Metody inwersji Bayesowskiej -L7- IGF PAN, 21.IV.2005
|
|
- Izabela Świderska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Metody inwersji Bayesowskiej -L7-
2 Podejście optymalizacyjne i probabilistyczne podobieństwa i różnice (C) G(m) d obs + λ m m apr = min d obs m apr d th = d true + ɛ obs = m true + ɛ apr = G(m) + ɛ th G(m) d true +ɛ obs +ɛ th +λ m m apr +ɛ apr = min
3 Podejście optymalizacyjne i probabilistyczne podobieństwa i różnice (D) Rozwiazania dla różnych realizacji ɛ obs, ɛ th ɛ apr : m (1), m (2), m (K) Pozwala utworzyć histogram rozwiazań: h(m) = N α (m) N K który jest przybliżeniem σ(m) Technika nieefektywna w przypadkach wielowymiarowych!!!
4 Model najbardziej prawdopodobny - optymalizacja szukanie modelu najbardziej prawdopodobnego m ml : σ(m ml ) = max metody gradientowe metody Monte Carlo Symulowane wyżarzanie Algorytm Genetyczny technika równoważna podejściu optymalizacyjnemu
5 Optymalizacja gradientowa i Monte Carlo
6 Metoda: preconditioned sttepest descent 1. m 0 - dowolny, Ŝ 0 (I + C M G t C 1 D G) 1 2. γ n = C M G t C 1 D (Gm n d obs ) + (m n m apr ) 3. φ n = Ŝ0γ n 4. b n = Gφ n 5. µ n = γ t n C 1 M φ n φ t n C 1 M φ n+b t n C Db n 6. m n+1 = m n µ n φ n
7 Optymalizacja gradientowa - ograniczenia
8 System z wieloma stopniami swobody Roztopiony metal, skały, itp: 1m 3 : N Jak opisać taki układ??? ( r i, v i )
9 Podejście statystyczne Interesuja nas na ogół makroskopiczne wielkości: temperatura, gestość, lepkość, itp. Wiele różnych mikroskopowych stanów odpowiada tej samemej wielkości makroskopowej Równowaga termodynamiczna: stan makroskopowy nie zmienia sie w czasie jednakże stany mikroskopowy - tak
10 Thermodynamika srównowagowa Rozkład Boltzmana (kanoniczny) p(c) = 1 ( Z exp E(C) ) kt E - energy of a given state T - temperature Z(T, M,...) = ( exp E ) i kt C prwdopodobieństwo realizacji stanu makroskopowego przez dany stan mikroskopowy C
11 Proces schładzania schładzanie powolne Proces schładzania - system zdaża do stanu o minimum energii wewnetrznej - ruchy termiczne zostaja zamrożone T - high T - low
12 Proces schładzania szybkie schładzanie T - high T - low
13 Proces schładzania - zmiany w rozkładzie Boltzmanna Cooling system Cooling system States C States C
14 Proces schładzania ewolucja rozkładu Boltzmana T=10 T=1 T=0.1
15 Proces schładzania: krystalizacja Model Space Temperature
16 Symulowane schładzanie - optymalizacja Szukamy absolutnego minimum dodatniej funkcji S(m) > 0 S(m) = e S(m) T
17 Algorytmy typu Simulated Annealing Wybierz To Wygeneruj C z p(c) Zmniejsz T Zakoncz gdy T = Tk
18 Generowane próbki T=10 T=1 T=0.1
19 Stan podstawowy i stany metatrwałe
20 Utwórz rozkład Boltzmanowski p(m, T ) = exp( S(m)/T ) Wybierz T 0, i model poczatkowy m α i oceń go p α = p(m α, T 0 ) Dla danej temperatury T k wylosuj m α+1 z p(m, T k ) wylosuj próbke testowa m β : m β = m α + δm oceń m β : p β = p(m β, T k ) Utwóż m α+1 zaakceptuj m β z prawdopodobiństwem p = min (1, p β /p α ) m α+1 = m β jeśli m β odrzucona duplikuj stan obecny m α+1 = m α Zmniejsz temperatur e T k+1 = f(t k ) Powtarzaj aż do osiagni ecia końcowej temperatury
21 Algorytm SA przykład while( T > Tf) /* decrease T loop */ { nc =ceil( p2+p3*exp(-(double)k/(double)sa->n)); if(nc<=1) nc=1; ++k; for(l=0;l<nc;l++) /* T=const loop */ { for(j=0;j<n;j++) /* generate new sample */ { u=sarandval(0,1); /* modified VFSA */ x= fabs(2*u -1); z= T*( pow(1+1/t,x) - 1); if(u >=0.5) p=mi[j] + z * (mu[j]-mi[j]); else
22 p= mi[j] - z * (mi[j]-ml[j]); mf[j]=p; } tt= (*fun)(mf); /* evaluate */ e = tt-ta; z=exp(-e/t); u=sarandval(0,1); if( e<0 z > u) /* accept */ { ta=tt; mc = mi; mi = mf; mf=mc; if(ta < ts) /* keep the best */ { ts=ta; for(i=0;i < N; i++) ms[i]=mi[i]; }
23 } } /* End of T=const loop */ To=T; /* decrease T (VFSA scheme) */ z=tc*pow((double)(k),di); T = Ti*exp(-z); if(sa->pf>0) /* messages to STD_ERR */ { if(k%sa->pf==0) fprintf(stderr," VFSA: T = %.2e dt = %.2e iter: %-6d nc: %- } } /* End of cooling (T) loop */
24 Thermodynamika - Optymalizacja/Inwersja analogie Termodynamika Optymalizacja wiele stopni swobody optymalizacja wielo parametrowa rozkład Boltzmana rozkład a posteriori energia niedopasowanie stan podstawowy globalne maksimum możliwe stany metatrwałe lokalne maksima Schładzanie wymaga by układ był w stanie równowagi termodynamicznej
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji Metoda optymalizacyjna (2) W. Debski, 8.01.2015 Liniowy problem odwrotny m est (λ) = m apr + (G T G + λi) 1 G T ( dobs G m apr) +δ d est d o = + λ I ( G T G + λi
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji W. Debski, 11.12.2014 Liniowy problem odwrotny m est (λ) = m apr + (G T G + λi) 1 G T ( dobs G m apr) +δ debski@igf.edu.pl: W3-1 IGF PAN, 11.12.2014 Metoda algebraiczna
Optymalizacja. Symulowane wyżarzanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne
Techniki optymalizacji
Techniki optymalizacji Symulowane wyżarzanie Maciej Hapke maciej.hapke at put.poznan.pl Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne zmniejszanie
Współczesna technika inwersyjna - dokad zmierzamy? Wojciech Dȩbski
Współczesna technika inwersyjna - dokad zmierzamy? Wojciech Dȩbski 24.5.2 Pomiar bezpośredni IGF, 24.5.2 IGF - Pomiar pośredni IGF, 24.5.2 IGF - 2 Interpretacja matematyczna m m + dm m d + dd d = G(m)
Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Co to jest model Isinga?
Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.
Przeszukiwanie lokalne
Przeszukiwanie lokalne 1. Klasyfikacja algorytmów 2. Przeszukiwanie lokalne 1. Klasyfikacja algorytmów Algorytmy dokładne znajdują rozwiązanie optymalne, 1. Klasyfikacja algorytmów Algorytmy dokładne znajdują
Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna
do sieci neuronowych, wykład 14 Maszyna Boltzmanna M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2014-01-21 Problemy z siecią Hopfilda
Metody Obliczeniowe w Nauce i Technice
18 - Optymalizacja metodą simulated annealing Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Marcin Przewięźlikowski
model isinga 2d ab 10 grudnia 2016
model isinga 2d ab 10 grudnia 2016 tematyka Model spinów Isinga Hamiltonian i suma statystyczna modelu Metoda Monte-Carlo. Algorytm Metropolisa. Obserwable Modelowanie: Model Isinga 1 hamiltonian I Hamiltonian,
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne
METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne
n p 2 i = R 2 (8.1) i=1
8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie
Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe
Bezgradientowe metody optymalizacji funkcji wielu zmiennych informacje dodatkowe Wybór kierunku poszukiwań Kierunki bazowe i ich modyfikacje metody bezgradientowe. Kierunki oparte na gradiencie funkcji
Lokalizacja zjawisk sejsmicznych w kopalni - problemy. Lokalizacja - problemy. brak czasu w ognisku. Lokalizacja względna. niedokładne wyznaczanie
Lokalizacja zjawisk sejsmicznych w kopalni - problemy Lokalizacja - problemy niedokładne wyznaczanie brak czasu w ognisku głębokości Absolutna lokalizacja pojedynczych zjawisk Lokalizacja względna wyznaczamy
Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła
Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji W. Debski, 27.11.2014 Zagadnienia modelowania i inwersji uogólnienie debski@igf.edu.pl: W2-1 IGF PAN, 27.11.2014 Zagadnienie odwrotne - pomiary pośrednie zagadnienie
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii
Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji W. Debski, 5.02.2015 Przykład - 1 (Wiek A. Tarantoli???) debski@igf.edu.pl: W6-1 IGF PAN, 5.02.2015 Pomysł na rozwiazanie debski@igf.edu.pl: W6-2 IGF PAN, 5.02.2015
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Uczenie ze wzmocnieniem
Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Przypomnienia (1) Do tych czas: stan X t u, gdzie u cel aktualizacji: MC : X t G t TD(0) : X y R t+1 + γˆv(x t,
Dynamiczne stochastyczne modele równowagi ogólnej
Dynamiczne stochastyczne modele równowagi ogólnej mgr Anna Sulima Instytut Matematyki UJ 8 maja 2012 mgr Anna Sulima (Instytut Matematyki UJ) Dynamiczne stochastyczne modele równowagi ogólnej 8 maja 2012
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Metody numeryczne II
Metody numeryczne II Poszukiwanie ekstremów funkcji Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne II (C) 2004 Janusz Szwabiński p.1/55 Poszukiwanie ekstremów funkcji 1. Funkcje jednej zmiennej
Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.
Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=
Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną
Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra
Fizyka statystyczna Termodynamika bliskiej nierównowagi P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Nasze wszystkie dotychczasowe rozważania dotyczyły układów w równowadze termodynamicznej lub
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Hybrydy symulowanego wyżarzania
Symulowane wyżarzanie Hybrydy symulowanego wyżarzania Inspiracje fizyczne Urszula Boryczka ENTROPIA Nieporządek mierzymy liczbą sposobów, na które można poustawiać składniki, nie naruszając wyglądu zewnętrznego
2) wzrost i hodowla kryształów, metalurgia algorytm symulowanego wygrzewania
Przewodnik do przeszukiwania losowego inspiracje przyrodnicze Przyrodnicze (naturalne) algorytmy optymalizacji MC 1) teoria doboru naturalnego algorytmy genetycze wygląd owada zoptymalizowany na drodze
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Algorytmy MCMC i ich zastosowania statystyczne
Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 1 1 Co to jest MCMC? 2
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Przykłady problemów optymalizacyjnych
Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów
REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój
1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
P(F=1) F P(C1 = 1 F = 1) P(C1 = 1 F = 0) P(C2 = 1 F = 1) P(C2 = 1 F = 0) P(R = 1 C2 = 1) P(R = 1 C2 = 0)
Sieci bayesowskie P(F=) F P(C = F = ) P(C = F = 0) C C P(C = F = ) P(C = F = 0) M P(M = C =, C = ) P(M = C =, C = 0) P(M = C = 0, C = ) P(M = C = 0, C = 0) R P(R = C = ) P(R = C = 0) F pali papierosy C
Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m
TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości
Równoległe symulacje Monte Carlo na współdzielonej sieci
Równoległe symulacje Monte Carlo na współdzielonej sieci Szymon Murawski, Grzegorz Musiał, Grzegorz Pawłowski Wydział Fizyki, Uniwersytet im. Adama Mickiewicza 12 maja 2015 S. Murawski, G. Musiał, G. Pawłowski
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawy optymalizacji Plan prezentacji 1 Podstawy matematyczne 2 3 Eliminacja ograniczeń Metody
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 1
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 1 Konrad Miziński, nr albumu 233703 1 maja 2015 Zadanie 1 Parametr λ wyestymowano jako średnia z próby: λ = X n = 3.73 Otrzymany w
Fuzja sygnałów i filtry bayesowskie
Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna
SPOTKANIE 3: Regresja: Regresja liniowa
Wrocław University of Technology SPOTKANIE 3: Regresja: Regresja liniowa Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 22.11.2013 Rozkład normalny Rozkład normalny (ang. normal
Czym się różni ciecz od ciała stałego?
Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy
Optymalizacja. Przeszukiwanie lokalne
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x
Optymalizacja kryteriów selekcji dla rozpadu Λ+c pμ+μza pomocą wielowymiarowej analizy danych
Optymalizacja kryteriów selekcji dla rozpadu Λ+c pμ+μza pomocą wielowymiarowej analizy danych Maciej Kościelski Jakub Malczewski opiekunowie prof. dr hab. Mariusz Witek mgr inż. Małgorzata Pikies LHCb
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Selekcja cech. Wprowadzenie Metody selekcji cech. Przykład zastosowania. Miary niepodobieństwa. Algorytmy przeszukiwania
Selekcja cech Wprowadzenie Metody selekcji cech Miary niepodobieństwa Algorytmy przeszukiwania Przykład zastosowania Wprowadzenie 2 Cel selekcji: dobór cech obiektu, na których opierać się będzie klasyfikacja
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
Ogólny schemat postępowania
Ogólny schemat postępowania 1. Należy zdecydować, który rozkład prawdopodobieństwa chcemy badać. Rozkład oznaczamy przez P; zależy od zespołu statystycznego. 2. Narzucamy warunek równowagi szczegółowej,
Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową
XIII International PhD Workshop OWD 2011, October 2011 WIZUALIZACJA SYSTEMÓW GRZEWCZYCH VISUALISATION OF THE HEATING SYSTEMS
XIII International PhD Workshop OWD 2011, 22 25 October 2011 WIZUALIZACJA SYSTEMÓW GRZEWCZYCH VISUALISATION OF THE HEATING SYSTEMS Paweł Dąbrowski, Faculty of Electrical Engineering, Computer Science and
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
Teoria ze Wstępu do analizy stochastycznej
eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7
Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Metody rozwiązywania równań nieliniowych
Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.
1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
3 MODELE PROCESÓW STOCHASTYCZNYCH 3
3 MODELE PROCESÓW STOCHASTYCZNYCH 3 3.1. Wprowadzenie Prawdopodobieństwo i procesy stochastyczne służą do opisu i reprezentacji niepewności lub niejednoznaczności. Podejście probabilistyczne nie jest w
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej
Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika
Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009
Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.
Wielki rozkład kanoniczny
, granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany
Imputacja brakujacych danych binarnych w modelu autologistycznym 1
Imputacja brakujacych danych binarnych w modelu autologistycznym 1 Marta Zalewska Warszawski Uniwesytet Medyczny Statystyka Matematyczna Wisła, grudzień 2009 1 Współautorzy: Wojciech Niemiro, UMK Toruń
Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego
Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Radialna funkcja korelacji g(r)
Radialna funkcja korelacji g(r) r1 Określa prawdopodobieństwo znalezienia innej cząsteczki w odległości r= r1-r od cząsteczki znajdującej się w punkcie r1 Definicja g(r) Aby zdefiniować g(r) całkuje się
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe
Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń
Inverse problems - Introduction - Probabilistic approach
Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk
16 Jednowymiarowy model Isinga
16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization
Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne