Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16
|
|
- Tadeusz Kurowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W). Poszczególnym poziomom wymagań w sposób naturalny można przyporządkować następujące oceny: 2 dopuszczający 3 dostateczny 4 dobry 5 bardzo dobry 6 celujący Ilustrujemy to w tabeli: 2 Wymagania konieczne K 3 Wymagania podstawowe zawierają wymagania z poziomu (K) 4 Wymagania rozszerzające zawierają wymagania z poziomów (K) i (P) 5 Wymagania dopełniające zawierają wymagania z poziomów (K), (P) i (R) 6 Wymagania wykraczające zawierają wymagania z poziomów (K), (P), (R) i (D) K P K P R K P R D K P R D W Wymagania konieczne są najłatwiejsze, najczęściej stosowane i niewymagające modyfikacji. Stanowią podstawę dalszego kształcenia, więc powinny być opanowane przez każdego ucznia. Wymagania podstawowe są przystępne i uniwersalne, niezbędne na danym etapie kształcenia, często bezpośrednio użyteczne życiowo. Wymagania rozszerzające są umiarkowanie przystępne, bardziej złożone i mniej przydatne, ale nie niezbędne na danym etapie kształcenia. Wymagania dopełniające są trudne, złożone i nietypowe, wyspecjalizowane i zwykle bez bezpośredniej użyteczności pozaszkolnej. Wymagania wykraczające są szczególnie trudne, złożone i oryginalne, twórcze naukowo i wąsko specjalistyczne.
2 Katalog wymagań programowych LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą (2) lub dostateczną (3) uczeń potrafi: przedstawiać liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg) zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne liczby (np. korzystając z kalkulatora) z zadaną dokładnością porównać liczby wymierne porównać liczby rzeczywiste (np. korzystając z kalkulatora) stosować kolejność działań w zbiorze liczb rzeczywistych oszacować wartość wyrażenia liczbowego przekształcić proste wyrażenia algebraiczne stosować wzory skróconego mnożenia na a b 2 oraz 2 a b 2 rozwiązać równanie i nierówność pierwszego stopnia z jedną niewiadomą sprawdzić, czy dana liczba jest rozwiązaniem równania, nierówności pierwszego stopnia z jedną niewiadomą ułożyć równanie lub nierówność do zależności opisanej słownie rozwiązać układ nierówności pierwszego stopnia i zapisać wynik w postaci przedziału liczbowego zaznaczyć przedziały liczbowe na osi liczbowej wskazać różnicę między definicją pierwiastka stopnia parzystego a definicją pierwiastka stopnia nieparzystego wykonać działania na pierwiastkach stosować prawa działań na pierwiastkach wyłączać czynnik spod pierwiastka włączać czynnik pod pierwiastek 1 usuwać niewymierność w wyrażeniu typu a obliczyć p% danej wielkości w obliczyć wielkość w, gdy dany jest jej procent 2
3 obliczyć, jakim procentem wielkości w jest wielkość a wykonać w pamięci proste obliczenia typu: o 50% więcej niż 10, o 200% więcej niż 15, o 20% mniej niż 50 itp. obliczyć wartość bezwzględną liczby rzeczywistej obliczyć odległość dwóch liczb na osi liczbowej obliczyć błąd bezwzględny i względny przybliżenia Na poziomie wymagań rozszerzających lub dopełniających na ocenę dobrą (4) lub bardzo dobrą (5) uczeń potrafi: zamienić ułamek dziesiętny okresowy na ułamek zwykły odróżnić liczbę wymierną od niewymiernej usuwać niewymierność w mianowniku wyrażenia typu: d a b c rozwiązać zadanie tekstowe wymagające zastosowania pierwiastków wyższych stopni porównać pierwiastki (bez stosowania kalkulatora) obliczyć, o ile procent wielkość a jest większa (mniejsza) od wielkości b swobodnie operować pojęciem punktu procentowego krytycznie czytać teksty zawierające i komentujące dane procentowe rozwiązać złożone zadania tekstowe prowadzące do równania (układu równań) z wykorzystaniem obliczeń procentowych przeprowadzić proste badanie statystyczne, opracować i zaprezentować jego wyniki ocenić dokładność zastosowanego przybliżenia Na poziomie wymagań wykraczających na ocenę celującą (6) uczeń potrafi: sklasyfikować podzbiory zbioru liczb rzeczywistych ze względu na wykonalność działań udowodnić niewymierność przykładowych liczb wykazać, że jeżeli liczba jest wymierna, to ma rozwinięcie dziesiętne skończone lub nieskończone okresowe i odwrotnie uzasadnić prawa działań na potęgach i pierwiastkach rozwiązywać zadania dotyczące procentów typu: pewna wielkość wzrosła o p%; oblicz o ile % należy ją zmniejszyć, aby powróciła do poziomu wyjściowego 3
4 PLANIMETRIA Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą (2) lub dostateczną (3) uczeń potrafi: określić wzajemne położenie dwóch okręgów określić wzajemne położenie okręgu i prostej korzystać z własności stycznej do okręgu i własności okręgów stycznych wskazać kąty środkowe i wpisane oparte na danych łukach zastosować twierdzenie o zależności między kątem środkowym, kątami wpisanymi i kątem między styczną a cięciwą (wyznaczonymi przez ten sam łuk) rozpoznać trójkąty podobne i wykorzystać (także w kontekście praktycznym) cechy podobieństwa trójkątów poprawnie zapisać proporcje boków w trójkątach podobnych korzystać z twierdzenie Pitagorasa oraz związków miarowych w trójkącie prostokątnym obliczyć długości boków figur podobnych, wykorzystując skalę podobieństwa oszacować rzeczywistą odległość między punktami, znając odległość między tymi punktami na mapie i skalę mapy zastosować w zadaniach twierdzenie o stosunku pól figur podobnych wyznaczyć wartości funkcji trygonometrycznych kątów o miarach od 0 do 180 obliczyć długości boków i miary kątów trójkąta prostokątnego, mając dany jeden bok i wartość funkcji trygonometrycznej jednego z kątów ostrych podać wartości funkcji trygonometrycznych kątów: 30, 60 i korzystać z przybliżonych wartości funkcji trygonometrycznych (odczytanych z tablic lub obliczonych za pomocą kalkulatora) obliczyć miarę kąta ostrego, dla którego funkcja trygonometryczna przyjmuje daną wartość (miarę dokładną albo korzystając z tablic lub kalkulatora przybliżoną) 2 2 stosować podstawowe związki między funkcjami trygonometrycznymi: sin cos 1, sin tg oraz sin cos 90 cos znając wartość funkcji trygonometrycznej sinus lub kosinus kąta ostrego, wyznaczać wartości pozostałych funkcji trygonometrycznych tego kąta korzystać z własności funkcji trygonometrycznych w łatwych obliczeniach geometrycznych, w tym ze wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi 45 4
5 udowodnić prostą tożsamość trygonometryczną Na poziomie wymagań rozszerzających lub dopełniających na ocenę dobrą (4) lub bardzo dobrą (5) uczeń potrafi: udowodnić twierdzenie o odcinkach stycznych stosować zależności między katami środkowymi i wpisanymi w zadaniach o podwyższonym stopniu trudności wyprowadzić związki miarowe w trójkącie prostokątnym skonstruować odcinek o długości równej średniej geometrycznej dwóch danych odcinków stosować podobieństwo trójkątów w zadaniach o podwyższonym stopniu trudności swobodnie operować skalą map udowodnić tożsamość trygonometryczną wymagającą przekształcenia wyrażeń wymiernych rozwiązać zadanie wymagające zastosowania związku między funkcjami trygonometrycznymi, np. znając wartość sin cos, obliczyć sin cos Na poziomie wymagań wykraczających na ocenę celującą (6) uczeń potrafi: rozwiązać wieloetapowe zadania geometryczne wymagające zapisania związków między potrzebnymi wielkościami w postaci układu równań (np. 3 zmiennych) i rozwiązania go wyznaczyć pole i obwód figury ograniczonej łukami okręgów rozwiązać niestandardowe zadania geometryczne wymagające np. poprowadzenia na rysunku dodatkowych odcinków i dostrzeżenia trójkątów podobnych udowodnić wzory redukcyjne dla kąta rozwartego FUNKCJE I ICH WŁASNOŚCI Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą (2) lub dostateczną (3) uczeń potrafi: rozpoznać funkcje wśród przyporządkowań podać przykłady zależności funkcyjnych w otaczającej nas rzeczywistości określać funkcje na różne sposoby (diagram, tabela, wzór, wykres, opis słowny) obliczyć wartości funkcji dla różnych argumentów wyznaczyć dziedzinę funkcji na podstawie diagramu, tabeli, opisu słownego wyznaczyć, w prostych przypadkach, dziedzinę na podstawie wzoru funkcji 5
6 znaleźć, w prostych przypadkach, zbiór wartości funkcji o danej dziedzinie i wzorze swobodnie operować układem współrzędnych rozpoznać wykresy funkcji wśród krzywych sporządzić wykresy funkcji o kilkuelementowej dziedzinie na podstawie wykresu funkcji odczytać jej dziedzinę na podstawie wykresu funkcji odczytać zbiór jej wartości na podstawie wykresu funkcji wskazać największą wartość funkcji i najmniejszą wartość funkcji (w całej dziedzinie lub w podanym przedziale) na podstawie wykresu funkcji odczytać jej miejsca zerowe znajdować miejsca zerowe funkcji w przypadku, gdy prowadzi to do rozwiązywania równań liniowych posługując się poznanymi metodami rozwiązywania równań, obliczać, dla jakiego argumentu funkcja przyjmuje daną wartość na podstawie wykresu funkcji określić liczbę rozwiązań równania f x m dla ustalonej wartości m odczytać z wykresu funkcji rozwiązania nierówności: f x m, x m wartości m (w szczególności dla m 0 ) określić przedziały monotoniczności funkcji na podstawie jej wykresu narysować wykres funkcji f(x) = a/x dla danego a, przesunąć wykres funkcji wzdłuż osi x zgodnie ze wzorem y f x a przesunąć wykres funkcji wzdłuż osi y zgodnie ze wzorem y f x b narysować wykresy funkcji y f x oraz y f x y f x a x f dla ustalonej, mając dany wykres funkcji szkicować wykres funkcji f x dla danego a, korzystać ze wzoru i wykresu tej funkcji do interpretacji zagadnień związanych z wielkościami odwrotnie proporcjonalnymi przesunąć wykres funkcji wzdłuż osi x zgodnie z podanym wzorem y f ( x a) przesunąć wykres funkcji wzdłuż osi y zgodnie z podanym wzorem y f ( x) b przekształcić wykres funkcji przez symetrię względem osi y zgodnie z podanym wzorem y f (x) przekształcić wykres funkcji przez symetrię względem osi x zgodnie z podanym wzorem y f ( x) 6
7 narysować wykres funkcji y f ( x a) b, mając dany wykres albo wzór funkcji y f ( x) na podstawie podanego wzoru funkcji (w prostych przypadkach) odczytać i zapisać ten wzór w postaci y f ( x a) b. podać własności funkcji y f ( x a) b, y f (x) i y f ( x) na podstawie odpowiednich własności funkcji y f (x) Na poziomie wymagań rozszerzających lub dopełniających na ocenę dobrą (4) lub bardzo dobrą (5) uczeń potrafi: wyznaczyć zbiór wartości funkcji zdefiniowanych w bardziej złożony sposób znaleźć na podstawie zadania tekstowego zależność funkcyjną między dwiema wielkościami i wyznaczyć dziedzinę otrzymanej funkcji narysować wykres funkcji na podstawie wykonanych pomiarów różnych zjawisk na podstawie wykresu funkcji określić liczbę rozwiązań równania f x m w zależności od wartości m narysować wykres funkcji y f x a b, mając dany wykres funkcji y f x uzasadnić, że funkcja f x 1 nie jest monotoniczna w swojej dziedzinie x odczytać z wykresów funkcji rozwiązania równań i nierówności typu: x gx f x gx, f x gx zaprojektować wykresy funkcji o zadanych własnościach f, korzystać ze wzoru i wykresu funkcji f(x) = a/x do interpretacji zagadnień związanych z wielkościami odwrotnie proporcjonalnymi składać (w prostych przypadkach) symetrie i przesunięcia wykresów funkcji Na poziomie wymagań wykraczających na ocenę celującą (6) uczeń potrafi: uzasadnić, że funkcja np. rosnąca na dwóch przedziałach liczbowych nie musi być rosnąca na sumie tych przedziałów uzasadniać z definicji monotoniczność funkcji dobierać parametr we wzorze funkcji tak, by miała ona określone własności swobodnie składać przesunięcia równoległe wykresu funkcji z symetriami 7
Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury
LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą (2) uczeń potrafi: zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne
Matematyka 1 wymagania edukacyjne
Matematyka 1 wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
MATEMATYKA Katalog wymagań programowych
MATEMATYKA Katalog wymagań programowych KLASA 1H LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną przedstawiać liczby rzeczywiste w różnych
K P K P R K P R D K P R D W
KLASA I TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY. I. Liczby (20 godz.) ( b ) 2
PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY I. Liczby (0 godz.) TEMAT ZAJĘĆ Zapis dziesiętny liczby rzeczywistej Wzory skróconego mnoŝenia Nierówności liniowe Przedziały liczbowe Powtórzenie przedstawiać
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa 1 Liczby rzeczywiste: Uczeń otrzymuje ocenę ( jeśli rozumie i stosuje podpowiedź nauczyciela)oraz
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM
WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
MATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
Propozycja metod kontroli i oceny osiągnięć
Propozycja metod kontroli i oceny osiągnięć (fragment Programu nauczania dla liceum ogólnokształcącego, liceum profilowanego i technikum Piotra Grabowskiego) Jednym z najtrudniejszych zadań stojących przed
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
System oceniania z matematyki -katalog wymagań programowych
System oceniania z matematyki -katalog wymagań programowych klasa I LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub przedstawiać liczby rzeczywiste w
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM ROZSZERZONY. I. Liczby (31 godz.) ( b ) 2
PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM ROZSZERZONY TEMAT ZAJĘĆ EDUKACYJNYCH Zapis dziesiętny liczby rzeczywistej Wzory skróconego mnoŝenia Nierówności pierwszego stopnia Przedziały liczbowe Działania
MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.
MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
PRZEDMIOTOWY SYSTEM OCENIANIA
PRZEDMIOTOWY SYSTEM OCENIANIA Propozycja metod kontroli i oceny osiągnięć (fragment Programu nauczania dla liceum ogólnokształcącego, liceum profilowanego i technikum Piotra Grabowskiego) Jednym z najtrudniejszych
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Matematyka 2 wymagania edukacyjne
Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i
Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 2018/2019. Kryteria oceny
Wymagania programowe na poszczególne oceny w klasie I A LP, I B LP 018/019 Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era Kryteria oceny Znajomość pojęć, definicji, własności oraz wzorów objętych
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Agnieszka Kamińska Dorota Ponczek. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 1 Zakres podstawowy
Agnieszka Kamińska Dorota Ponczek Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyka 1 Zakres podstawowy Warszawa 2019 Wyróżnione zostały następujące wymagania
Wymagania edukacyjne z matematyki - LO klasa i Tech I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury
Wymagania edukacyjne z matematyki - LO klasa i Tech I (poziom podstawowy) LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą () uczeń potrafi: zamieniać ułamek zwykły na ułamek
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Kształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I
NAUCZYCIEL BARBARA PAPUSZKA PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I KONTRAKT NAUCZYCIEL UCZEŃ 1. Uczeń zobowiązany jest do bycia przygotowanym na każdą lekcję tj. wymagane jest posiadanie
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY poziom podstawowy. ocenę dopuszczającą - jeśli spełnia ponad 60% wymagań podstawowych,
Uczeń otrzymuje WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY poziom podstawowy ocenę dopuszczającą - jeśli spełnia ponad 60% wymagań podstawowych, ocenę dostateczną jeśli spełnia niemal wszystkie wymagania
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Matematyka wykaz umiejętności wymaganych na poszczególne oceny
Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy
Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych Nauczyciel: mgr Karolina Bębenek z matematyki dla uczniów klasy I LO poziom podstawowy 1. Wprowadzenie do matematyki.
Wymagania edukacyjne dla klasy 1 Liceum zakres podstawowy i rozszerzony
Wymagania edukacyjne dla klasy Liceum zakres podstawowy i rozszerzony Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca (K) ocena dostateczna (K) i (P) ocena
Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14
z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka Poznać, zrozumieć Kształcenie w zakresie podstawowym Klasa 1 (4 godziny tygodniowo) Poniżej podajemy umiejętności, jakie powinien
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
PODSTAWOWY 1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH
1. ROZUMOWANIE I ARGUMENTACJA W ZBIORZE LICZB RZECZYWISTYCH stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ
KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i
MATEMATYKA KL I LO zakres podstawowy i rozszerzony
MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania
K P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
usuwa niewymierność z mianownika wyrażenia typu
Klasa pierwsza zakres rozszerzony. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje liczbę do odpowiedniego zbioru
PRZEDMIOTOWY SYSTEM OCENIANIA - LICEUM OGÓLNOKSZTAŁCĄCE MATEMATYKA
PRZEDMIOTOWY SYSTEM OCENIANIA - LICEUM OGÓLNOKSZTAŁCĄCE MATEMATYKA KLASA I Wymagania programowe LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną
MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony
MATEMATYKA - klasa I Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2017/18. Zakres materiału wraz z przybliżonym rozkładem terminów prac klasowych, sprawdzianów uzgodnionych:
Przedmiot: Matematyka Klasa: 1 Nauczyciel: Justyna Pawlikowska Tygodniowy wymiar godzin: 4 Program nauczania: 378/1/2011/2015 Poziom: podstawowy Zakres materiału wraz z przybliżonym rozkładem terminów
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
Klasa 1 wymagania edukacyjne
Klasa wymagania edukacyjne Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program
Plan wynikowy z przedmiotu: MATEMATYKA
Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Marian Łuniewski MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących
MATeMAtyka 1. wymagania edukacyjne. Zakres podstawowy i rozszerzony. Autorzy Dorota Ponczek, Karolina Wej
MATeMAtyka wymagania edukacyjne Zakres podstawowy i rozszerzony Autorzy Dorota Ponczek, Karolina Wej Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
Wymagania edukacyjne z matematyki
Liceum Ogólnokształcące im. Bolesława Prusa w Skierniewicach Wymagania edukacyjne z matematyki w klasie pierwszej po szkole podstawowej zakres podstawowy Rok szkolny: 2019/2020 Klasy: 1a,1d,1e Wymagania
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
MATeMAtyka 1. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Dorota Ponczek, Karolina Wej MATeMAtyka Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe:
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,
Plan wynikowy z rozkładem materiału
Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
Wymagania edukacyjne z matematyki
Liceum Ogólnokształcące im. Bolesława Prusa w Skierniewicach Wymagania edukacyjne z matematyki w klasie pierwszej po szkole podstawowej zakres rozszerzony Rok szkolny: 2019/2020 Klasy: 1b,1c,1e Nauczyciele:
Przedmiotowy system oceniania
Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
I. LICZBY RZECZYWISTE I/1 1 Liczby naturalne, całkowite, wymierne i niewymierne.
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: I 80 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
PRZEDMIOTOWE ZASADY OCENIANIA MATEMATYKA ZAKRES PODSTAWOWY ZESPÓŁ SZKÓŁ W CHEŁMŻY
PRZEDMIOTOWE ZASADY OCENIANIA MATEMATYKA ZAKRES PODSTAWOWY ZESPÓŁ SZKÓŁ W CHEŁMŻY PZO z matematyki uwzględniają podstawę programową kształcenia ogólnego oraz program nauczania, są integralną częścią WO
Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum
Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum I. Liczby rzeczywiste 1. Liczby naturalne 2. Liczby całkowite. 3. Liczby wymierne 4. Rozwinięcie dziesiętne liczby
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Prosto do matury. PRZEDMIOTOWY SYSTEM OCENIANIA dla szkół ponadgimnazjalnych kończących się maturą Kształcenie ogólne w zakresie podstawowym
Prosto do matury PRZEDMIOTOWY SYSTEM OCENIANIA dla szkół ponadgimnazjalnych kończących się maturą Kształcenie ogólne w zakresie podstawowym Prosto do matury. Program nauczania Przedmiotowy system oceniania
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE
Rok szkolny 2018/19 klasa 1w WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE /ocena rozpoznać liczby naturalne w tym pierwsze i złożone, całkowite, wymierne, niewymierne,
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne