Informatyka w selekcji - Wykªad 1
|
|
- Julia Aneta Świderska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Informatyka w selekcji - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t
2 Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu R Tomasz Suchocki, Informatyka w selekcji Wykªad 1 2/34
3 Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu R Mo»na (a nawet trzeba) przerywa i zadawa pytania! Tomasz Suchocki, Informatyka w selekcji Wykªad 1 2/34
4 Podstawowe informacje o przedmiocie informatyka dyscyplina naukowa zajmuj ca si przetwarzaniem informacji. selekcja wybór zwierz t i ro±lin do rozmna»ania, powoduje zmian frekwencji genów w populacji. informatyka w selekcja??? Tomasz Suchocki, Informatyka w selekcji Wykªad 1 3/34
5 Podstawowe informacje o przedmiocie Kiedy potrzebne jest zastosowanie informatyki w selekcji? Tomasz Suchocki, Informatyka w selekcji Wykªad 1 4/34
6 Podstawowe informacje o przedmiocie Kiedy potrzebne jest zastosowanie informatyki w selekcji? Ogromne zbiory danych Tomasz Suchocki, Informatyka w selekcji Wykªad 1 4/34
7 Podstawowe informacje o przedmiocie Kiedy potrzebne jest zastosowanie informatyki w selekcji? Ogromne zbiory danych Estymacja genomowej warto±ci hodowlanej w Polsce: Tomasz Suchocki, Informatyka w selekcji Wykªad 1 4/34
8 Podstawowe informacje o przedmiocie Kiedy potrzebne jest zastosowanie informatyki w selekcji? Ogromne zbiory danych Estymacja genomowej warto±ci hodowlanej w Polsce: osobników markerów typu SNP dla ka»dego osobnika = rekordów Tomasz Suchocki, Informatyka w selekcji Wykªad 1 4/34
9 Podstawowe informacje o przedmiocie - Wykªady Wykªad 1 Wprowadzenie do pakietu R Wykªad 2 Analiza regresji liniowej Wykªad 3 Analiza wariancji Wykªad 4 Modele mieszane Wykªad 5 Analiza statystyczna w pakiecie SAS Wykªad 6 Bazy danych w programie MySQL Wykªad 7 Selekcja genomowa w Polsce Wykªad 8 Zaawansowane programowanie w pakiecie R Tomasz Suchocki, Informatyka w selekcji Wykªad 1 5/34
10 Podstawowe informacje o przedmiocie- wiczenia wiczenia 1 Wprowadzenie do pakietu R wiczenia 2 Analiza regresji liniowej wiczenia 3 Analiza wariancji wiczenia 4 Modele mieszane wiczenia 5 Kolokwium 1 wiczenia 6 Analiza statystyczna czy u»yciu pakietu SAS wiczenia 7 Bazy danych w programie MySQL wiczenia 8 Kolokwium 2 Tomasz Suchocki, Informatyka w selekcji Wykªad 1 6/34
11 Podstawowe informacje o przedmiocie - Terminy Wykªady: czwartki 8:30 10:00 Tomasz Suchocki, Informatyka w selekcji Wykªad 1 7/34
12 Podstawowe informacje o przedmiocie - Terminy Wykªady: czwartki 8:30 10:00 12:30 14:00? wiczenia: czwartek 14:00 15:30 czwartek 15:30 17:00 Tomasz Suchocki, Informatyka w selekcji Wykªad 1 7/34
13 Podstawowe informacje o przedmiocie - Terminy Terminy wykªadów i wicze«: Tomasz Suchocki, Informatyka w selekcji Wykªad 1 8/34
14 Podstawowe informacje o przedmiocie - Oceny Warunki zaliczenia: 2 kolokwia, ka»de po 16 punktów minimum 16 punktów daje ocen pozytywn BRAK poprawek aktywno± obecno± Tomasz Suchocki, Informatyka w selekcji Wykªad 1 9/34
15 Podstawowe informacje o przedmiocie - Kontakt Gdzie mo»na mnie znale¹ : Katedra Genetyki i Ogólnej Hodowli Zwierz t (pokój 23) tomasz.suchocki@up.wroc.pl Konsultacje: indywidualnie lub Skype termin ustalany indywidualnie z prowadz cym Tomasz Suchocki, Informatyka w selekcji Wykªad 1 10/34
16 Podstawowe informacje o przedmiocie - Tomasz Suchocki, Informatyka w selekcji Wykªad 1 11/34
17 Wprowadzenie do R Tomasz Suchocki, Informatyka w selekcji Wykªad 1 12/34
18 Wprowadzenie do R Co to wogóle jest R? pakiet statystyczny mo»liwo±ci s jednak znacznie wi ksze! DARMOWY! zarówno w edukacji jak i biznesie Tomasz Suchocki, Informatyka w selekcji Wykªad 1 13/34
19 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 14/34
20 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 15/34
21 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 16/34
22 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 17/34
23 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 18/34
24 Wprowadzenie do R - Korzystanie z pomocy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 19/34
25 Wprowadzenie do R - Wczytywanie danych read.table("±cie»ka",header={f,t},sep={";","\t"},ll={f,t}) ±cie»ka np.: "d:/inf/dane.txt" header czy wyst puje nagªówek w danych sep czym s oddzielane kolumny ll czy s "brakuj ce"dane Tomasz Suchocki, Informatyka w selekcji Wykªad 1 20/34
26 Wprowadzenie do R - Zapisywanie danych write.table(zmienna,"±cie»ka",col.names={f,t},row.names={f,t}, sep={";","\t"},quote={f,t}) zmienna któr zmienn chcemy zapisa col.names czy zapisa nazwy kolumn row.names czy zapisa nazwy wierszy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 21/34
27 Wprowadzenie do R - Rodzaje zmiennych Typ liczbowy Typ czynnikowy Typ znakowy Typ logiczny Wektor elementów Macierz Ramka danych Tomasz Suchocki, Informatyka w selekcji Wykªad 1 22/34
28 Wprowadzenie do R - Kalkulator Tomasz Suchocki, Informatyka w selekcji Wykªad 1 23/34
29 Wprowadzenie do R - Kalkulator Inne przydatne funkcje: pierwiastek kwadratowy: sqrt(x) zaokraglanie liczby do k znaków: round(x,digits=k) funkcje trygonometryczne: sin(x), cos(x), tan(x) warto± bezwzgl dna: abs(x) Tomasz Suchocki, Informatyka w selekcji Wykªad 1 24/34
30 Wprowadzenie do R - Wektory Tomasz Suchocki, Informatyka w selekcji Wykªad 1 25/34
31 Wprowadzenie do R - Macierze Tomasz Suchocki, Informatyka w selekcji Wykªad 1 26/34
32 Wprowadzenie do R - Macierze Tomasz Suchocki, Informatyka w selekcji Wykªad 1 27/34
33 Wprowadzenie do R - Indeksy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 28/34
34 Wprowadzenie do R - Indeksy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 29/34
35 Wprowadzenie do R - Indeksy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 30/34
36 Wprowadzenie do R - Wykresy wykres plot y Tomasz Suchocki, Informatyka w selekcji Wykªad 1 31/34 x
37 Wprowadzenie do R - Wykresy wykres hist Frequency a Tomasz Suchocki, Informatyka w selekcji Wykªad 1 32/34
38 Wprowadzenie do R - Wykresy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 33/34
39 Dzi kuj za uwag Tomasz Suchocki, Informatyka w selekcji Wykªad 1 34/34
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1 Podstawowe
Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu
Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:
Instalacja Pakietu R
Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji
Pakiety statystyczne - Wykªad 8
Pakiety statystyczne - Wykªad 8 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne
PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI
PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki - projekt 3. Charakterystyka przedmiotu 4. Kontakt 5. Literatura Copyright 2017 Joanna Szyda KATEDRA
SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK
SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Prowadzący: JOANNA SZYDA MAGDALENA FRĄSZCZAK WSTĘP 1. Systemy informatyczne w hodowli -??? 2. Katedra Genetyki 3. Pracownia biostatystyki - wykorzystanie narzędzi
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Model mieszany
Spis tre±ci. 1 Podstawy termodynamiki - wiczenia 2. 2 Termodynamika - wiczenia 4. 3 Teoria maszyn cieplnych - wiczenia 6
Spis tre±ci 1 Podstawy termodynamiki - wiczenia 2 2 Termodynamika - wiczenia 4 3 Teoria maszyn cieplnych - wiczenia 6 4 Przenoszenie ciepªa/wymiana ciepªa i wymienniki - wykªad 7 5 Wymiana ciepªa i wymienniki
Informatyka w selekcji - Wykªad 4
Informatyka w selekcji - Wykªad 4 Plan wykªadu SAS 1. Praca z programem 2. Edycja danych 3. Procedury graczne 4. Analiza w pakiecie SAS na»ywo, Wykªad 5 2/36 Praca z programem, Wykªad 5 3/36 Praca z programem
Podstawy statystycznego modelowania danych - Wykªad 7
Podstawy statystycznego modelowania danych - Wykªad 7 Tomasz Suchocki ANOVA Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne i przykªady zastosowania 3. ANOVA w pakiecie R Tomasz
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
KARTA PRZEDMIOTU. w języku polskim Statystyka opisowa Nazwa przedmiotu USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW. dr Agnieszka Krzętowska
KARTA PRZEDMIOTU Kod przedmiotu E/O/SOP w języku polskim Statystyka opisowa Nazwa przedmiotu w języku angielskim Statistics USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma studiów Poziom
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej
Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:
Metody statystyczne w biologii - Wykªad 8. Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t
Metody statystyczne w biologii - Wykªad 8 Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Regresja logistyczna 1. Podstawy teoretyczne i przykªady zastosowania
Pakiety Matematyczne - R Zestaw 1.
Pakiety Matematyczne - R Zestaw 1. Zadania z kasynem pochodzą ze strony datacamp.com Instalacja pakietu R Strona główna projektu: http://www.r-project.org/ Instalacja: http://r.meteo.uni.wroc.pl/ (jedno
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Wprowadzenie do pakietu R Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Co i dlaczego...? 2 Przechowywanie
Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria
7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka
7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki
Zasady zaliczenia kursów dydaktycznych
Zasady zaliczenia kursów dydaktycznych Spis tre±ci 1 Matematyczne modelowanie instalacji energetycznych - laboratorium komputerowe 2 2 Podstawy termodynamiki - wykªad 4 3 Podstawy termodynamiki - wiczenia
Podstawy statystycznego modelowania danych Analiza prze»ycia
Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate
STATYSTYKA MATEMATYCZNA WYKŁAD 1
STATYSTYKA MATEMATYCZNA WYKŁAD 1 Wykład wstępny Teoria prawdopodobieństwa Magda Mielczarek wykłady, ćwiczenia Copyright 2017, J. Szyda & M. Mielczarek STATYSTYKA MATEMATYCZNA? ASHG 2011 Writing Workshop;
PRACOWNIA INFORMATYCZNA CHARAKTERYSTYKA PRZEDMIOTU BASH - PODSTAWOWE INFORMACJE
PRACOWNIA INFORMATYCZNA CHARAKTERYSTYKA PRZEDMIOTU BASH - PODSTAWOWE INFORMACJE M.Mielczarek Pracownia Informatyczna 2017/2018 1 PRACOWNIA INFORMATYCZNA PROWADZĄCY: Dr Magda Mielczarek (biolog) Katedra
Modele wielorównaniowe. Estymacja parametrów
Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Analityczne techniki zarządzania Analytical techniques of management Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Specjalnościowy
EKONOMETRIA dr inż.. ALEKSANDRA ŁUCZAK Uniwersytet Przyrodniczy w Poznaniu Katedra Finansów w i Rachunkowości ci Zakład Metod Ilościowych Collegium Maximum,, pokój j 617 Tel. (61) 8466091 luczak@up.poznan.pl
Uniwersytet Przyrodniczy we Wrocławiu nie ponosi żadnych kosztów związanych z odbywaniem praktyk przez studentów.
Regulamin odbywania praktyk studenckich na kierunku Bioinformatyka (studia dzienne pierwszego stopnia) na Wydziale Biologii i Hodowli Zwierząt Uniwersytetu Przyrodniczego we Wrocławiu 1. Obowiązujące praktyki
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Kierunek studiów: Informatyka Stosowana Forma
1 Zbiory i funkcje. Prolog-zależności funkcyjne w naukach przyrodniczych
1 Zbiory i funkcje Prolog-zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej w 16 i 17 wieku: -opis zjawisk takich jak: ruch jednostajnie przyśpieszony; Droga s, jaką
Badania asocjacyjne w skali genomu (GWAS)
Badania asocjacyjne w skali genomu (GWAS) Część 2 LD, PCA Bioinżynieria, I mgr Bioinformatyczna analiza danych Wykład 3 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Analiza głównych
Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie
Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie
Modelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
Mathematica - podstawy
Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
PODSTAWY BIOINFORMATYKI
PODSTAWY BIOINFORMATYKI Prowadzący: JOANNA SZYDA ADRIAN DROśDś WSTĘP 1. Katedra Genetyki badania bioinformatyczne 2. Tematyka przedmiotu 3. Charakterystyka wykładów 4. Charakterystyka ćwiczeń 5. Informacje
Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek:
Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu:
Statystyczne systemy uczące
Statystyczne systemy uczące Tomasz Górecki Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza W ciągu ćwiczeń zostaną przeprowadzone 2 kolokwia. Na każdym znichbędziedozdobycia25punktów.od25punktówbędzie
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Przetwarzanie sygnaªów
Przetwarzanie sygnaªów Laboratorium 1 - wst p do C# Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 17 Czego mo»na oczekiwa wzgl dem programowania w C# na tych laboratoriach? Dawid Poªap Przetwarzanie
Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, Spis treści
Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, 2016 Spis treści Przedmowa XI I Podstawy języka Python 1. Wprowadzenie 3 1.1. Język i środowisko
01.Wprowadzenie do pakietu MATLAB
01.Wprowadzenie do pakietu MATLAB 1. Typy i formaty danych: Informacje o typach danych dost pnych w MATLABie uzyskuje si m: help datatypes, a sposoby ich wy±wietlania m help format. Do podstawowych typów
Przewodnik po pakiecie R / Przemysław Biecek. Wyd. 4 rozsz. Wrocław, Spis treści
Przewodnik po pakiecie R / Przemysław Biecek. Wyd. 4 rozsz. Wrocław, 2017 Spis treści 1. Wprowadzenie 1 1.1. Data science, czyli dlaczego warto poznać R 1 1.2. Jak wygląda praca z programem R 4 1.2.1.
MATLAB skalary, macierze, liczby zespolone, standardowe funkcje
MATLAB skalary, macierze, liczby zespolone, standardowe funkcje Czym jest MATLAB? Jest to proste rodowisko ł cz ce obliczenia, wizualizacj i programowanie. MATLAB = MATrix LABoratory (matrix macierz) Typowe
Elementy statystyki STA - Wykład 1
STA - Wykład 1 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Programy do statystycznej analizy danych Komercyjne: Niekomercyjne: a) Statistica URL http://www.statsoft.com URL http://www.statsoft.pl
Wprowadzenie do pakietu STATA
Wprowadzenie do pakietu Ma lgorzata Kalbarczyk-Stȩclik Uniwersytet Warszawski mkalbarczyk@wne.uw.edu.pl Październik 02, 2014 Plan 1 Podstawowe informacje o kursie Warunki zaliczenia Prezentacje Zaliczenie
Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda
Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu Katedra Genetyki, Pracownia Biostatystyki 1. MASinBULL 2. Metody oceny genomowej
Modele wielorównaniowe. Problem identykacji
Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 2: Bayesowska estymacja równania ze staª. Elementy j zyka R (2) Ekonometria Bayesowska / 24 Plan wykªadu Model ze staª 2 Podstawy j zyka R 3 Bayesowska analiza modelu ze staª
Pakiety statystyczne Wykªad 14
Pakiety statystyczne Wykªad 14 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki Plan wykªadu Model mieszany 1. Podstawy teoretyczne 2. Przykªady w R 3. Przykªady zastosowania Tomasz
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
INFORMATYKA W SELEKCJI
- zagadnienia. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel). Podstawy pracy z relacyjną bazą danych w programie MS Access. Specjalistyczne programy statystyczne na przykładzie pakietu SAS
Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Matematyka I Rok akademicki: 2013/2014 Kod: EIB-1-110-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna Specjalność:
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Wykªad 6: Model logitowy
Wykªad 6: Model logitowy Ekonometria Stosowana SGH Model logitowy 1 / 18 Plan wicze«1 Modele zmiennej jako±ciowej idea 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3
PRZEWODNIK PO PRZEDMIOCIE. stacjonarne. II stopnia. ogólnoakademicki. podstawowy WYKŁAD ĆWICZENIA LABORATORIUM PROJEKT SEMINARIUM
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
Podstawy nauk przyrodniczych Matematyka Wstęp
Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Kierunek studiów: Informatyka Profil: Praktyczny
1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
Wst p i organizacja zaj
Wst p i organizacja zaj Katedra Ekonometrii Uniwersytet Šódzki sem. letni 2014/2015 Literatura Ocena osi gni Program zaj Prowadz cy Podstawowa i uzupeªniaj ca Podstawowa: 1 Gruszczy«ski M. (2012 / 2010),,
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Niestacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2016 Kierunek studiów: Informatyka Profil: Ogólnoakademicki
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
Pakiety Matematyczne - R Zestaw 2.
Pakiety Matematyczne - R Zestaw 2. Część przykładów pochodzi z helpa do R i z książki: R.Biecek, Przewodnik po pakiecie R, GIS 2014, strona www: http://www.biecek.pl, Instrukcje warunkowe Składnia instrukcji
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Metody optymalizacji - wprowadzenie do SciLab a
Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2
1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci
Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,
Technologie Informacyjne
Technologie Informacyjne Wykªad 5 Paweª Witkowski MIM UW Wiosna 2012 P. Witkowski (MIM UW) Technologie Informacyjne Wiosna 2012 1 / 1 WYSZUKAJ.PIONOWO WYSZUKAJ.PIONOWO(kryterium wyszukiwania; macierz;
Wizualizacja danych 2D i 3D - Gnuplot
Wizualizacja danych 2D i 3D - Gnuplot dr hab. Bożena Woźna-Szcześniak Akademia im. Jan Długosza bwozna@gmail.com Wizualizacja danych 2D i 3D O czym dziś będzie mowa Wywoływanie gnuplota. Wykreślanie funkcji
Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski
Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Nazwa przedmiotu INFORMATYKA I BIOSTATYSTYKA Kod przedmiotu WL_ 10 Poziom studiów Jednolite studia magisterskie Status przedmiotu x podstawowy uzupełniający
Technologie internetowe Internet technologies Forma studiów: Stacjonarne Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W, 2L
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium Technologie internetowe Internet technologies Forma studiów:
Obliczenia arytmetyczne. Konkatenacja pól. Aliasy kolumn. Aliasy tabel. Co dalej? Rozdział 4. Korzystanie z funkcji. Zastosowanie funkcji
O autorze Wprowadzenie Rozdział 1. Relacyjne bazy danych i SQL Język i logika Definicja SQL Microsoft SQL Server, Oracle i MySQL Inne bazy danych Relacyjne bazy danych Klucze główne i obce Typy danych
studia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach
Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania wstępne: Nazwa modułu (przedmiot lub grupa przedmiotów) Osoby prowadzące:
PRZEWODNIK PO PRZEDMIOCIE
PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,
ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Z-LOG-033I Statystyka Statistics
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOG-033I Statystyka Statistics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Zarządzanie jakością Quality management Zarządzanie i Inżynieria Produkcji Management and production engineering Rodzaj przedmiotu: kierunkowy Rodzaj zajęć: Wyk. Ćwicz. Lab.
OPIS PRZEDMIOTU ZAMÓWIENIA. Część nr 8 OPROGRAMOWANIE DO ANALIZ MARKETINGOWYCH (pom. nr 1.21)
Zamówienie publiczne współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Regionalnego Programu Operacyjnego Województwa Mazowieckiego 2007-2013 w związku
1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco:
Informatyka I Przypomnienie wiadomości z poprzednich zajęć: Kolokwium!!! II Nowe wiadomości: 1 Funkcje trójwymiarowe Wykresy trójwymiarowe tworzone są na podstawie funkcji dwóch zmiennych Wejściem takich
ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH
ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach
Aplikacje bazodanowe. Laboratorium 1. Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, / 37
Aplikacje bazodanowe Laboratorium 1 Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, 2017 1 / 37 Plan 1 Informacje wst pne 2 Przygotowanie ±rodowiska do pracy 3 Poj cie bazy danych 4 Relacyjne
PAKIETY STATYSTYCZNE
. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja
Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu
Wykład Ćwiczenia Laboratorium Projekt Seminarium 30
Zał. nr 4 do ZW WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do statystyki praktycznej Nazwa w języku angielskim Intriduction to the Practice of Statistics Kierunek studiów (jeśli dotyczy):
Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych
PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy
PODSTAWY INŻYNIERII SYSTEMÓW TECHNICZNYCH
PODSTAWY INŻYNIERII SYSTEMÓW TECHNICZNYCH Charakterystyka programu MATLAB Dzadz Łukasz pok. 114 lukasz.dzadz@uwm.edu.pl Tel. 523-49-40 Katedra Inżynierii Systemów WNT UWM w Olsztynie TEMATYKA ĆWICZEŃ Charakterystyka
-Instalacja R: -Instalacja RStudio:
Rachunek Prawdopodobieństwa i Statystyka lab 1. Kaja Chmielewska (Kaja.Chmielewska@cs.put.poznan.pl) 1. Krótko o R R jest wolnym (otwartym i darmowym), zaawansowanym środowiskiem oraz językiem programowania.
Sylabus - Matematyka
Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne
Programowanie I C / C++ laboratorium 01 Organizacja zajęć
Programowanie I C / C++ laboratorium 01 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-02-12 Program zajęć Zasady zaliczenia Program operacje wejścia i wyjścia instrukcje
PRZEWODNIK PO PRZEDMIOCIE
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego: