Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
|
|
- Bronisława Gajda
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika
2 1 Modele sieci rekurencyjnej Energia sieci 2 3
3 Modele sieci rekurencyjnej Energia sieci 1 Modele sieci rekurencyjnej Energia sieci 2 3
4 Sieci skierowane Modele sieci rekurencyjnej Energia sieci Sieci skierowane graf połączeń synaptycznych nie zawiera cykli wierzchołki dają się posortować topologicznie, dynamika odbywa się synchronicznie zgodnie z kolejnością zadaną przez otrzymaną kolejność,
5 Modele sieci rekurencyjnej Energia sieci Graf sieci dopuszcza istnienie cykli skierowanych, sortowanie topologiczne nie jest możliwe, dynamika nabiera aspektu temporalnego: sieć rozwijamy w szereg podsieci powiązanych ze sobą zależnościami czasowymi.
6 typu Hopfielda Modele sieci rekurencyjnej Energia sieci każda jednostka ma przypisany swój spin σ i { 1, +1} zmienny w trakcie dynamiki, połączenia synaptyczne mają przypisane wagi w ij = w ji R stałe, w ii = 0, jeżeli krawędzi nie ma w grafie, to w = 0, neurony otrzymują swoje pole zewnętrzne h i R stałe.
7 typu Hopfielda Modele sieci rekurencyjnej Energia sieci neuron zmienia swój spin i wysyła informację do sąsiadów, po zmianie jest nieaktywny przez pewien okres czasu τ r (czas refrakcji), przesył impulsu po krawędzi zajmuje pewien okres czasu τ p (czas przesyłu, może zależeć od rodzaju lub długości krawędzi),
8 Dynamika Glaubera Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to sieć jest niewielka i można stosować następującą dynamikę: wylosuj neuron σ i, przypisz σ i = sign( j w ij σ j + h i ) powtarzaj 1 i 2 aż do ustabilizowania się sytuacji.
9 Dynamika Glaubera Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to sieć jest niewielka i można stosować następującą dynamikę: wylosuj neuron σ i, przypisz σ i = sign( j w ij σ j + h i ) powtarzaj 1 i 2 aż do ustabilizowania się sytuacji. Oznaczmy M i = j w ijσ j + h i lokalne pole wypadkowe dla jednostki i.
10 Dynamika Little a Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to działanie przybliżamy dynamiką synchroniczną: wszystkie neurony jednocześnie ustawiają się zgodnie z lokalnym polem wypadkowym, tj, przypisujemy: σ i = sign(m i ) przy wykorzystaniu zestawu spinów z poprzedniej iteracji.
11 Dynamika Little a Modele sieci rekurencyjnej Energia sieci Alternatywne sformułowanie: Rozpocznij z losowego σ 0 Powtarzaj wielokrotnie: Przypisz σ t+1 := sign(w σ t + H) gdzie W = [w ij ] i,j=1..n jest macierzą wag, H - wektorem pól zewnętrznych σ t wektorem spinów w t-tym kroku.
12 Dynamika Hybrydowa Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to dynamika staje się skomplikowana ze względu na znaczne opóźnienia w przesyle. małe fragmenty sieci (tj. bliskie jednostki) przybliżamy dynamiką asynchroniczną (Glaubera), w dużej skali stosujemy dynamikę synchroniczną uwzględniającą różnice czasowe.
13 Energia sieci Modele sieci rekurencyjnej Energia sieci Określmy energię sieci (Hammiltonian) zależny od bieżącej konfiguracji spinów neuronów: E( σ) = 1 w ij σ i σ j 2 i i j h i σ i Wagi w ij oraz pola zewnętrzne h i są ustalone, więc energia zależy tylko od spinów.
14 Twierdzenie Modele sieci rekurencyjnej Energia sieci Twierdzenie W trakcie dynamiki Glaubera energia sieci nie ulega wzrostowi.
15 Twierdzenie Modele sieci rekurencyjnej Energia sieci Twierdzenie W trakcie dynamiki Glaubera energia sieci nie ulega wzrostowi. Dowód na tablicy
16 Dowód Modele sieci rekurencyjnej Energia sieci Załóżmy, że z konfiguracji σ przeszliśmy do σ. Niech σ i będzie neuronem, który zmieniliśmy, tj σ i = σ i = sign(m i ).
17 Dowód Modele sieci rekurencyjnej Energia sieci Załóżmy, że z konfiguracji σ przeszliśmy do σ. Niech σ i będzie neuronem, który zmieniliśmy, tj σ i = σ i = sign(m i ). Zauważmy, że E( σ) = 1 2 j i,k i w jk σ j σ k w ij σ i σ j h j σ j h i σ i j j i
18 Dowód Modele sieci rekurencyjnej Energia sieci Załóżmy, że z konfiguracji σ przeszliśmy do σ. Niech σ i będzie neuronem, który zmieniliśmy, tj σ i = σ i = sign(m i ). Zauważmy, że E( σ) = 1 2 j i,k i w jk σ j σ k w ij σ i σ j h j σ j h i σ i j j i Zmieniliśmy tylko spin σ i więc j i,k i w jkσ j σ k oraz j i h jσ j nie wpływają na zmianę energii.
19 Dowód Modele sieci rekurencyjnej Energia sieci Załóżmy, że z konfiguracji σ przeszliśmy do σ. Niech σ i będzie neuronem, który zmieniliśmy, tj σ i = σ i = sign(m i ). Zauważmy, że E( σ) = 1 2 j i,k i w jk σ j σ k w ij σ i σ j h j σ j h i σ i j j i Zmieniliśmy tylko spin σ i więc j i,k i w jkσ j σ k oraz j i h jσ j nie wpływają na zmianę energii. Obliczmy E( σ ) E( σ) = = j w ij σ iσ j h i σ i j w ij σ i σ j h i σ i =
20 Dowód cd. Modele sieci rekurencyjnej Energia sieci E( σ ) E( σ) = j w ij σ iσ j h i σ i + j w ij σ i σ j + h i σ i =
21 Dowód cd. Modele sieci rekurencyjnej Energia sieci E( σ ) E( σ) = j w ij σ iσ j h i σ i + j w ij σ i σ j + h i σ i = j w ij (σ i σ i )σ j h i (σ i σ i ) =
22 Dowód cd. Modele sieci rekurencyjnej Energia sieci E( σ ) E( σ) = j w ij σ iσ j h i σ i + j w ij σ i σ j + h i σ i = j w ij (σ i σ i )σ j h i (σ i σ i ) = (σ i σ i ) j w ij σ j h i = (σ i σ i )( M i )
23 Dowód cd. Modele sieci rekurencyjnej Energia sieci E( σ ) E( σ) = j w ij σ iσ j h i σ i + j w ij σ i σ j + h i σ i = j w ij (σ i σ i )σ j h i (σ i σ i ) = (σ i σ i ) j w ij σ j h i = (σ i σ i )( M i ) Przypomnijmy, że podstawialiśmy σ i := sign(m i ). E( σ ) E( σ) = (sign(m i ) ( sign(m i ))M i = 2 M i 0
24 Ewolucja sieci Hopfielda Modele sieci rekurencyjnej Energia sieci click
25 Wniosek Modele sieci rekurencyjnej Energia sieci Jeżeli ilość neuronów w sieci n jest skończona, to ilość możliwych konfiguracji σ również, podczas dynamiki osiągane jest minimum (być może lokalne!) funkcji energetycznej w skończonym czasie.
26 Wniosek Modele sieci rekurencyjnej Energia sieci Jeżeli ilość neuronów w sieci n jest skończona, to ilość możliwych konfiguracji σ również, podczas dynamiki osiągane jest minimum (być może lokalne!) funkcji energetycznej w skończonym czasie. Wykorzystamy dynamikę asynchroniczną sieci do znajdowania rozwiązania problemów optymalizacyjnych. Wystarczy do tego sprecyzować wagi i pola lokalne.
27 1 Modele sieci rekurencyjnej Energia sieci 2 3
28 Cel Chcemy stworzyć pamięć adresowaną zawartością, tj mając dany fragment obrazu będzie w stanie go odtworzyć.
29 Cel Chcemy stworzyć pamięć adresowaną zawartością, tj mając dany fragment obrazu będzie w stanie go odtworzyć. Oznaczmy: I µ = {ξ µ i } obraz wzorcowy, i = 1..N ilość pikseli, µ = 1..P ilość wzorców σ i neurony sieci, po jednym neuronie na każdy piksel obrazu, w ij wagi między neuronami, h i pola zewnętrzne,
30
31 Oznaczmy stopień zgodności stanu sieci σ ze wzorcem I µ M µ ( σ) = 1 N N σ i ξ µ i = 1 N σ, I µ i=1
32 Oznaczmy stopień zgodności stanu sieci σ ze wzorcem I µ M µ ( σ) = 1 N N σ i ξ µ i = 1 N σ, I µ i=1 M µ ( σ) = 1 oznacza pełną zgodność, M µ ( σ) = 1 całkowitą niezgodność, ale przy naszych oznaczeniach należy pamiętać, że jest to idealny negatyw.
33 Energia Zdefiniujmy energię E( σ) = N 2 P (M µ ( σ)) 2 = µ=1
34 Energia Zdefiniujmy energię E( σ) = N 2 = N 2 µ=1 P (M µ ( σ)) 2 = µ=1 ( ) 2 P 1 N σ i ξ µ i = N i=1
35 Energia Zdefiniujmy energię E( σ) = N 2 = N 2 µ=1 P (M µ ( σ)) 2 = µ=1 ( ) 2 P 1 N σ i ξ µ i = N i=1 N 2 P 1 N N 2 µ=1 N i=1 j=1,j i σ i σ j ξ µ i ξ µ j + 1 N 2 N σi 2 ξ µ i i=1 2
36 Energia Zdefiniujmy energię E( σ) = N 2 = N 2 µ=1 P (M µ ( σ)) 2 = µ=1 ( ) 2 P 1 N σ i ξ µ i = N i=1 N 2 P 1 N N 2 µ=1 N i=1 j=1,j i σ i σ j ξ µ i ξ µ j + 1 N 2 N σi 2 ξ µ i i=1 2
37 Energia E( σ) = 1 2N P i j µ=1 σ i σ j ξ µ i ξ µ j
38 Energia E( σ) = 1 2N P i j µ=1 σ i σ j ξ µ i ξ µ j = 1 2N N i j µ=1 P σ i σ j ξ µ i ξ µ j
39 Energia E( σ) = 1 2N P i j µ=1 σ i σ j ξ µ i ξ µ j = 1 2N = 1 2 N i j µ=1 N σ i σ j 1 N i j P σ i σ j ξ µ i ξ µ j P ξ µ i ξ µ j µ=1
40 Wagi Otrzymujemy zależności na wagi: w ij = 1 N P ξ µ i ξ µ j µ=1 oraz na pola zewnętrzne h i = 0 Zerowe pola zewnętrzne sprawiają, że sieć nie ma preferencji odnośnie kolorów. Negatywy są rozpoznawane tak samo jak obrazy oryginalne.
41 Przestrzeń stanów
42 Rekonstrukcja obrazu dynamika Glaudera Gdy sieć jest już nauczona możemy odzyskać wejściowy zaszumiony obraz: 1 Obraz wejściowy konwertujemy na konfigurację spinów σ, 2 Poddajemy bieżącą konfigurację ewolucji Glaudera: 1 Losujemy jednostkę i, 2 Ustawiamy spin σ i := sign( j w ijσ j ), 3 Powtarzamy 2.1 i 2.2 aż stan sieci się ustabilizuje, 3 Wyjściowy obraz odzyskujemy dekodując wyjściową konfigurację spinów σ.
43 Rekonstrukcja obrazu dynamika Little a Ustaloną mamy macierz wag W = (w ij ) N i,j=1 1 Obraz wejściowy konwertujemy na konfigurację początkową (t = 0) spinów σ 0, 2 Poddajemy konfigurację ewolucji: 1 Przypisujemy σ t+1 := W σ t σ t+1 i := sign( σ t+1 i ) 2 Powtarzamy 2.1 aż stan sieci się ustabilizuje, 3 Wyjściowy obraz odzyskujemy dekodując wyjściową konfigurację spinów σ T.
44 Trajektoria odzyskiwania obrazu Rysunek uproszczony, przestrzeń to { 1, +1} d a nie R
45 Trajektoria odzyskiwania obrazu
46 Stabilność wzorca Załóżmy, że wzorce I µ są niezależne, tj. prawdopodobieństwo, że losowy piksel jest włączony jest to samo Pytamy: P(ξ µ i = +1) = P(ξ µ i = 1) = 1 2 kiedy I µ jest punktem stałym dynamiki sieci?
47 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i =
48 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j N µ σ j
49 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j σ j = N µ µ M µ ( σ)ξ µ i
50 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j σ j = N µ µ M µ ( σ)ξ µ i Podstawmy za konfigurację wzorzec σ := I µ 0.
51 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j σ j = N µ µ M µ ( σ)ξ µ i Podstawmy za konfigurację wzorzec σ := I µ 0. M i (I µ 0 ) = ξ µ 0 i + µ µ 0 M µ (I µ 0 )ξ µ i
52 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j σ j = N µ µ M µ ( σ)ξ µ i Podstawmy za konfigurację wzorzec σ := I µ 0. M i (I µ 0 ) = ξ µ 0 i + µ µ 0 M µ (I µ 0 )ξ µ i }{{} } {{ } sygnał szum
53 Stabilność wzorca Założyliśmy, że: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2
54 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j
55 Stabilność wzorca Założyliśmy, że: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Zdefiniujmy zmienną losową Ξ: Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1:
56 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) =
57 Stabilność wzorca Założyliśmy, że: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Zdefiniujmy zmienną losową Ξ: Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ j = N j
58 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ i j = Ξ i N 0 N N N 1 j
59 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ i j = Ξ i N 0 1 D N(0, 1) N N N 1 N j
60 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ i j = Ξ i N 0 1 D N(0, 1) N(0, 1 N N N 1 N N ) j
61 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ i j = Ξ i N 0 1 D N(0, 1) N(0, 1 N N N 1 N N ) j I dalej: M µ (I µ0 )ξ µ i N(0, P 1 N ) µ µ 0
62 Stabilność wzorca Aby nie zepsuć wzorca musi być µ µ 0 M µ (I µ 0 )ξ µ i N(0, P 1 N ) < 1
63 Stabilność wzorca Aby nie zepsuć wzorca musi być µ µ 0 M µ (I µ 0 )ξ µ i N(0, P 1 N ) < 1 Wariancja musi być bardzo mała P 1 N 1
64 Stabilność wzorca Aby nie zepsuć wzorca musi być µ µ 0 M µ (I µ 0 )ξ µ i N(0, P 1 N ) < 1 Wariancja musi być bardzo mała czyli P 1 N 1 P N
65 Co to są wzorce skorelowane?
66 Co to są wzorce skorelowane?
67 Wzorzec I µ 0 zaburzamy w R punktach. Szum nadal wynosi N(0, P N ). Sygnał (1 R N )ξµ 0 i. Szukamy bezpiecznego α = P N, aby wciąż dało się odzyskać obraz.
68 Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N ) =
69 Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N ) = Φ(1 2R/N α ) =
70 Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N 2R/N 1 2R/N ) = Φ(1 ) = 1 Φ( ) α α
71 Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N 2R/N 1 2R/N ) = Φ(1 ) = 1 Φ( ) α α Chcemy odtworzyć wszystkie piksele (a nie jeden), więc prawdopodobieństwo wyniesie ( 1 Φ( 1 2R/N α )) N
72 Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N 2R/N 1 2R/N ) = Φ(1 ) = 1 Φ( ) α α Chcemy odtworzyć wszystkie piksele (a nie jeden), więc prawdopodobieństwo wyniesie ( 1 Φ( 1 2R/N ) N ) 1 N Φ( 1 2R/N ) α α
73 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ).
74 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ). Jeżeli ograniczymy dopuszczalny błąd przez δ, to δ > N 1 2R/N Φ( ) α
75 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ). Jeżeli ograniczymy dopuszczalny błąd przez δ, to δ > N 1 2R/N Φ( ) α N α (1 2R/N) 2π 2R/N)2 exp( (1 ) 2α
76 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ). Jeżeli ograniczymy dopuszczalny błąd przez δ, to δ > N 1 2R/N Φ( ) α N α (1 2R/N) 2π N α exp( (1 2R/N)2 2α ) 2π 2R/N)2 exp( (1 ) 2α
77 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ). Jeżeli ograniczymy dopuszczalny błąd przez δ, to δ > N 1 2R/N Φ( ) α Po zlogarytmowaniu: N α (1 2R/N) 2π N α exp( (1 2R/N)2 2α ) 2π (1 2R N )2 2α ( ln δ + ln N + ln α ) 2 2R/N)2 exp( (1 ) 2α
78 Wniosek α (1 2R N )2 2 ln N 1 2 ln N W sieci o N wierzchołkach można przechować maksymalnie wzorców. N 4 log N
79
80 Niepoprawne odzyskiwanie za dużo wzorców
81 Zapoznaj się z mechanizmem symulowanego wyżarzania. Dlaczego jest on często wprowadzany do dynamiki sieci Hopfielda? Oszacuj wymagania pamięciowe naiwnej implementacji sieci Hopfielda dla obrazów o rozdzielczości Jak można zredukować zapotrzebowanie pamięciowe? (*) Jak można zmusić sieć Hopfielda do uczenia się z rozróżnieniem obrazu od negatywu?
82 Zaimplementuj autoasocjator graficzny Hopfielda. Zaimplementuj autoasocjator lingwistyczny (dla par / trójek liter) bazujący na sieci Hopfielda. Jak sieć będzie działać dla problemy rozpoznawania małych liter na matrycy dużej rozdzielczości?
Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych
Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.
Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie
Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna
do sieci neuronowych, wykład 14 Maszyna Boltzmanna M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2014-01-21 Problemy z siecią Hopfilda
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;
Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych
Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych
w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
SIECI REKURENCYJNE SIECI HOPFIELDA
SIECI REKURENCYJNE SIECI HOPFIELDA Joanna Grabska- Chrząstowska Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SPRZĘŻENIE ZWROTNE W NEURONIE LINIOWYM sygnał
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3
Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty
Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.
Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony
synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.
Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Uczenie sieci neuronowych i bayesowskich
Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10
Prawdopodobieństwo i statystyka
Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin
Algorytmy stochastyczne, wykład 5, modelowanie roślin Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 214-3-2 1 2 3 ze stosem Przypomnienie gramatyka to system (Σ, A, s,
Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 13-1- Projekt pn. Wzmocnienie potencjału dydaktycznego
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
1. Logika, funkcje logiczne, preceptron.
Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję
Co to jest model Isinga?
Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.
Harmonogramowanie przedsięwzięć
Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
Co to jest grupowanie
Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie
Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek
Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.
Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Systemy uczące się Lab 4
Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.
Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na
Testowanie hipotez statystycznych. Wprowadzenie
Wrocław University of Technology Testowanie hipotez statystycznych. Wprowadzenie Jakub Tomczak Politechnika Wrocławska jakub.tomczak@pwr.edu.pl 10.04.2014 Pojęcia wstępne Populacja (statystyczna) zbiór,
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 8. SZTUCZNE SIECI NEURONOWE INNE ARCHITEKTURY Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SIEĆ O RADIALNYCH FUNKCJACH BAZOWYCH
wiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Jarosław Piersa, Tomasz Schreiber {piersaj, tomeks}(at)mat.umk.pl 2010-07-21 1 2 Dany podzbiór V R 3. N neuronów należących do V N Poiss(c
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Algorytmy stochastyczne laboratorium 03
Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych
Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja
Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką
z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Wykład 9: Markov Chain Monte Carlo
RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa
Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n
Zadania z RP 2. seria 1. 1. Dla x R n, niech δ x oznacza miarę Diraca, skupioną w punkcie x. Wykazać, że dla dowolnego ciągu x n R n zachodzi δ xn δ x wtedy i tylko wtedy, gdy x n x. 2. Podać przykład
Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w