Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
|
|
- Weronika Piekarska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t
2 Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu R Tomasz Suchocki, Modele liniowe... Wykªad 1 2/36
3 Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu R Mo»na (a nawet trzeba) przerywa i zadawa pytania! Tomasz Suchocki, Modele liniowe... Wykªad 1 2/36
4 Podstawowe informacje o przedmiocie Model statystyczny hipoteza lub ukªad hipotez, sformuªowanych w sposób matematyczny (odpowiednio w postaci równania lub ukªadu równa«), który przedstawia powi zania wyst puj ce pomi dzy rozpatrywanymi zjawiskami rzeczywistymi. Tomasz Suchocki, Modele liniowe... Wykªad 1 3/36
5 Podstawowe informacje o przedmiocie Model statystyczny hipoteza lub ukªad hipotez, sformuªowanych w sposób matematyczny (odpowiednio w postaci równania lub ukªadu równa«), który przedstawia powi zania wyst puj ce pomi dzy rozpatrywanymi zjawiskami rzeczywistymi. Modele statystyczne dzielimy na: liniowe np. regresja liniowa, ANOVA; nieliniowe. Tomasz Suchocki, Modele liniowe... Wykªad 1 3/36
6 Podstawowe informacje o przedmiocie - Wykªady Wykªad 1 Wprowadzenie do pakietu R Wykªad 2 Analiza regresji liniowej w pakiecie R Wykªad 3 Analiza wariancji w pakiecie R Wykªad 4 Porównywanie modeli przy pomocy kryterium informacyjnych Wykªad 5 Modele mieszane w pakiecie R Wykªad 6 Estymacja parametrów wariancji w pakiecie R Wykªad 7 Porównywanie modeli mieszanych oraz testowanie istotno±ci ich parametrów wariancji Wykªad 8 Prezentacje studentów Tomasz Suchocki, Modele liniowe... Wykªad 1 4/36
7 Podstawowe informacje o przedmiocie - wiczenia wiczenia 1 Wprowadzenie do pakietu R wiczenia 2 Analiza regresji liniowej w pakiecie R wiczenia 3 Analiza wariancji w pakiecie R wiczenia 4 Porównywanie modeli przy pomocy kryterium informacyjnych wiczenia 5 Kolokwium wiczenia 6 Modele mieszane w pakiecie R wiczenia 7 Estymacja parametrów wariancji w pakiecie R wiczenia 8 Prezentacje studentów Tomasz Suchocki, Modele liniowe... Wykªad 1 5/36
8 Podstawowe informacje o przedmiocie - Terminy Wykªady: wtorek 16:00 17:30 sala 8W wiczenia: pi tek 8:30 10:00 pi tek 10:00 11:30 pi tek 11:30 13:00 Tomasz Suchocki, Modele liniowe... Wykªad 1 6/36
9 Podstawowe informacje o przedmiocie - Terminy Terminy wykªadów i wicze«: i i i i i i i i i Tomasz Suchocki, Modele liniowe... Wykªad 1 7/36
10 Podstawowe informacje o przedmiocie - Oceny Warunki zaliczenia: kolokwium 16 punktów projekt (grupy 4-o osobowe) 16 punktów Tomasz Suchocki, Modele liniowe... Wykªad 1 8/36
11 Podstawowe informacje o przedmiocie - Oceny Warunki zaliczenia: kolokwium 16 punktów projekt (grupy 4-o osobowe) 16 punktów 16 punktów daje ocen pozytywn Tomasz Suchocki, Modele liniowe... Wykªad 1 8/36
12 Podstawowe informacje o przedmiocie - Oceny Warunki zaliczenia: kolokwium 16 punktów projekt (grupy 4-o osobowe) 16 punktów 16 punktów daje ocen pozytywn poprawki? Tomasz Suchocki, Modele liniowe... Wykªad 1 8/36
13 Podstawowe informacje o przedmiocie - Oceny Warunki zaliczenia: kolokwium 16 punktów projekt (grupy 4-o osobowe) 16 punktów 16 punktów daje ocen pozytywn poprawki? aktywno± Tomasz Suchocki, Modele liniowe... Wykªad 1 8/36
14 Podstawowe informacje o przedmiocie - Oceny Warunki zaliczenia: kolokwium 16 punktów projekt (grupy 4-o osobowe) 16 punktów 16 punktów daje ocen pozytywn poprawki? aktywno± obecno± Tomasz Suchocki, Modele liniowe... Wykªad 1 8/36
15 Podstawowe informacje o przedmiocie - Kontakt Gdzie mo»na mnie znale¹ : Katedra Genetyki (pokój 23) tomasz.suchocki@up.wroc.pl Konsultacje: wtorek 13:00 15:00 Katedra Genetyki (pokój 23) termin ustalany indywidualnie z prowadz cym Tomasz Suchocki, Modele liniowe... Wykªad 1 9/36
16 Podstawowe informacje o przedmiocie - Tomasz Suchocki, Modele liniowe... Wykªad 1 10/36
17 Wprowadzenie do R Tomasz Suchocki, Modele liniowe... Wykªad 1 11/36
18 Wprowadzenie do R Co to wogóle jest R? pakiet statystyczny mo»liwo±ci s jednak znacznie wi ksze! DARMOWY! zarówno w edukacji jak i biznesie Tomasz Suchocki, Modele liniowe... Wykªad 1 12/36
19 Wprowadzenie do R - Instalacja Tomasz Suchocki, Modele liniowe... Wykªad 1 13/36
20 Wprowadzenie do R - Instalacja Tomasz Suchocki, Modele liniowe... Wykªad 1 14/36
21 Wprowadzenie do R - Instalacja Tomasz Suchocki, Modele liniowe... Wykªad 1 15/36
22 Wprowadzenie do R - Instalacja Tomasz Suchocki, Modele liniowe... Wykªad 1 16/36
23 Wprowadzenie do R - Instalacja Tomasz Suchocki, Modele liniowe... Wykªad 1 17/36
24 Wprowadzenie do R - Korzystanie z pomocy Tomasz Suchocki, Modele liniowe... Wykªad 1 18/36
25 Wprowadzenie do R - Wczytywanie danych read.table("±cie»ka",header={f,t},sep={";","\t"},ll={f,t}) ±cie»ka np.: "d:/inf/dane.txt" header czy wyst puje nagªówek w danych sep czym s oddzielane kolumny ll czy s "brakuj ce"dane setwd("±cie»ka") zmieniamy katalog roboczy (setwd("d:/inf/")) Jakie s zalety uzywania ramki danych? Tomasz Suchocki, Modele liniowe... Wykªad 1 19/36
26 Wprowadzenie do R - Wczytywanie danych Jak wczyta takie dane? Tomasz Suchocki, Modele liniowe... Wykªad 1 20/36
27 Wprowadzenie do R - Wczytywanie danych read.fwf("±cie»ka",header={f,t},width=c(n 1,..., n k )) ±cie»ka np.: "d:/inf/dane.txt" header czy wyst puje nagªówek w danych width dªugo± (ilo± znaków) kolejnych zmiennych Jakie s zalety uzywania ramki danych? Tomasz Suchocki, Modele liniowe... Wykªad 1 21/36
28 Wprowadzenie do R - Zapisywanie danych write.table(zmienna,"±cie»ka",col.names={f,t},row.names={f,t}, sep={";","\t"},quote={f,t}) zmienna któr zmienn chcemy zapisa col.names czy zapisa nazwy kolumn row.names czy zapisa nazwy wierszy quote zaznacza tryb znakowy czy nie Tomasz Suchocki, Modele liniowe... Wykªad 1 22/36
29 Wprowadzenie do R - Zapisywanie danych cat(zmienna,"±cie»ka",append={f,t},sep={";","\t"}) zmienna któr zmienn chcemy zapisa append dopisa wyniki do istniej cego pliku, czy stworzy nowy i nadpisa stary Tomasz Suchocki, Modele liniowe... Wykªad 1 23/36
30 Wprowadzenie do R - typy zmiennych Typ liczbowy (is.numeric(), as.numeric()) Typ czynnikowy (is.factor(), as.factor()) Typ znakowy (is.character(), as.character()) Typ logiczny (is.logical(), as.logical()) Wektor elementów Lista Macierz Ramka danych Tomasz Suchocki, Modele liniowe... Wykªad 1 24/36
31 Wprowadzenie do R - Kalkulator Tomasz Suchocki, Modele liniowe... Wykªad 1 25/36
32 Wprowadzenie do R - Kalkulator Inne przydatne funkcje: pierwiastek kwadratowy: sqrt(x) zaokraglanie liczby do k znaków: round(x,digits=k) funkcje trygonometryczne: sin(x), cos(x), tan(x) warto± bezwzgl dna: abs(x) Tomasz Suchocki, Modele liniowe... Wykªad 1 26/36
33 Wprowadzenie do R - Wektory Tomasz Suchocki, Modele liniowe... Wykªad 1 27/36
34 Wprowadzenie do R - Macierze Tomasz Suchocki, Modele liniowe... Wykªad 1 28/36
35 Wprowadzenie do R - Macierze Tomasz Suchocki, Modele liniowe... Wykªad 1 29/36
36 Wprowadzenie do R - Indeksy Tomasz Suchocki, Modele liniowe... Wykªad 1 30/36
37 Wprowadzenie do R - Indeksy Tomasz Suchocki, Modele liniowe... Wykªad 1 31/36
38 Wprowadzenie do R - Wykresy wykres plot y Tomasz Suchocki, Modele liniowe... Wykªad 1 32/36 x
39 Wprowadzenie do R - Wykresy wykres hist Frequency a Tomasz Suchocki, Modele liniowe... Wykªad 1 33/36
40 Wprowadzenie do R - Wykresy Tomasz Suchocki, Modele liniowe... Wykªad 1 34/36
41 Wprowadzenie do R - Programowanie Czy w pakiecie R mo»na tworzy wªasne programy? function for while if... else ) Tomasz Suchocki, Modele liniowe... Wykªad 1 35/36
42 Dzi kuj za uwag Tomasz Suchocki, Modele liniowe... Wykªad 1 36/36
Informatyka w selekcji - Wykªad 1
Informatyka w selekcji - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1 Podstawowe informacje o przedmiocie 2 Wst p do pakietu
Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu
Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji
Instalacja Pakietu R
Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA
Pakiety statystyczne - Wykªad 8
Pakiety statystyczne - Wykªad 8 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne
Podstawy statystycznego modelowania danych - Wykªad 7
Podstawy statystycznego modelowania danych - Wykªad 7 Tomasz Suchocki ANOVA Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne i przykªady zastosowania 3. ANOVA w pakiecie R Tomasz
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6
Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Model mieszany
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Wprowadzenie do pakietu R Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Co i dlaczego...? 2 Przechowywanie
Podstawy statystycznego modelowania danych Analiza prze»ycia
Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci
KARTA PRZEDMIOTU. w języku polskim Statystyka opisowa Nazwa przedmiotu USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW. dr Agnieszka Krzętowska
KARTA PRZEDMIOTU Kod przedmiotu E/O/SOP w języku polskim Statystyka opisowa Nazwa przedmiotu w języku angielskim Statistics USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma studiów Poziom
Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej
Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:
7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka
7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki
Informatyka w selekcji - Wykªad 4
Informatyka w selekcji - Wykªad 4 Plan wykªadu SAS 1. Praca z programem 2. Edycja danych 3. Procedury graczne 4. Analiza w pakiecie SAS na»ywo, Wykªad 5 2/36 Praca z programem, Wykªad 5 3/36 Praca z programem
Metody statystyczne w biologii - Wykªad 8. Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t
Metody statystyczne w biologii - Wykªad 8 Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Regresja logistyczna 1. Podstawy teoretyczne i przykªady zastosowania
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria
Bash i algorytmy. Elwira Wachowicz. 20 lutego
Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad
Pakiety Matematyczne - R Zestaw 2.
Pakiety Matematyczne - R Zestaw 2. Część przykładów pochodzi z helpa do R i z książki: R.Biecek, Przewodnik po pakiecie R, GIS 2014, strona www: http://www.biecek.pl, Instrukcje warunkowe Składnia instrukcji
Pakiety Matematyczne - R Zestaw 1.
Pakiety Matematyczne - R Zestaw 1. Zadania z kasynem pochodzą ze strony datacamp.com Instalacja pakietu R Strona główna projektu: http://www.r-project.org/ Instalacja: http://r.meteo.uni.wroc.pl/ (jedno
EKONOMETRIA dr inż.. ALEKSANDRA ŁUCZAK Uniwersytet Przyrodniczy w Poznaniu Katedra Finansów w i Rachunkowości ci Zakład Metod Ilościowych Collegium Maximum,, pokój j 617 Tel. (61) 8466091 luczak@up.poznan.pl
Mathematica - podstawy
Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica
Spis tre±ci. 1 Podstawy termodynamiki - wiczenia 2. 2 Termodynamika - wiczenia 4. 3 Teoria maszyn cieplnych - wiczenia 6
Spis tre±ci 1 Podstawy termodynamiki - wiczenia 2 2 Termodynamika - wiczenia 4 3 Teoria maszyn cieplnych - wiczenia 6 4 Przenoszenie ciepªa/wymiana ciepªa i wymienniki - wykªad 7 5 Wymiana ciepªa i wymienniki
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2
Wprowadzenie do pakietu STATA
Wprowadzenie do pakietu Ma lgorzata Kalbarczyk-Stȩclik Uniwersytet Warszawski mkalbarczyk@wne.uw.edu.pl Październik 02, 2014 Plan 1 Podstawowe informacje o kursie Warunki zaliczenia Prezentacje Zaliczenie
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 2: Bayesowska estymacja równania ze staª. Elementy j zyka R (2) Ekonometria Bayesowska / 24 Plan wykªadu Model ze staª 2 Podstawy j zyka R 3 Bayesowska analiza modelu ze staª
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
Wst p i organizacja zaj
Wst p i organizacja zaj Katedra Ekonometrii Uniwersytet Šódzki sem. letni 2014/2015 Literatura Ocena osi gni Program zaj Prowadz cy Podstawowa i uzupeªniaj ca Podstawowa: 1 Gruszczy«ski M. (2012 / 2010),,
01.Wprowadzenie do pakietu MATLAB
01.Wprowadzenie do pakietu MATLAB 1. Typy i formaty danych: Informacje o typach danych dost pnych w MATLABie uzyskuje si m: help datatypes, a sposoby ich wy±wietlania m help format. Do podstawowych typów
-Instalacja R: -Instalacja RStudio:
Rachunek Prawdopodobieństwa i Statystyka lab 1. Kaja Chmielewska (Kaja.Chmielewska@cs.put.poznan.pl) 1. Krótko o R R jest wolnym (otwartym i darmowym), zaawansowanym środowiskiem oraz językiem programowania.
wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe
wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe 1 Wprowadzenie 1.1 rodowisko programistyczne NetBeans https://netbeans.org/ 1.2 Dokumentacja j zyka Java https://docs.oracle.com/javase/8/docs/api/
Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco:
Informatyka I Przypomnienie wiadomości z poprzednich zajęć: Kolokwium!!! II Nowe wiadomości: 1 Funkcje trójwymiarowe Wykresy trójwymiarowe tworzone są na podstawie funkcji dwóch zmiennych Wejściem takich
Uniwersytet Przyrodniczy we Wrocławiu nie ponosi żadnych kosztów związanych z odbywaniem praktyk przez studentów.
Regulamin odbywania praktyk studenckich na kierunku Bioinformatyka (studia dzienne pierwszego stopnia) na Wydziale Biologii i Hodowli Zwierząt Uniwersytetu Przyrodniczego we Wrocławiu 1. Obowiązujące praktyki
Modele wielorównaniowe. Problem identykacji
Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Analityczne techniki zarządzania Analytical techniques of management Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Specjalnościowy
R dla każdego : zaawansowane analizy i grafika statystyczna / Jared P. Lander. Warszawa, Spis treści
R dla każdego : zaawansowane analizy i grafika statystyczna / Jared P. Lander. Warszawa, 2018 Spis treści Słowo wstępne Wprowadzenie xi xii 1 Poznajemy R 1 1.1 Pobieranie R 1 1.2 Wersja R 2 1.3 Wersja
Materiaªy do Repetytorium z matematyki
Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Liniowe zadania najmniejszych kwadratów
Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 1 Wprowadzenie do programu Octave 1 Operatory 1 1.1 Operatory arytmetyczne...................... 1 1.2 Operatory relacji.......................... 1 1.3 Operatory
Informatyka 1. Plan dzisiejszych zajęć. zajęcia nr 1. Elektrotechnika, semestr II rok akademicki 2008/2009
Informatyka 1 zajęcia nr 1 Elektrotechnika, semestr II rok akademicki 2008/2009 mgr inż.. Paweł Myszkowski Plan dzisiejszych zajęć 1. Organizacja laboratorium przedmiotu 2. Algorytmy i sposoby ich opisu
Modele wielorównaniowe. Estymacja parametrów
Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU PROGRAMOWANIE APLIKACJI INTERNETOWYCH
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU PROGRAMOWANIE APLIKACJI INTERNETOWYCH Klasa: 3TIR - Technik informatyk Program: 351203 Wymiar: 4 h tygodniowo Podręcznik: Kwalifikacja E.14 Programowanie
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
Laboratorium metod numerycznych numer 1
Laboratorium metod numerycznych numer 1 Dla grup:wszystkich (Dated: 27 II 2013) I. WST P Na laboratoriach z metod numerycznych b dziemy posªugiwali si pakietem Octave, który jest darmow alternatyw dla
Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, Spis treści
Przetwarzanie i analiza danych w języku Python / Marek Gągolewski, Maciej Bartoszuk, Anna Cena. Warszawa, 2016 Spis treści Przedmowa XI I Podstawy języka Python 1. Wprowadzenie 3 1.1. Język i środowisko
1 Programowanie w matlabie - skrypty i funkcje
1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,
Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie
Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Przetwarzanie sygnaªów
Przetwarzanie sygnaªów Laboratorium 1 - wst p do C# Dawid Poªap Przetwarzanie sygnaªów Pa¹dziernik, 2018 1 / 17 Czego mo»na oczekiwa wzgl dem programowania w C# na tych laboratoriach? Dawid Poªap Przetwarzanie
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Kierunek studiów: Informatyka Profil: Praktyczny
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Matlab MATrix LABoratory Mathworks Inc.
Małgorzata Jakubowska Matlab MATrix LABoratory Mathworks Inc. MATLAB pakiet oprogramowania matematycznego firmy MathWorks Inc. (www.mathworks.com) rozwijany od roku 1984 język programowania i środowisko
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek:
Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu:
1. Wprowadzenie do C/C++
Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub
STOSUNKI MIĘDZYNARODOWE
Karta przedmiotu STOSUNKI MIĘDZYNARODOWE Studia pierwszego stopnia/ ogólnoakademicki Przedmiot: Międzynarodowe stosunki kulturalne Kod przedmiotu: Przedmiot w języku angielskim: The International Cultural
PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI
PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki - projekt 3. Charakterystyka przedmiotu 4. Kontakt 5. Literatura Copyright 2017 Joanna Szyda KATEDRA
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Wprowadzenie do analizy danych Rok akademicki: 2012/2013 Kod: IET-2-303-SU-s Punkty ECTS: 2 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Elektronika i Telekomunikacja Specjalność:
MATLAB - podstawy użytkowania
MATLAB - podstawy użytkowania Zbigniew Rudnicki (dr inż) MATLAB (MATrix LABoratory) - pakiet oprogramowania matematycznego firmy MathWorks Inc. (od roku 1984) to język i środowisko programowania do obliczeń
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
Podstawy Programowania C++
Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:
EKONOMETRIA II SYLABUS A. Informacje ogólne
EKONOMETRIA II SYLABUS A. Informacje ogólne Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów /semestr Wymagania wstępne (tzw. sekwencyjny system zajęć
Ćwiczenie 1. Wprowadzenie do programu Octave
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW
Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest
Przykład 1 -->s="hello World!" s = Hello World! -->disp(s) Hello World!
Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Kierunek studiów: Informatyka Stosowana Forma
studia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach
Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania wstępne: Nazwa modułu (przedmiot lub grupa przedmiotów) Osoby prowadzące:
ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia
ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych
Spis treści. Przedmowa. Podstawy R
Spis treści Przedmowa Podstawy R 1. Środowisko R i program RStudio 1.1. Cechy języka R 1.2. Organizacja pracy w R i RStudio 1.2.1. Konsola R 1.2.2. Program RStudio 1.2.3. Pierwsze kroki w trybie interaktywnym
Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13
Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for
Ćwiczenie 1. Wprowadzenie do programu Octave
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3
PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 TEMAT: Program Matlab: Instrukcje sterujące, grafika. Wyrażenia logiczne Wyrażenia logiczne służą do porównania wartości zmiennych o tych samych rozmiarach. W wyrażeniach
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/013 Wydział Prawa, Administracji i Stosunków Miedzynarodowych
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Podstawy Programowania
Podstawy Programowania dr Elżbieta Gawrońska gawronska@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej dr Elżbieta Gawrońska (ICIS) Podstawy Programowania 14 1 / 9 Plan wykładu 1 Sesja egzaminacyjna
Przewodnik po pakiecie R / Przemysław Biecek. Wyd. 4 rozsz. Wrocław, Spis treści
Przewodnik po pakiecie R / Przemysław Biecek. Wyd. 4 rozsz. Wrocław, 2017 Spis treści 1. Wprowadzenie 1 1.1. Data science, czyli dlaczego warto poznać R 1 1.2. Jak wygląda praca z programem R 4 1.2.1.
PROGRAM NAUCZANIA INFORMATYKA
PROGRAM NAUCZANIA INFORMATYKA KLASA VI Program nauczania: DKOS 5002 38/05 Podręcznik: Informatyka Europejczyjka. Wydawnictwo HELION Lp. Temat lekcji podstawowe Wymagania programowe ponadpodstawowe 1 Lekcja
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana
Pascal - wprowadzenie
Pascal - wprowadzenie Ogólne informacje o specyfice języka i budowaniu programów Filip Jarmuszczak kl. III c Historia Pascal dawniej jeden z najpopularniejszych języków programowania, uniwersalny, wysokiego
Metody Numeryczne. Laboratorium 1. Wstęp do programu Matlab
Metody Numeryczne Laboratorium 1 Wstęp do programu Matlab 1. Wiadomości wstępne liczby, format Program Matlab używa konwencjonalną notację dziesiętną, z kropka dziesiętną. W przypadku notacji naukowej
Ukªady równa«liniowych - rozkªady typu LU i LL'
Rozdziaª 9 Ukªady równa«liniowych - rozkªady typu LU i LL' W tym rozdziale zapoznamy si z metodami sªu» cych do rozwi zywania ukªadów równa«liniowych przy pomocy uzyskiwaniu odpowiednich rozkªadów macierzy
Wektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006
Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy
Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji
KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu
➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje
wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia
wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i
Statystyczne systemy uczące
Statystyczne systemy uczące Tomasz Górecki Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza W ciągu ćwiczeń zostaną przeprowadzone 2 kolokwia. Na każdym znichbędziedozdobycia25punktów.od25punktówbędzie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Technologie Walcowania Wyrobów Płaskich Rolling technology for flat products Kierunek: Kod przedmiotu: Zarządzanie i Inżynieria Produkcji ZiIP.G.D1.2. Management and Production Engineering
Cw.12 JAVAScript w dokumentach HTML
Cw.12 JAVAScript w dokumentach HTML Wstawienie skryptu do dokumentu HTML JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania.skrypty Java- Script mogą być zagnieżdżane
1. Wprowadzenie do C/C++
Podstawy Programowania :: Roman Grundkiewicz :: 014 Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub