Zakresem tonalnym dynamika wejscia calkowitym uzytecznym rozdzielczosc tonalna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zakresem tonalnym dynamika wejscia calkowitym uzytecznym rozdzielczosc tonalna"

Transkrypt

1 Zakresem tonalnym sensora, albo rozpietoscia tonalna nazywa sie zakres zmian natezenia swiatla, na ktore reaguje sensor zmianami przeplywu pradu. Terminu " dynamika" uzywa sie do ilorazu wartosci maksymalnej / minimalna. Operujemy skala logarytmiczna, wiec log (A/B )= log A - Log B. ( uzywa sie logarytmow o podstawie 2 - Ld). Tak wiec mowiac o zakresie tonalnym formalnie okreslenie "dynamika" jest prawidlowe. Zakres tonalny albo rozpietosc tonalna to inaczej mowiac dynamika wejscia ( roznica w skali logarytmicznej w EV). Mozna mowic o calkowitym zakresie tonalnym, oraz uzytecznym, tzn. takim dla ktorego zmiany natezenia oswietlenia powoduja przeplyw pradu w okreslonym przez nas wedlug wymaganych kryteriow zakresie. W przetworniku A/D wartosciom pradu zostaja przyporzadkowane odpowiednie wartosci binarne. Jest to przyporzadkowanie stopni szarosci natezeniu oswietlenia. Ilosc stopni odpowiadajacych dynamice wejscia to rozdzielczosc tonalna. Stopnie szarosci nazywane sa luminancja. Rozdzielczosc tonalna, jesli ja wyrazimy w skali logarytmicznej odpowiada dynamice wyjscia, np 256 stopniom odpowiada Ld(256/1)= Ld(256)-Ld(1) = 8 Ev, lub glebia 8 bit. Tak wiec mamy : Dynamika wejscia - rozpietosc tonalna ( dziedzina ciagla ) Dynamika wyjscia - rozdzielczosc tonalna ( przeciwdziedzina dyskretna ) i w takim znaczeniu bede uzywal tych pojec Rys. 1 przedstawia pomierzona w aparacie fotograficznym zeleznosc luminancji od logarytmu natezenia oswietlenie ( krzywa w kolorze zoltym). Jest to tzw funkcja optoelektroniczna (OE). Ilustruje nam ona najwazniejsze wlasnosci matrycy, jest to wiec krzywa charakterystyczna. Krzywa w kolorze czerwonym to poziom szumu odpowiadajacy okreslonej ekspozycji/ luminancji, krzywa niebieska to SNR ( odstep sygnalu od szumu) RYS 1.

2 Rys 2 przedstawia analize krzywej charakterystycznej z rys 1 w zakresie J-K. RYS.2 Calkowity zakres zmian natezenia oswietlenia, na ktore reaguje matryca odpowiada zakresowi od J do K t.j. 10,18 EV. Zauwazmy, ze zarowno na poczatku jak i na koncu zakresu przebieg krzywej jest bardzo plaski, tzn konieczne sa duze zmiany natezenia oswietlenia by spowodowac niewielkie zmiany luminancji. Nie sa to odcinki proporcjonalnosci. W tym zakresie zmiana natezenia o pare EV spowoduje zmiane luminancji o zaledwie pare jednostek, nie bedziemy w stanie zauwazyc subtelnych roznic sceny. Wystapi na zdjeciu obszar o bardzo zblizonej szarosci, roznice beda praktycznie nierozpoznawalne. Jest to zakres nieproporcjonalnosci, czyli duzych znieksztalcen odwzorowania tonalnego. Podobnie z lewej strony, przebieg jest bardzo plaski, zroznicowanie tonalne bedzie niewielkie, dodatkowo wystepuje w tym zakresie wysoki poziom szumu. Za uzyteczny zakres tonalny nalezaloby uznac taki, w ktorym odwzorowanie jest proporcjonalne lub fluktuacje proporcjonalnosci mieszcza sie w pewnych dopuszczalnych granicach oraz poziom szumu jest nizszy od dopuszczalnego. Krzywa zielona to pierwszy pochodna funkcji OE. Jest to tangens nachylnia stycznej do krzywej OE, nazywany "gama"*. Dla tej samej wartosci gama, nachylenie krzywej OE jest identyczne a wiec zachodzi identycznosc proporcjonalnosci odwzorowania. ( dla gama= 0 brak reakcji sensora na zmiany swiatla ). Fluktuacja wartosci gama jest wiec wyznacznikiem granic uzytecznosci zakresu tonalnego ( wymaganej proporcjonalnosci). Ale tez odwrotnie - jakosc odwzorowania sceny zalezy od jej rozpietosci tonalnej. Im szerszy zakres tonalny sceny, tym odwzorowanie bedzie bardziej tonalnie znieksztalcone. Jak wiec przyjac granice dopuszczalnej nieproporcjonalnosci?

3 RYS. 3 rys 2 i 3 pokazuja w jaki sposob zostanie odwzorowany scena o rozpietosci tonalnej 6,48 (rys.2) i 7,66 (rys.3) oznaczenia na wykresie: ZakrTon - Zakres tonalny (EV) ( dynamika wejscia ) Rozdzton - rozdzielczosc tonalna ( dynamika wyjscia) RTEV - rozdzilczosc tonalna w sklai logarytmicznej (EV) GestTon- ilosc stopni szarosci przypadjaca srednio na jeden EV zakresu tonalnego Linodwz- procentowe odstepstwo od odcinka D-C O- Lewa granica uzytecznego zakresu tonalnego P - Prawa granica uzytecznego zakresu tonalnego D- najnizszy poziom luminancji odpowiadajacy O C -najwyzszy poziom luminancji odpowiadajacy P J- lewa granica calkowitego zakresu tonalnego ( gama=0) K- prawa granica calkowitego zakresu tonalnego (gama=0) DL - linia brazowa - uzyteczny zakres tonalny ( dynamika wejscia) LC- linia rozowa - uzytecznarozdzilczosc tonalna (dynamika wyjscia) PozSzum - poziom szumu dla D (O) % SnrLeft - odstep Sygnal / szum dla D (O) e- parametr ustalajacy ile razy gama w granicy lewej lub prawej zakresu uzytecznego jest mniejsze od gama max. Jest to przyjeta dopuszczalna nieproporcjonalnosc odzorowania. Widzimy, ze o jakosci odwzorowania decyduje nie calkowity zakres tonalny, lecz zakres uzyteczny o zblizonej proporcjonalnosci i odpowiednio niskim poziomie szumow.

4 RYS. 4 Rys. 4 pokazuje jak w zaleznosci od rozpietosci tonalnej sceny zmienia sie proporcjonalnosc odwzorowania - gama/gama max. Porownujac sensory miedzy soba nalezaloby porownac ich uzyteczny zakres tonalny, ktory jest wezszy od calkowitego. Skutki praktyczne: 1. Im szerszy zakres tonalny sceny, tym wieksze znieksztalcenia odwzorowania tonalnego. Najwieksze wystepuja na poczatku ( cienie ) i koncu ( swiatla ) zakresu tonalnego. 2. Odcinek najlepszej proporcjonalnosci odwzorowania znajduje sie w poblizu ekspozycji odpowiadajacej luminancji ok , tj szarosci 18%, czyli w obszarze naswietlen wedlug wskazan swiatlomierza. 3. Tzw " naswietlenie na histogram", polegajace na " dobiciu" swiatel do prawej strony ( przeswietlenie), powoduje wzrost znieksztalcen tonow polozonych w srodkowej i prawej czesci krzywej ( umiarkowane szarosci, swiatla ), oraz poprawe odwzorowania w zakresie cieni. Po sprowadzeniu luminacji do prawidlowego poziomu ( sciemnienie w trakcie obrobki ), uzyskujemy poprawe odwzorowania w cieniach, obnizenie poziomu szumu, pogorszenie odwzorowania w swiatlach. dziekuje za uwage.

5 * tutaj dla osi rzedych w skali logarytmicznej, osi odcietych w skali liniowej. Na ogol poslugujemy sie wartoscia gama dla obu osi w tej samej skali logarytmicznej. Na tak skonstruowanym wykresie gama jest takze pewna funkcja czulosci sensora. Maksimum jest przesuniete w stosunku do szarosci 18 % o okolo 0,5 ev - o tyle jest zbyt optymistyczne oznakowanie ISO.

Co wlasciwie mierzy imatest? imatest nie mierzy MTF - u w sensie definincji

Co wlasciwie mierzy imatest? imatest nie mierzy MTF - u w sensie definincji Trzeba sobie zdac sprawe przede wszystkim z tego co wlasciwie mierzy imatest i co to jest ta rozdzielczosc, ktora wyznacza IMATEST w liniach na szerokosc obrazu. Co wlasciwie mierzy imatest? imatest nie

Bardziej szczegółowo

Pochodne funkcji wraz z zastosowaniami - teoria

Pochodne funkcji wraz z zastosowaniami - teoria Pochodne funkcji wraz z zastosowaniami - teoria Pochodne Definicja 2.38. Niech f : O(x 0 ) R. Jeżeli istnieje skończona granica f(x 0 + h) f(x 0 ) h 0 h to granicę tę nazywamy pochodną funkcji w punkcie

Bardziej szczegółowo

Przekształcenia punktowe

Przekształcenia punktowe Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze

Bardziej szczegółowo

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:

Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego: Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna

Bardziej szczegółowo

FUNKCJA I JEJ WŁASNOŚCI

FUNKCJA I JEJ WŁASNOŚCI FUNKCJA I JEJ WŁASNOŚCI Niech i oznaczają dwa dowolne niepuste zbiory. DEFINICJA (odwzorowanie zbioru (funkcja)) Odwzorowaniem zbioru w zbiór nazywamy przyporządkowanie każdemu elementowi zbioru dokładnie

Bardziej szczegółowo

O funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze.

O funkcjach : mówimy również, że są określone na zbiorze o wartościach w zbiorze. 1. Definicja funkcji f:x->y. Definicja dziedziny, przeciwdziedziny, zbioru wartości. Przykłady. I definicja: Funkcją nazywamy relację, jeśli spełnia następujące warunki: 1) 2) 1,2 [(1 2)=> 1=2] Inaczej

Bardziej szczegółowo

LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE Z CWICZENIA NR58

LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE Z CWICZENIA NR58 1. OPIS TEORETYCZNY. LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE Z CWICZENIA NR58 TEMAT : BADANIE FERROMAGNETYKÓW. Pole magnetyczne w osrodkach mozna scharakteryzowac za pomoca nastepujacych wielkosci wektorowych

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

KOREKTA ROZKŁADU JASNOŚCI (obrazy monochromatyczne i barwne)

KOREKTA ROZKŁADU JASNOŚCI (obrazy monochromatyczne i barwne) Ćwiczenia z grafiki komputerowej 1 KOREKTA ROZKŁADU JASNOŚCI (obrazy monochromatyczne i barwne) Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 19 Korekta rozkładu

Bardziej szczegółowo

Dodatek B - Histogram

Dodatek B - Histogram Dodatek B - Histogram Histogram to nic innego, jak wykres pokazujący ile elementów od czarnego (od lewej) do białego (prawy koniec histogramu) zostało zarejestrowanych na zdjęciu. Może przedstawiać uśredniony

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Przetwarzanie analogowo-cyfrowe sygnałów

Przetwarzanie analogowo-cyfrowe sygnałów Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów

Bardziej szczegółowo

TRU-5321. ULTIMA ul. Okrezna 1 81-859 SOPOT tel./fax. (58) 341 16 61 tel. (58) 555 71 49 email: ultima@ultima.gda.pl http://www.ultima.gda.

TRU-5321. ULTIMA ul. Okrezna 1 81-859 SOPOT tel./fax. (58) 341 16 61 tel. (58) 555 71 49 email: ultima@ultima.gda.pl http://www.ultima.gda. INSTRUKCJ OSLUGI INSTRUKCJ OSLUGI RS RS RS RS RS RS RS RS RS RS RS RS Repeater RS RS Separator RS RS TRU ULTIM ULTIM ul. Okrezna SOPOT tel./fax. () tel. () email: ultima@ultima.gda.pl http://www.ultima.gda.pl

Bardziej szczegółowo

Akwizycja obrazów HDR

Akwizycja obrazów HDR Akwizycja obrazów HDR Radosław Mantiuk radoslaw.mantiuk@gmail.com 1 Składanie HDRa z sekwencji zdjęć LDR (1) Seria zdjęć sceny wykonanych z różnymi ustawieniami ekspozycji 2 Składanie HDRa z sekwencji

Bardziej szczegółowo

Akwizycja obrazów HDR

Akwizycja obrazów HDR Akwizycja obrazów HDR Radosław Mantiuk radoslaw.mantiuk@gmail.com 1 Składanie HDRa z sekwencji zdjęć LDR (1) Seria&zdjęć&sceny&wykonanych&z&różnymi&ustawieniami&ekspozycji& 2 Składanie HDRa z sekwencji

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Funkcja f jest ograniczona, jeśli jest ona ograniczona z

Funkcja f jest ograniczona, jeśli jest ona ograniczona z FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden

Bardziej szczegółowo

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu

Bardziej szczegółowo

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568 Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.

Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska. Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na

Bardziej szczegółowo

1 Wyrażenia potęgowe i logarytmiczne.

1 Wyrażenia potęgowe i logarytmiczne. Wyrażenia potęgowe i logarytmiczne. I. Wyrażenia potęgowe (wykładnik całkowity). Dla a R, n N mamy a = a, a n = a n a. Zatem a n = } a a {{... a}. n razy Przyjmujemy ponadto, że a =, a. Dla a R \{}, n

Bardziej szczegółowo

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty.

II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. II. Funkcje. Pojęcia podstawowe. 1. Podstawowe definicje i fakty. Definicja 1.1. Funkcją określoną na zbiorze X R o wartościach w zbiorze Y R nazywamy przyporządkowanie każdemu elementowi x X dokładnie

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

INSTRUKCJA MONTAZU ROZDZIELACZA NIMCO - WYJSCIE EURO MESKIE

INSTRUKCJA MONTAZU ROZDZIELACZA NIMCO - WYJSCIE EURO MESKIE INSTRUKCJA MONTAZU A NIMCO - WYJSCIE EURO MESKIE Rozdzielacz hydrauliczny NIMCO moze byc wpiety w uklad ciagnika na trzy sposoby przedstawione na rysunku 1. Rysunek 1b przedstawia najbardziej popularne

Bardziej szczegółowo

Literatura podstawowa

Literatura podstawowa 1 Wstęp Literatura podstawowa 1. Grażyna Kwiecińska: Matematyka : kurs akademicki dla studentów nauk stosowanych. Cz. 1, Wybrane zagadnienia algebry liniowej, Wydaw. Uniwersytetu Gdańskiego, Gdańsk, 2003.

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji

Zadania z analizy matematycznej - sem. I Pochodne funkcji, przebieg zmienności funkcji Zadania z analizy matematycznej - sem. I Pochodne funkcji przebieg zmienności funkcji Definicja 1. Niech f : (a b) R gdzie a < b oraz 0 (a b). Dla dowolnego (a b) wyrażenie f() f( 0 ) = f( 0 + ) f( 0 )

Bardziej szczegółowo

1. Granice funkcji - wstępne definicje i obliczanie prostych granic

1. Granice funkcji - wstępne definicje i obliczanie prostych granic 1. Granice funkcji - wstępne definicje i obliczanie prostych granic Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 1. Granice w Krakowie) funkcji -

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

Jesli jest to konieczne, prosze przyjac poziom istotnosci 0,01 i wspólczynnik ufnosci 0,99.

Jesli jest to konieczne, prosze przyjac poziom istotnosci 0,01 i wspólczynnik ufnosci 0,99. TEMAT D 9.12.2005 Jesli jest to konieczne, prosze przyjac poziom istotnosci 0,01 i wspólczynnik ufnosci 0,99. Maturzystka Marta, milosniczka statystyki, decydujac sie na wybór wyzszej uczelni jako jedno

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA I TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

= 1, = = + 1D, + 2D<,

= 1, = = + 1D, + 2D<, 'Przypadkowe bladzenie' jako przyklad prostego problemu, ktory moze byc pierwszym zadaniem, dla studiujacych 'Mathematica', zwiazanychm z rozwiazaniem 'rzeczywistego' problemu. Rozwazmy ruch jednowymiarowy

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Obrazy High-Key W fotografiach high-key dominują jasne, delikatnie wyróżnione tony, a oświetlenie sceny jest miękkie.

Obrazy High-Key W fotografiach high-key dominują jasne, delikatnie wyróżnione tony, a oświetlenie sceny jest miękkie. Oryginalna wersja tekstu na stronie www.minoltaphotoworld.com Zone Matching - dopasowanie stref Na atmosferę, charakter i przesłanie zdjęcia znacząco wpływa rozkład jasnych i ciemnych obszarów w kolorystyce

Bardziej szczegółowo

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.

Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach. Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej

Bardziej szczegółowo

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Agnieszka Bojanowska Stefan Jackowski 24 listopada 2010 1 Podstawowe pojęcia Bedziemy uzywać następujących pojęć i przykładów dotyczących

Bardziej szczegółowo

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych

Roksana Gałecka Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych Temat. Okreslenie pochodnej funkcji, podstawowe własnosci funkcji różniczkowalnych.twierdzenia o wartosci sredniej w rachunku różniczkowalnym i ich zastosowania. Roksana Gałecka 20..204 Spis treści Okreslenie

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 2 Definicja funkcji przypomnienie Definicja Dla danych dwóch niepustych zbiorów X, Y przypisanie każdemu elementowi zbioru X dokładnie jednego elementu

Bardziej szczegółowo

Matematyka 1 wymagania edukacyjne

Matematyka 1 wymagania edukacyjne Matematyka 1 wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

11. Pochodna funkcji

11. Pochodna funkcji 11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,

Bardziej szczegółowo

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej

Rozdział 3. Granica i ciągłość funkcji jednej zmiennej Rozdział Granica i ciągłość funkcji jednej zmiennej Definicja i własności granicy funkcji W rozdziale omówiono granicę ciągu liczbowego przy n, natomiast w rozdziale opisano funkcje elementarne i ich własności

Bardziej szczegółowo

Ę Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż

Bardziej szczegółowo

Ó Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3. Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.

Bardziej szczegółowo

83 Przekształcanie wykresów funkcji (cd.) 3

83 Przekształcanie wykresów funkcji (cd.) 3 Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 6

Pochodna funkcji: definicja, podstawowe własności wykład 6 Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga

Bardziej szczegółowo

Sprawdzian 3 gr1 (22/01/04) Imie i nazwisko:...grupa: Odpowedz na wszystkie pytania, pamietaj o uzasadnieniu odpowiedzi.

Sprawdzian 3 gr1 (22/01/04) Imie i nazwisko:...grupa: Odpowedz na wszystkie pytania, pamietaj o uzasadnieniu odpowiedzi. Sprawdzian 3 gr1 (22/01/04) Imie i nazwisko:...............................grupa: 1. Dane sa dwa wektory β 1 = (1, 2, 3) i β 2 = ( 2, 4, 6) w R 3. Niech W = lin(β 1, β 2 ) oraz V = {(x 1, x 2, x 3 ) 2x

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

w zależności od powierzchni, jaka została użyta do odwzorowania siatki kartograficznej, wyróżniać będziemy 3 typy odwzorowań:

w zależności od powierzchni, jaka została użyta do odwzorowania siatki kartograficznej, wyróżniać będziemy 3 typy odwzorowań: Elementy mapy mapa jest płaskim obrazem powierzchni Ziemi lub jej części przedstawionym na płaszczyźnie w odpowiednim zmniejszeniu; siatka kartograficzna będzie się zawsze różniła od siatki geograficznej;

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Wstęp

Podstawy nauk przyrodniczych Matematyka Wstęp Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

TARYFA DLA CIEPLA. EC Zakrzów, Spólka komandytowa. f/plv fto'-c4/l. {//

TARYFA DLA CIEPLA. EC Zakrzów, Spólka komandytowa. f/plv fto'-c4/l. {// . \. G.j.Ji~"\ TARYFA STANOWI ZALACZNIK DO DECYZJI PREZESA URE Interpep 7. dnia..l.q..ffi:'.~.uafu...~a.q. O~~.~.~~~g.~.~.i(6).tMJQ(/~.2J.fJ/ Z uj10wazmeta PI'lII";:1., Un~d"Re'JUll1l'ji 1!~ ViR;/Jt/,

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 5

Pochodna funkcji: definicja, podstawowe własności wykład 5 Pochodna funkcji: definicja, podstawowe własności wykład 5 dr Mariusz Grządziel Rok akademicki 214/15, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona

Bardziej szczegółowo

Logarytmy. Historia. Definicja

Logarytmy. Historia. Definicja Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA WYŻSZA SZKOŁA IFORMATYKI STOSOWAEJ I ZARZĄDZAIA Złożoność algorytmów Złożoność pamięciowa algorytmu wynika z liczby i rozmiaru struktur danych wykorzystywanych w algorytmie. Złożoność czasowa algorytmu

Bardziej szczegółowo

HDR. Obrazy o rozszerzonym zakresie dynamiki

HDR. Obrazy o rozszerzonym zakresie dynamiki Synteza i obróbka obrazu HDR Obrazy o rozszerzonym zakresie dynamiki Dynamika obrazu Zakres dynamiki (dynamicrange) to różnica między najciemniejszymi i najjaśniejszymi elementami obrazu. W fotografice

Bardziej szczegółowo

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy

Bardziej szczegółowo

Elementy grafiki komputerowej. Elementy geometrii afinicznej

Elementy grafiki komputerowej. Elementy geometrii afinicznej Elementy grafiki komputerowej. Elementy geometrii j Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 28 Elementy geometrii j Najnowsza wersja

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R.

ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R. ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 3 VIII 007 R. Przedstawione poniżej treści obejmujące zakres rozszerzony wyróżnione są pogrubioną

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

SA w dniu 07.05.2014 r.

SA w dniu 07.05.2014 r. Pi-: -,.:~~)WAR:... I H /LIv'" I/I '1 \ 'BURMJSTRZ MIASTA KOBYLKA WGP.6730.3.2014. "JO )0 Kobylka, dnia 2014 r. DECYZJA NR) /2014 o warunkach zabudowy Na podstawie art. 4 ust. 2 pkt 2, art. 59 ust. 1 i

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Funkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska

Funkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Dr Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Definicja Funkcja f ze zbioru X w zbiór Y nazywamy relację, która każdemu elementowi x X przyporzadkowuje dokładnie jeden element y Y.

Bardziej szczegółowo

Krótki kurs podstaw fotografii Marcin Pazio, 201 4

Krótki kurs podstaw fotografii Marcin Pazio, 201 4 Krótki kurs podstaw fotografii Marcin Pazio, 201 4 Za wikipedią: Fotografia (gr. φως, phōs, D. phōtós światło; gráphō piszę, graphein rysować, pisać; rysowanie za pomocą światła) zbiór wielu różnych technik,

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

Podziałka liniowa czy logarytmiczna?

Podziałka liniowa czy logarytmiczna? Podziałka liniowa czy logarytmiczna? Bardzo często do graficznego przedstawienia pewnych zależności odpowiednie jest użycie podziałki liniowej na osi x i osi y wykonywanego wykresu. Są jednak przypadki,

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

WSTĘP DO ANALIZY I ALGEBRY, MAT1460

WSTĘP DO ANALIZY I ALGEBRY, MAT1460 WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,

Bardziej szczegółowo

ZADANIA. Odpowiedzi do zadari do samodzielnego rozwiazania. Zadania krok po kroku Zadania podsumowujace 119 Rozwiazania zadari krok po kroku 13I

ZADANIA. Odpowiedzi do zadari do samodzielnego rozwiazania. Zadania krok po kroku Zadania podsumowujace 119 Rozwiazania zadari krok po kroku 13I ZADANIA LICZBY RZECZYWISTE 118 Zadania krok po kroku Zadania podsumowujace 119 Rozwiazania zadari krok po kroku 13I Zadania do 27 28 TRYCONOMETRIA 120 Zadania krok po kroku 120 Rozwiazania zadari krok

Bardziej szczegółowo

FIRMA 2000 Sp. z 0.0. ul. Marconich 9 lok. 19, Warsza'Wa Tel.: 122/ Faks: 122/

FIRMA 2000 Sp. z 0.0. ul. Marconich 9 lok. 19, Warsza'Wa Tel.: 122/ Faks: 122/ '" e-mail: FIRMA 2000 Sp. z 0.0. ul. Marconich 9 lok. 19, 02-954 Warsza'Wa Tel.: 122/642 58 72 Faks: 122/642 58 73 mail@firma2000.pl.w.w.w.firma2000.pl. F ~OOO,R f"v'1.a Warszawa, dnia 12 grudnia 2008

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

16 Jednowymiarowy model Isinga

16 Jednowymiarowy model Isinga 16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Proste pomiary na pojedynczym zdjęciu lotniczym

Proste pomiary na pojedynczym zdjęciu lotniczym Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat: Proste pomiary na pojedynczym zdjęciu lotniczym Kartometryczność zdjęcia Zdjęcie lotnicze

Bardziej szczegółowo