstęp (Landau/Lifszyc
= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=
Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Nasyp przyrost osiadania w czasie (konsolidacja)
Nasyp przyrost osiadania w czasie (konsolidacja) Poradnik Inżyniera Nr 37 Aktualizacja: 10/2017 Program: Plik powiązany: MES Konsolidacja Demo_manual_37.gmk Wprowadzenie Niniejszy przykład ilustruje zastosowanie
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Opis programu Konwersja MPF Spis treści
Opis programu Konwersja MPF Spis treści Ogólne informacje o programie...2 Co to jest KonwersjaMPF...2 Okno programu...2 Podstawowe operacje...3 Wczytywanie danych...3 Przegląd wyników...3 Dodawanie widm
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
Metoda elementów brzegowych
Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV
Elektroenergetyczne linie napowietrzne i kablowe wysokich i najwyższych napięć PARAMETRY, WŁAŚCIWOŚCI I FUNKCJE NIEZAWODNOŚCIOWE NAPOWIETRZNYCH LINII DYSTRYBUCYJNYCH 110 KV Wisła, 18-19 października 2017
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku
w Lokalnie Ergodycznym Środowisku Tymoteusz Chojecki UMCS, Lublin Tomasz Komorowski IMPAN, Warszawa Kościelisko, 10 września 2016, XLV Konferencja Zastosowań Matematyki T. Komorowski, T. Chojecki w Lokalnie
Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa
Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja
Optymalizacja ciągła
Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
Skręcenie wektora polaryzacji w ośrodku optycznie czynnym
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 196324 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Rozwiazaniem
OPŁYW PROFILU. Ciała opływane. profile lotnicze łopatki. Rys. 1. Podział ciał opływanych pod względem aerodynamicznym
OPŁYW PROFILU Ciała opływane Nieopływowe Opływowe walec kula profile lotnicze łopatki spoilery sprężarek wentylatorów turbin Rys. 1. Podział ciał opływanych pod względem aerodynamicznym Płaski np. z blachy
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Zadanie Cyfryzacja grida i analiza geometrii stropu pułapki w kontekście geologicznym
Zadanie 1 1. Cyfryzacja grida i analiza geometrii stropu pułapki w kontekście geologicznym Pierwszym etapem wykonania zadania było przycięcie danego obrazu tak aby pozostał tylko obszar grida. Obrobiony
Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)
Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) 1 1 Cel ćwiczenia Celem ćwiczenia jest rozwiązanie równań ruchu ciała (kuli) w ośrodku
PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO
PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO wyprowadzenie bez mechaniki kwantowej. Opracował mgr inż. Herbert S. Mączko Celem jest wyznaczenie objętościowej gęstości energii ρ T promieniowania w równoległościennej,
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15
REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój
1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Klasa 1 Klasa 1
Klasa 1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Dwurównaniowe domknięcie turbulentnego strumienia ciepła
Instytut Maszyn Przepływowych PAN Ośrodek Termomechaniki Płynów Zakład Przepływów z Reakcjami Chemicznymi Dwurównaniowe domknięcie turbulentnego strumienia ciepła Implementacja modelu: k 2 v' f ' 2 Michał
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
Całkowanie numeryczne
Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy
Generowanie sygnałów na DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą
TEMAT: Ilustracja graficzna układu równań.
SCENARIUSZ LEKCJI PRZEPROWADZONEJ W KLASIE III TEMAT: Ilustracja graficzna układu równań. Cel ogólny: Uczeń rozwiązuje metodą graficzną układy równań przy użyciu komputera. Cele operacyjne: Uczeń: - zna
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka
Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu
POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji
POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu