Informatyka w selekcji - Wykªad 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Informatyka w selekcji - Wykªad 1"

Transkrypt

1 Informatyka w selekcji - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t

2 Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu R Tomasz Suchocki, Informatyka w selekcji Wykªad 1 2/34

3 Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu R Mo»na (a nawet trzeba) przerywa i zadawa pytania! Tomasz Suchocki, Informatyka w selekcji Wykªad 1 2/34

4 Podstawowe informacje o przedmiocie informatyka dyscyplina naukowa zajmuj ca si przetwarzaniem informacji. selekcja wybór zwierz t i ro±lin do rozmna»ania, powoduje zmian frekwencji genów w populacji. informatyka w selekcja??? Tomasz Suchocki, Informatyka w selekcji Wykªad 1 3/34

5 Podstawowe informacje o przedmiocie Kiedy potrzebne jest zastosowanie informatyki w selekcji? Tomasz Suchocki, Informatyka w selekcji Wykªad 1 4/34

6 Podstawowe informacje o przedmiocie Kiedy potrzebne jest zastosowanie informatyki w selekcji? Ogromne zbiory danych Tomasz Suchocki, Informatyka w selekcji Wykªad 1 4/34

7 Podstawowe informacje o przedmiocie Kiedy potrzebne jest zastosowanie informatyki w selekcji? Ogromne zbiory danych Estymacja genomowej warto±ci hodowlanej w Polsce: Tomasz Suchocki, Informatyka w selekcji Wykªad 1 4/34

8 Podstawowe informacje o przedmiocie Kiedy potrzebne jest zastosowanie informatyki w selekcji? Ogromne zbiory danych Estymacja genomowej warto±ci hodowlanej w Polsce: osobników markerów typu SNP dla ka»dego osobnika = rekordów Tomasz Suchocki, Informatyka w selekcji Wykªad 1 4/34

9 Podstawowe informacje o przedmiocie - Wykªady Wykªad 1 Wprowadzenie do pakietu R Wykªad 2 Analiza regresji liniowej Wykªad 3 Analiza wariancji Wykªad 4 Modele mieszane Wykªad 5 Analiza statystyczna w pakiecie SAS Wykªad 6 Bazy danych w programie MySQL Wykªad 7 Selekcja genomowa w Polsce Wykªad 8 Zaawansowane programowanie w pakiecie R Tomasz Suchocki, Informatyka w selekcji Wykªad 1 5/34

10 Podstawowe informacje o przedmiocie- wiczenia wiczenia 1 Wprowadzenie do pakietu R wiczenia 2 Analiza regresji liniowej wiczenia 3 Analiza wariancji wiczenia 4 Modele mieszane wiczenia 5 Kolokwium 1 wiczenia 6 Analiza statystyczna czy u»yciu pakietu SAS wiczenia 7 Bazy danych w programie MySQL wiczenia 8 Kolokwium 2 Tomasz Suchocki, Informatyka w selekcji Wykªad 1 6/34

11 Podstawowe informacje o przedmiocie - Terminy Wykªady: czwartki 8:30 10:00 Tomasz Suchocki, Informatyka w selekcji Wykªad 1 7/34

12 Podstawowe informacje o przedmiocie - Terminy Wykªady: czwartki 8:30 10:00 12:30 14:00? wiczenia: czwartek 14:00 15:30 czwartek 15:30 17:00 Tomasz Suchocki, Informatyka w selekcji Wykªad 1 7/34

13 Podstawowe informacje o przedmiocie - Terminy Terminy wykªadów i wicze«: Tomasz Suchocki, Informatyka w selekcji Wykªad 1 8/34

14 Podstawowe informacje o przedmiocie - Oceny Warunki zaliczenia: 2 kolokwia, ka»de po 16 punktów minimum 16 punktów daje ocen pozytywn BRAK poprawek aktywno± obecno± Tomasz Suchocki, Informatyka w selekcji Wykªad 1 9/34

15 Podstawowe informacje o przedmiocie - Kontakt Gdzie mo»na mnie znale¹ : Katedra Genetyki i Ogólnej Hodowli Zwierz t (pokój 23) tomasz.suchocki@up.wroc.pl Konsultacje: indywidualnie lub Skype termin ustalany indywidualnie z prowadz cym Tomasz Suchocki, Informatyka w selekcji Wykªad 1 10/34

16 Podstawowe informacje o przedmiocie - Tomasz Suchocki, Informatyka w selekcji Wykªad 1 11/34

17 Wprowadzenie do R Tomasz Suchocki, Informatyka w selekcji Wykªad 1 12/34

18 Wprowadzenie do R Co to wogóle jest R? pakiet statystyczny mo»liwo±ci s jednak znacznie wi ksze! DARMOWY! zarówno w edukacji jak i biznesie Tomasz Suchocki, Informatyka w selekcji Wykªad 1 13/34

19 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 14/34

20 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 15/34

21 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 16/34

22 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 17/34

23 Wprowadzenie do R - Instalacja Tomasz Suchocki, Informatyka w selekcji Wykªad 1 18/34

24 Wprowadzenie do R - Korzystanie z pomocy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 19/34

25 Wprowadzenie do R - Wczytywanie danych read.table("±cie»ka",header={f,t},sep={";","\t"},ll={f,t}) ±cie»ka np.: "d:/inf/dane.txt" header czy wyst puje nagªówek w danych sep czym s oddzielane kolumny ll czy s "brakuj ce"dane Tomasz Suchocki, Informatyka w selekcji Wykªad 1 20/34

26 Wprowadzenie do R - Zapisywanie danych write.table(zmienna,"±cie»ka",col.names={f,t},row.names={f,t}, sep={";","\t"},quote={f,t}) zmienna któr zmienn chcemy zapisa col.names czy zapisa nazwy kolumn row.names czy zapisa nazwy wierszy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 21/34

27 Wprowadzenie do R - Rodzaje zmiennych Typ liczbowy Typ czynnikowy Typ znakowy Typ logiczny Wektor elementów Macierz Ramka danych Tomasz Suchocki, Informatyka w selekcji Wykªad 1 22/34

28 Wprowadzenie do R - Kalkulator Tomasz Suchocki, Informatyka w selekcji Wykªad 1 23/34

29 Wprowadzenie do R - Kalkulator Inne przydatne funkcje: pierwiastek kwadratowy: sqrt(x) zaokraglanie liczby do k znaków: round(x,digits=k) funkcje trygonometryczne: sin(x), cos(x), tan(x) warto± bezwzgl dna: abs(x) Tomasz Suchocki, Informatyka w selekcji Wykªad 1 24/34

30 Wprowadzenie do R - Wektory Tomasz Suchocki, Informatyka w selekcji Wykªad 1 25/34

31 Wprowadzenie do R - Macierze Tomasz Suchocki, Informatyka w selekcji Wykªad 1 26/34

32 Wprowadzenie do R - Macierze Tomasz Suchocki, Informatyka w selekcji Wykªad 1 27/34

33 Wprowadzenie do R - Indeksy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 28/34

34 Wprowadzenie do R - Indeksy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 29/34

35 Wprowadzenie do R - Indeksy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 30/34

36 Wprowadzenie do R - Wykresy wykres plot y Tomasz Suchocki, Informatyka w selekcji Wykªad 1 31/34 x

37 Wprowadzenie do R - Wykresy wykres hist Frequency a Tomasz Suchocki, Informatyka w selekcji Wykªad 1 32/34

38 Wprowadzenie do R - Wykresy Tomasz Suchocki, Informatyka w selekcji Wykªad 1 33/34

39 Dzi kuj za uwag Tomasz Suchocki, Informatyka w selekcji Wykªad 1 34/34

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1 Podstawowe

Bardziej szczegółowo

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:

Bardziej szczegółowo

Instalacja Pakietu R

Instalacja Pakietu R Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA

Bardziej szczegółowo

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji

Bardziej szczegółowo

Pakiety statystyczne - Wykªad 8

Pakiety statystyczne - Wykªad 8 Pakiety statystyczne - Wykªad 8 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne

Bardziej szczegółowo

PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI

PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki - projekt 3. Charakterystyka przedmiotu 4. Kontakt 5. Literatura Copyright 2017 Joanna Szyda KATEDRA

Bardziej szczegółowo

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Prowadzący: JOANNA SZYDA MAGDALENA FRĄSZCZAK WSTĘP 1. Systemy informatyczne w hodowli -??? 2. Katedra Genetyki 3. Pracownia biostatystyki - wykorzystanie narzędzi

Bardziej szczegółowo

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Model mieszany

Bardziej szczegółowo

Spis tre±ci. 1 Podstawy termodynamiki - wiczenia 2. 2 Termodynamika - wiczenia 4. 3 Teoria maszyn cieplnych - wiczenia 6

Spis tre±ci. 1 Podstawy termodynamiki - wiczenia 2. 2 Termodynamika - wiczenia 4. 3 Teoria maszyn cieplnych - wiczenia 6 Spis tre±ci 1 Podstawy termodynamiki - wiczenia 2 2 Termodynamika - wiczenia 4 3 Teoria maszyn cieplnych - wiczenia 6 4 Przenoszenie ciepªa/wymiana ciepªa i wymienniki - wykªad 7 5 Wymiana ciepªa i wymienniki

Bardziej szczegółowo

Informatyka w selekcji - Wykªad 4

Informatyka w selekcji - Wykªad 4 Informatyka w selekcji - Wykªad 4 Plan wykªadu SAS 1. Praca z programem 2. Edycja danych 3. Procedury graczne 4. Analiza w pakiecie SAS na»ywo, Wykªad 5 2/36 Praca z programem, Wykªad 5 3/36 Praca z programem

Bardziej szczegółowo

Podstawy statystycznego modelowania danych - Wykªad 7

Podstawy statystycznego modelowania danych - Wykªad 7 Podstawy statystycznego modelowania danych - Wykªad 7 Tomasz Suchocki ANOVA Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne i przykªady zastosowania 3. ANOVA w pakiecie R Tomasz

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Statystyka opisowa Nazwa przedmiotu USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW. dr Agnieszka Krzętowska

KARTA PRZEDMIOTU. w języku polskim Statystyka opisowa Nazwa przedmiotu USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW. dr Agnieszka Krzętowska KARTA PRZEDMIOTU Kod przedmiotu E/O/SOP w języku polskim Statystyka opisowa Nazwa przedmiotu w języku angielskim Statistics USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma studiów Poziom

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

Metody statystyczne w biologii - Wykªad 8. Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t

Metody statystyczne w biologii - Wykªad 8. Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Metody statystyczne w biologii - Wykªad 8 Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Regresja logistyczna 1. Podstawy teoretyczne i przykªady zastosowania

Bardziej szczegółowo

Pakiety Matematyczne - R Zestaw 1.

Pakiety Matematyczne - R Zestaw 1. Pakiety Matematyczne - R Zestaw 1. Zadania z kasynem pochodzą ze strony datacamp.com Instalacja pakietu R Strona główna projektu: http://www.r-project.org/ Instalacja: http://r.meteo.uni.wroc.pl/ (jedno

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Wprowadzenie do pakietu R Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Co i dlaczego...? 2 Przechowywanie

Bardziej szczegółowo

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria

Bardziej szczegółowo

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka 7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki

Bardziej szczegółowo

Zasady zaliczenia kursów dydaktycznych

Zasady zaliczenia kursów dydaktycznych Zasady zaliczenia kursów dydaktycznych Spis tre±ci 1 Matematyczne modelowanie instalacji energetycznych - laboratorium komputerowe 2 2 Podstawy termodynamiki - wykªad 4 3 Podstawy termodynamiki - wiczenia

Bardziej szczegółowo

Podstawy statystycznego modelowania danych Analiza prze»ycia

Podstawy statystycznego modelowania danych Analiza prze»ycia Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1

STATYSTYKA MATEMATYCZNA WYKŁAD 1 STATYSTYKA MATEMATYCZNA WYKŁAD 1 Wykład wstępny Teoria prawdopodobieństwa Magda Mielczarek wykłady, ćwiczenia Copyright 2017, J. Szyda & M. Mielczarek STATYSTYKA MATEMATYCZNA? ASHG 2011 Writing Workshop;

Bardziej szczegółowo

PRACOWNIA INFORMATYCZNA CHARAKTERYSTYKA PRZEDMIOTU BASH - PODSTAWOWE INFORMACJE

PRACOWNIA INFORMATYCZNA CHARAKTERYSTYKA PRZEDMIOTU BASH - PODSTAWOWE INFORMACJE PRACOWNIA INFORMATYCZNA CHARAKTERYSTYKA PRZEDMIOTU BASH - PODSTAWOWE INFORMACJE M.Mielczarek Pracownia Informatyczna 2017/2018 1 PRACOWNIA INFORMATYCZNA PROWADZĄCY: Dr Magda Mielczarek (biolog) Katedra

Bardziej szczegółowo

Modele wielorównaniowe. Estymacja parametrów

Modele wielorównaniowe. Estymacja parametrów Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Analityczne techniki zarządzania Analytical techniques of management Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Specjalnościowy

Bardziej szczegółowo

EKONOMETRIA dr inż.. ALEKSANDRA ŁUCZAK Uniwersytet Przyrodniczy w Poznaniu Katedra Finansów w i Rachunkowości ci Zakład Metod Ilościowych Collegium Maximum,, pokój j 617 Tel. (61) 8466091 luczak@up.poznan.pl

Bardziej szczegółowo

Uniwersytet Przyrodniczy we Wrocławiu nie ponosi żadnych kosztów związanych z odbywaniem praktyk przez studentów.

Uniwersytet Przyrodniczy we Wrocławiu nie ponosi żadnych kosztów związanych z odbywaniem praktyk przez studentów. Regulamin odbywania praktyk studenckich na kierunku Bioinformatyka (studia dzienne pierwszego stopnia) na Wydziale Biologii i Hodowli Zwierząt Uniwersytetu Przyrodniczego we Wrocławiu 1. Obowiązujące praktyki

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Kierunek studiów: Informatyka Stosowana Forma

Bardziej szczegółowo

1 Zbiory i funkcje. Prolog-zależności funkcyjne w naukach przyrodniczych

1 Zbiory i funkcje. Prolog-zależności funkcyjne w naukach przyrodniczych 1 Zbiory i funkcje Prolog-zależności funkcyjne w naukach przyrodniczych Rozwój algebry i analiza matematycznej w 16 i 17 wieku: -opis zjawisk takich jak: ruch jednostajnie przyśpieszony; Droga s, jaką

Bardziej szczegółowo

Badania asocjacyjne w skali genomu (GWAS)

Badania asocjacyjne w skali genomu (GWAS) Badania asocjacyjne w skali genomu (GWAS) Część 2 LD, PCA Bioinżynieria, I mgr Bioinformatyczna analiza danych Wykład 3 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Analiza głównych

Bardziej szczegółowo

Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie

Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie

Bardziej szczegółowo

Modelowanie danych hodowlanych

Modelowanie danych hodowlanych Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami

Bardziej szczegółowo

Mathematica - podstawy

Mathematica - podstawy Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica

Bardziej szczegółowo

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE

PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI

PODSTAWY BIOINFORMATYKI PODSTAWY BIOINFORMATYKI Prowadzący: JOANNA SZYDA ADRIAN DROśDś WSTĘP 1. Katedra Genetyki badania bioinformatyczne 2. Tematyka przedmiotu 3. Charakterystyka wykładów 4. Charakterystyka ćwiczeń 5. Informacje

Bardziej szczegółowo

Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek:

Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek: Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu:

Bardziej szczegółowo

Statystyczne systemy uczące

Statystyczne systemy uczące Statystyczne systemy uczące Tomasz Górecki Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza W ciągu ćwiczeń zostaną przeprowadzone 2 kolokwia. Na każdym znichbędziedozdobycia25punktów.od25punktówbędzie

Bardziej szczegółowo

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. 1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość

Bardziej szczegółowo

Przetwarzanie sygnaªów

Przetwarzanie sygnaªów Przetwarzanie sygnaªów Laboratorium 1 - wst p do C# Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 17 Czego mo»na oczekiwa wzgl dem programowania w C# na tych laboratoriach? Dawid Poªap Przetwarzanie

Bardziej szczegółowo

Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, Spis treści

Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, Spis treści Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, 2016 Spis treści Przedmowa XI I Podstawy języka Python 1. Wprowadzenie 3 1.1. Język i środowisko

Bardziej szczegółowo

01.Wprowadzenie do pakietu MATLAB

01.Wprowadzenie do pakietu MATLAB 01.Wprowadzenie do pakietu MATLAB 1. Typy i formaty danych: Informacje o typach danych dost pnych w MATLABie uzyskuje si m: help datatypes, a sposoby ich wy±wietlania m help format. Do podstawowych typów

Bardziej szczegółowo

Przewodnik po pakiecie R / Przemysław Biecek. Wyd. 4 rozsz. Wrocław, Spis treści

Przewodnik po pakiecie R / Przemysław Biecek. Wyd. 4 rozsz. Wrocław, Spis treści Przewodnik po pakiecie R / Przemysław Biecek. Wyd. 4 rozsz. Wrocław, 2017 Spis treści 1. Wprowadzenie 1 1.1. Data science, czyli dlaczego warto poznać R 1 1.2. Jak wygląda praca z programem R 4 1.2.1.

Bardziej szczegółowo

MATLAB skalary, macierze, liczby zespolone, standardowe funkcje

MATLAB skalary, macierze, liczby zespolone, standardowe funkcje MATLAB skalary, macierze, liczby zespolone, standardowe funkcje Czym jest MATLAB? Jest to proste rodowisko ł cz ce obliczenia, wizualizacj i programowanie. MATLAB = MATrix LABoratory (matrix macierz) Typowe

Bardziej szczegółowo

Elementy statystyki STA - Wykład 1

Elementy statystyki STA - Wykład 1 STA - Wykład 1 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Programy do statystycznej analizy danych Komercyjne: Niekomercyjne: a) Statistica URL http://www.statsoft.com URL http://www.statsoft.pl

Bardziej szczegółowo

Wprowadzenie do pakietu STATA

Wprowadzenie do pakietu STATA Wprowadzenie do pakietu Ma lgorzata Kalbarczyk-Stȩclik Uniwersytet Warszawski mkalbarczyk@wne.uw.edu.pl Październik 02, 2014 Plan 1 Podstawowe informacje o kursie Warunki zaliczenia Prezentacje Zaliczenie

Bardziej szczegółowo

Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda

Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu Katedra Genetyki, Pracownia Biostatystyki 1. MASinBULL 2. Metody oceny genomowej

Bardziej szczegółowo

Modele wielorównaniowe. Problem identykacji

Modele wielorównaniowe. Problem identykacji Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 2: Bayesowska estymacja równania ze staª. Elementy j zyka R (2) Ekonometria Bayesowska / 24 Plan wykªadu Model ze staª 2 Podstawy j zyka R 3 Bayesowska analiza modelu ze staª

Bardziej szczegółowo

Pakiety statystyczne Wykªad 14

Pakiety statystyczne Wykªad 14 Pakiety statystyczne Wykªad 14 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki Plan wykªadu Model mieszany 1. Podstawy teoretyczne 2. Przykªady w R 3. Przykªady zastosowania Tomasz

Bardziej szczegółowo

PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:

PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI - zagadnienia. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel). Podstawy pracy z relacyjną bazą danych w programie MS Access. Specjalistyczne programy statystyczne na przykładzie pakietu SAS

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Matematyka I Rok akademicki: 2013/2014 Kod: EIB-1-110-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna Specjalność:

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

Wykªad 6: Model logitowy

Wykªad 6: Model logitowy Wykªad 6: Model logitowy Ekonometria Stosowana SGH Model logitowy 1 / 18 Plan wicze«1 Modele zmiennej jako±ciowej idea 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE. stacjonarne. II stopnia. ogólnoakademicki. podstawowy WYKŁAD ĆWICZENIA LABORATORIUM PROJEKT SEMINARIUM

PRZEWODNIK PO PRZEDMIOCIE. stacjonarne. II stopnia. ogólnoakademicki. podstawowy WYKŁAD ĆWICZENIA LABORATORIUM PROJEKT SEMINARIUM Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Wstęp

Podstawy nauk przyrodniczych Matematyka Wstęp Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:

Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek: Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Kierunek studiów: Informatyka Profil: Praktyczny

Bardziej szczegółowo

1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection

1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

Wst p i organizacja zaj

Wst p i organizacja zaj Wst p i organizacja zaj Katedra Ekonometrii Uniwersytet Šódzki sem. letni 2014/2015 Literatura Ocena osi gni Program zaj Prowadz cy Podstawowa i uzupeªniaj ca Podstawowa: 1 Gruszczy«ski M. (2012 / 2010),,

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Niestacjonarne Kod kierunku: 11.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Niestacjonarne Kod kierunku: 11. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2016 Kierunek studiów: Informatyka Profil: Ogólnoakademicki

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

Pakiety Matematyczne - R Zestaw 2.

Pakiety Matematyczne - R Zestaw 2. Pakiety Matematyczne - R Zestaw 2. Część przykładów pochodzi z helpa do R i z książki: R.Biecek, Przewodnik po pakiecie R, GIS 2014, strona www: http://www.biecek.pl, Instrukcje warunkowe Składnia instrukcji

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO

Bardziej szczegółowo

Metody optymalizacji - wprowadzenie do SciLab a

Metody optymalizacji - wprowadzenie do SciLab a Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Technologie Informacyjne Wykªad 5 Paweª Witkowski MIM UW Wiosna 2012 P. Witkowski (MIM UW) Technologie Informacyjne Wiosna 2012 1 / 1 WYSZUKAJ.PIONOWO WYSZUKAJ.PIONOWO(kryterium wyszukiwania; macierz;

Bardziej szczegółowo

Wizualizacja danych 2D i 3D - Gnuplot

Wizualizacja danych 2D i 3D - Gnuplot Wizualizacja danych 2D i 3D - Gnuplot dr hab. Bożena Woźna-Szcześniak Akademia im. Jan Długosza bwozna@gmail.com Wizualizacja danych 2D i 3D O czym dziś będzie mowa Wywoływanie gnuplota. Wykreślanie funkcji

Bardziej szczegółowo

Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski

Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Nazwa przedmiotu INFORMATYKA I BIOSTATYSTYKA Kod przedmiotu WL_ 10 Poziom studiów Jednolite studia magisterskie Status przedmiotu x podstawowy uzupełniający

Bardziej szczegółowo

Technologie internetowe Internet technologies Forma studiów: Stacjonarne Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W, 2L

Technologie internetowe Internet technologies Forma studiów: Stacjonarne Poziom kwalifikacji: I stopnia. Liczba godzin/tydzień: 2W, 2L Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium Technologie internetowe Internet technologies Forma studiów:

Bardziej szczegółowo

Obliczenia arytmetyczne. Konkatenacja pól. Aliasy kolumn. Aliasy tabel. Co dalej? Rozdział 4. Korzystanie z funkcji. Zastosowanie funkcji

Obliczenia arytmetyczne. Konkatenacja pól. Aliasy kolumn. Aliasy tabel. Co dalej? Rozdział 4. Korzystanie z funkcji. Zastosowanie funkcji O autorze Wprowadzenie Rozdział 1. Relacyjne bazy danych i SQL Język i logika Definicja SQL Microsoft SQL Server, Oracle i MySQL Inne bazy danych Relacyjne bazy danych Klucze główne i obce Typy danych

Bardziej szczegółowo

studia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach

studia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania wstępne: Nazwa modułu (przedmiot lub grupa przedmiotów) Osoby prowadzące:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Z-LOG-033I Statystyka Statistics

Z-LOG-033I Statystyka Statistics KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOG-033I Statystyka Statistics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Zarządzanie jakością Quality management Zarządzanie i Inżynieria Produkcji Management and production engineering Rodzaj przedmiotu: kierunkowy Rodzaj zajęć: Wyk. Ćwicz. Lab.

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA. Część nr 8 OPROGRAMOWANIE DO ANALIZ MARKETINGOWYCH (pom. nr 1.21)

OPIS PRZEDMIOTU ZAMÓWIENIA. Część nr 8 OPROGRAMOWANIE DO ANALIZ MARKETINGOWYCH (pom. nr 1.21) Zamówienie publiczne współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Regionalnego Programu Operacyjnego Województwa Mazowieckiego 2007-2013 w związku

Bardziej szczegółowo

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią. Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i

Bardziej szczegółowo

Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco:

Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco: Informatyka I Przypomnienie wiadomości z poprzednich zajęć: Kolokwium!!! II Nowe wiadomości: 1 Funkcje trójwymiarowe Wykresy trójwymiarowe tworzone są na podstawie funkcji dwóch zmiennych Wejściem takich

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach

Bardziej szczegółowo

Aplikacje bazodanowe. Laboratorium 1. Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, / 37

Aplikacje bazodanowe. Laboratorium 1. Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, / 37 Aplikacje bazodanowe Laboratorium 1 Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, 2017 1 / 37 Plan 1 Informacje wst pne 2 Przygotowanie ±rodowiska do pracy 3 Poj cie bazy danych 4 Relacyjne

Bardziej szczegółowo

PAKIETY STATYSTYCZNE

PAKIETY STATYSTYCZNE . Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa

Bardziej szczegółowo

Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja

Bardziej szczegółowo

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 Zał. nr 4 do ZW WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do statystyki praktycznej Nazwa w języku angielskim Intriduction to the Practice of Statistics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo

PODSTAWY INŻYNIERII SYSTEMÓW TECHNICZNYCH

PODSTAWY INŻYNIERII SYSTEMÓW TECHNICZNYCH PODSTAWY INŻYNIERII SYSTEMÓW TECHNICZNYCH Charakterystyka programu MATLAB Dzadz Łukasz pok. 114 lukasz.dzadz@uwm.edu.pl Tel. 523-49-40 Katedra Inżynierii Systemów WNT UWM w Olsztynie TEMATYKA ĆWICZEŃ Charakterystyka

Bardziej szczegółowo

-Instalacja R: -Instalacja RStudio:

-Instalacja R:   -Instalacja RStudio: Rachunek Prawdopodobieństwa i Statystyka lab 1. Kaja Chmielewska (Kaja.Chmielewska@cs.put.poznan.pl) 1. Krótko o R R jest wolnym (otwartym i darmowym), zaawansowanym środowiskiem oraz językiem programowania.

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

Programowanie I C / C++ laboratorium 01 Organizacja zajęć

Programowanie I C / C++ laboratorium 01 Organizacja zajęć Programowanie I C / C++ laboratorium 01 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-02-12 Program zajęć Zasady zaliczenia Program operacje wejścia i wyjścia instrukcje

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj

Bardziej szczegółowo

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo