ANALIZA WSPÓŁCZYNNIKA STRATY AL- GORYTMÓW PAKOWANIA FIRST FIT ORAZ BEST FIT PRZY ŁADUNKACH O ROZKŁA- DZIE GAUSSA
|
|
- Stanisława Marcinkowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zeszyty Naukowe WSInf Vol 9, Nr 2, 2010 Wojciech Horzelski 1, Dariusz Doliwa 1, Mariusz Frydrych 2 1 Uniwersytet Łódzki, Katedra Informatyki Stosowanej, Wyższa Szkoła Informatyki w Łodzi horzel@math.uni.lodz.pl, doliwa@math.uni.lodz.pl 2 Uniwersytet Łódzki, Katedra Metodyki Nauczania Matematyki, Wyższa Szkoła Informatyki w Łodzi frydrych@math.uni.lodz.pl ANALIZA WSPÓŁCZYNNIKA STRATY AL- GORYTMÓW PAKOWANIA FIRST FIT ORAZ BEST FIT PRZY ŁADUNKACH O ROZKŁA- DZIE GAUSSA Streszczenie Zadanie pakowania w klasycznym ujęciu polega na rozmieszczeniu listy ładunków L={a 1,a 2,,a n} o rozmiarach nieprzekraczających 1 w minimalnej ilości pojemników o rozmiarze jednostkowym, wymaga się przy tym, aby żaden z pojemników nie był przeładowany. Jest to zadanie z klasy problemów NP-trudnych. Do klasycznych algorytmów dla takiego problemu on-line należą metody First Fit oraz Best Fit. W pracy przedstawiono wyniki badań zachowania się współczynnika straty dla tych algorytmów przy założeniu, iż ładunki mają rozkład normalny na przedziale (0,1]. 1 Sformułowanie problemu Zadanie pakowania polega na rozmieszczeniu listy ładunków L = (a 1,, a n ), gdzie a i (0,1], w minimalnej ilości pojemników o rozmiarze 1. Wymaga się przy tym, aby suma zadań zapakowanych do każdego pojemnika nie przekraczała 1. Tak postawiony problem posiada różnorakie praktyczne zastosowania poczynając od logistycznych (np. optymalnego zapełnianie kontenerów) aż po zastosowania w sieciach komputerowych (równomierne obciążanie łączy w sieciach rozległych) [1]. DEFINICJA 1. Niech J będzie dowolnym skończonym podzbiorem zbioru liczb naturalnych i niech J oznacza moc tego zbioru. Oznaczmy L n = U J N J = n, I J oraz. 92
2 W. Orzelski, D. Doliwa, M. Frydrych Element L L nazywamy listą, jeżeli L L n to mówimy, że lista ma długość n i oznaczamy L = n. Jeżeli, to zbiór J nazywamy zbiorem indeksów listy L i oznaczamy D L, gdzie I=(0,1] Oznaczmy przez S L sumę wszystkich elementów listy: i D L Niech J k oznacza zbiór {1, 2,, k} N. L ( i) DEFINICJA 2. Niech B będzie dowolnym zbiorem skończonym k- B B elementowym rozbiciem zbioru B nazywamy funkcję: Pk : J k 2 spełniającą następujące warunki: 1. ( i ) Ø i J k P B k B B 2. P ( ) P (j) = Ø i, j Jk i j k i k P B i J k ( i ) = k 3. U B. Liczbę k nazywamy mocą rozbicia B P k. Oznaczmy przez podzbiór zbioru (2 B ) Jk składający się ze wszystkich k-elementowych rozbić zbioru B, zaś przez zbiór. Niech dalej oznacza zbiór, zaś zbiór. DEFINICJA 3. Algorytmem pakowania A nazywamy odwzorowanie A : L spełniające następujące warunki: 1. A(L) ; 2. j i A(L)(j) L( i) 1. J A(L) Wartość A(L) nazywamy rezultatem (wynikiem) działania algorytmu A dla listy L. Oznaczamy przez A zbiór wszystkich algorytmów pakowania. Ze względu na zastosowania praktyczne elementy listy L nazywać będziemy dalej zadaniami, natomiast zbiory otrzymane w wyniku rozbicia pojemnikami. Będziemy mówić też, że zadanie L(i) zostało zapakowane algorytmem A do j-ego pojemnika, jeżeli i A(L)(j). 93
3 Analiza współczynnika.. DEFINICJA 4. Niech A będzie algorytmem pakowania i niech. Poziomem pojemnika A(L)(j) nazywamy sumę elementów listy L, których indeksy należą do tego pojemnika i oznaczamy lev(a(l)(j)). Oznaczmy przez Sub(L) zbiór wszystkich podlist listy że D = J. L J L L. Zauważmy, DEFINICJA 5. Algorytm pakowania A nazywamy on-line, jeżeli dla dowolnej listy L L zachodzi: Zgodnie z powyższą definicją algorytm on-line pakuje elementy listy L zgodnie z kolejnością indeksów. DEFINICJA 6. Niech różnicę i oznaczamy ją WS A (L). A A. Stratą algorytmu pakowania A nazywamy A(L) - A(L) i = 1 lev(a(l))( i )) DEFINICJA 7. Niech A A. Współczynnikiem straty dla algorytmu pakowania nazywamy stosunek straty algorytmu doi ości wykorzystanych pojemników. i oznaczamy ją. 2 Algorytmy First Fit Oraz Best Fit Metoda First Fit (FF). W metodzie tej nie zamykamy pojemników, aż do zakończenia pakowania. Nowe zadanie umieszczane jest w pierwszym z pojemników, do którego się mieści [2]. Algorytm ten można zdefiniować poprzez indukcję względem długości pakowanej listy zadań L: 1. jeżeli L = 1, to FF(L) = D i FF(L)(1)= L L ; jeżeli zdefiniowane jest działanie algorytmu dla list o długości n 1 i L = n, wtedy:
4 W. Orzelski, D. Doliwa, M. Frydrych niech L Sub(L) Č L = n - 1. n -1 n -1 Jeżeli min (lev(ff(l )( k))) + L(D \ D ) >1, n -1 L Ln -1 k J FF(L n -1 ) FF(L) = FF(Ln -1 to ) + 1 i oraz jeżeli ; to i jeśli to, oraz. Inaczej mówiąc, pakując zadanie szukamy wśród otwartych już pojemników takich, które mogą pomieścić to zadanie i wybieramy ten o najniższym indeksie. Jeżeli nie ma pojemników mogących pomieścić zadanie to otwierany jest nowy pojemnik, do którego pakowane jest rozpatrywane zadanie. Wszystkie pojemniki pozostają otwarte aż do wyczerpania się listy zadań. Algorytm Best Fit (BF) Zasada działania zbliżona jest do działania algorytmu First Fit. Różnica polega na tym, że Best Fit stara się wybrać ten z pojemników mieszczących element, który po dodaniu go będzie miał poziom zapakowania najbliższy jedności [2]. Dokładniej algorytm ten zdefiniujemy indukcyjnie ze względu na długość pakowanej listy zadań L: 1. jeżeli L = 1, to BF(L) = D L i BF(L)(1) = L; 2. jeżeli zdefiniowane jest działanie algorytmu dla list o długości n 1 i L = n, to: Niech 95
5 Analiza współczynnika.. Jeżeli to., i oraz jeżeli to ;, i jeśli jest takie, że to oraz. 3 Analiza straty algorytmu First Fit przy zadaniach o rozkładzie Gaussa Zachowanie się algorytmu First Fit zostało zbadane jedynie dla zadań o rozkładach dyskretnych[3] oraz dla zadań o rozkładzie jednostajnym na przedziale jednostkowym[2]. Niewiele wiadomo natomiast na temat zachowania się współczynnika straty dla innych ciągłych rozkładów. Do badania wybrano rozkład normalny, jako że w praktycznych zastosowaniach zadania najczęściej spotykamy zadania o takim właśnie rozkładzie. Zastosowano tutaj generator liczb pseudolosowych oparty o metodę biegunową - Monte-Carlo [4,5]. 96
6 W. Orzelski, D. Doliwa, M. Frydrych Badania zostały przeprowadzone dla list o ustalonej długości (prezentowane poniżej wyniki dotyczą list o długości 1000 elementów). Wartości straty oraz współczynnika straty dla list o ustalonej długości są funkcją wartości oczekiwanej dla rozkładu elementu. Okazuje się, że jego zmiany w zależności od wartości oczekiwanej rozkładu mają charakter liniowy. Rys. 1. Zależność straty algorytmu FF od wartości oczekiwanej rozkładu (lista o długości elementów, rozkład Gaussa) Zależność tę można przybliżyć funkcją liniową wartości oczekiwanej rozkładu (dokładnie y = 2,01 E + 525,77, przy R-kwadrat = 0.994). Analogicznie dla współczynnika straty mamy: Rys. 2. Zależność współczynnika straty algorytmu FF od wartości oczekiwanej rozkładu (lista o długości elementów, rozkład Gaussa) Jest to też zależność o charakterze liniowym, bliskim funkcji stałej (można ją aproksymować poprzez y = 0,0002 E + 0,1016, przy R- kwadrat = 0,98) 97
7 Analiza współczynnika.. Dla porównania przy rozkładzie trójkątnym podobna zależność ma charakter wielomiany piątego stopnia: y = 3E-06E E E E E (przy R-kwadrat = 0,9984) Rys. 3. Zależność straty algorytmu FF od wartości oczekiwanej rozkładu (lista o długości elementów, rozkład trójkątny) 4 Analiza straty algorytmu Best Fit przy zadaniach o rozkładzie Gaussa Podobnie jak w przypadku algorytmu First Fit zachowanie się algorytmu Best Fit dla list zadań o rozkładach innych niż jednostajny jest słabo zbadane. Pokazane zostało jedynie ograniczenie współczynnika straty dla rozkładów skośnych [6]. W praktycznych zadaniach spotyka się jednak najczęściej listy zadań rozkładzie normalnym. Współczynnik straty algorytmu Best Fit przy takim rozkładzie zadań jest kwadratowo zależny od zmian wartości oczekiwanej rozkładu (przy ustalonej długości listy L): Rys. 4. Zależność straty algorytmu BF od wartości oczekiwanej rozkładu (lista o długości elementów, rozkład Gaussa) 98
8 W. Orzelski, D. Doliwa, M. Frydrych Dokładnie funkcję tę można aproksymować poprzez: y = 0,0332E 2-0,9771E + 78,578 (przy R-kwadrat = ). Czyli dla niewielkich wartości oczekiwanych (do ok. 0.3) algorytm Best Fit zachowuje się bardzo stabilnie utrzymując straty na niskim poziomie. Wartości współczynnika straty również mogą zostać przybliżone wielomianem drugiego stopnia: y = -6E-06x 2 + 0,0002x + 0,9839 (przy R-kwadrat = 0,9872) Rys. 5. Zależność współczynnika straty algorytmu BF od wartości oczekiwanej rozkładu (lista o długości elementów, rozkład Gaussa) Podobnie jak w przypadku algorytmu First Fit warto porównać to zachowanie się z innym rozkładem o podobnym charakterze. Dla tego celu wybrano rozkład trójkątny ze zmienną wartością oczekiwaną: Rys. 6. Zależność straty algorytmu BF od wartości oczekiwanej rozkładu (lista o długości elementów, rozkład trójkątny) 99
9 Analiza współczynnika.. 5 Wnioski Przedstawione powyżej wyniki świadczą o stabilnym zachowaniu się współczynnika nadwyżki algorytmów First Fit oraz Best Fit dla list ładunków o rozkładzie normalnym na przedziale (0,1]. W metodzie First Fit współczynnik ten można opisać funkcją liniową wartości oczekiwanej wielkości ładunków, bliską funkcji stałej. Inaczej mówiąc metoda zachowuje się podobnie niezależnie od tego czy przeważać będą duże czy małe zadania. Inaczej jest w przypadku algorytmu Best Fit. Dla list z przewagą małych zadań (dla list o rozkładach z wartością oczekiwaną 0,35) współczynnik straty ma niemalże wartość stałą. Dla list o większych zadaniach metoda pakuje zadania coraz bardzie efektywnie (osiągając współczynniki straty na poziomie 0,96-0,95). Metoda Best Fit podobnie jak dla rozkładu jednostajnego okazuje się bardziej efektywna, okupione jest to oczywiście zwiększonym czasem wykonania procesu pakowania [2]. Literatura [1] Lee C., Lee D., A simple packing algorithm, Journal of the ACM 32, 1985, [2] Hoffman E.G., Leuker G.S., Probabilistic Analysis of Packing and Partitioning Algorithms, John Wiley &Sons, New York 1991 [3] Chan, Wun-Tat; Lam, Tak-Wah; Wong, Prudence W. H. Dynamic bin packing of unit fractions items. Automata, languages and programming, [4] Karg, Ch., Köbler J., Schuler R., The complexity of generating test instances. STACS 97 (Lübeck), , Lecture Notes in Comput. Sci., 1200, Springer, Berlin, [5] Knuth D. E., The Art of Computer Programming - Seminumerical Algorithms, Addison-Wesley 1997, 1998 [6] Kenyon C., Mitzenmacher, Michael Linear waste of best fit bin packing on skewed distributions. Probabilistic methods in combinatorial optimization. Random Structures Algorithms 20 (2002), no. 3, Analysis of Algorithms for Bin Packing Problems, Journal of Algorithms 12 (1991),
10 W. Orzelski, D. Doliwa, M. Frydrych ANALYSIS OF THE LOSS RATE OF FIRST FIT AND BEST FIT PACKING ALGORITHMS BY CHARGES WITH GAUSS DISTRIBUTION Summary - The task of packing in the classic take consists in laying the list of L= cargoes out {and 1, and 2,, an} about not exceeding sizes 1 in the minimal number of containers about the individual size, they demand in addition that none of containers is overloaded. There is this assignment on the class of problems NP-trudnych. For such a problem on-line First Fit methods and Best Fit belong to classic algorithms. 101
Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych)
Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki leszekp@mimuw.edu.pl Horyzonty 2014 17-03-2014 Będlewo Zadania numeryczne
Aproksymacja diofantyczna
Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki
Metody Obliczeniowe w Nauce i Technice
Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).
B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW
Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy
Zaawansowane metody numeryczne
Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Algebra Boole a i jej zastosowania
lgebra oole a i jej zastosowania Wprowadzenie Niech dany będzie zbiór dwuelementowy, którego elementy oznaczymy symbolami 0 oraz 1, tj. {0, 1}. W zbiorze tym określamy działania sumy :, iloczynu : _ oraz
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza danych ankietowych Nazwa w języku angielskim: Categorical Data Analysis Kierunek studiów (jeśli dotyczy): Matematyka stosowana Specjalność
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa
PROBLEM ROZMIESZCZENIA MASZYN LICZĄCYCH W DUŻYCH SYSTEMACH PRZEMYSŁOWYCH AUTOMATYCZNIE STEROWANYCH
CZESŁAW KULIK PROBLEM ROZMIESZCZENIA MASZYN LICZĄCYCH W DUŻYCH SYSTEMACH PRZEMYSŁOWYCH AUTOMATYCZNIE STEROWANYCH Duże systemy przemysłowe, jak kopalnie, kombinaty metalurgiczne, chemiczne itp., mają złożoną
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI
Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Planowanie eksperymentu 2 (k p) w 2 r blokach. Stanisław Jaworski, Wojciech Zieliński
Planowanie eksperymentu 2 (k p) w 2 r blokach Stanisław Jaworski, Wojciech Zieliński 1. Wstęp W praktyce często możemy spotkać się z sytuacją, kiedy nie jest możliwe wykonanie pełnego eksperymentu czynnikowego
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Sortowanie w czasie liniowym
Sortowanie w czasie liniowym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n Po co sortować? Podstawowy problem
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Technologie Informacyjne
POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład: Generacja liczb losowych Problem generacji
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)
Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem
Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie
Rozmieszczenie liczb pierwszych Wprowadzamy funkcję π(x) def = p x 1, liczbę liczb pierwszych nie przekraczających x. Łatwo sprawdzić: π(12) = 5 (2, 3, 5, 7, 11); π(17) = 7 (2, 3, 5, 7, 11, 13, 17). Jeszcze
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Seminarium IO. Zastosowanie metody PSO w Dynamic Vehicle Routing Problem (kontynuacja) Michał Okulewicz
Seminarium IO Zastosowanie metody PSO w Dynamic Vehicle Routing Problem (kontynuacja) Michał Okulewicz 26.10.2012 Plan prezentacji Problem VRP+DR Algorytm PSO Podejścia MAPSO + 2-Opt 2-phase PSO Wyniki
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Wielomiany jednej zmiennej rzeczywistej algorytmy
Rozdział 15 Wielomiany jednej zmiennej rzeczywistej algorytmy 15.1 Algorytm dzielenia Definicja 15.1 Niech dany będzie niezerowy wielomian f K[x] (K jest ciałem) f = a 0 x m + a 1 x m 1 +... + a m, gdzie
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
O geometrii semialgebraicznej
Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście
KASYK Lech 1 Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście Tor wodny, strumień ruchu, Zmienna losowa, Rozkłady dwunormalne Streszczenie W niniejszym artykule przeanalizowano prędkości
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Zadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
14a. Analiza zmiennych dyskretnych: ciągi liczbowe
14a. Analiza zmiennych dyskretnych: ciągi liczbowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 14a. wanaliza Krakowie) zmiennych dyskretnych: ciągi
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS
FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Dystrybucje, wiadomości wstępne (I)
Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów
1. Granice funkcji - wstępne definicje i obliczanie prostych granic
1. Granice funkcji - wstępne definicje i obliczanie prostych granic Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 1. Granice w Krakowie) funkcji -
PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM
Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania
Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5
Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
4.2 Analiza fourierowska(f1)
Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
zaznaczymy na osi liczbowej w ten sposób:
1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
9. Schematy aproksymacyjne
9. Schematy aproksymacyjne T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, WNT (2004) O.H. Ibarra, C.E. Kim Fast approximation algorithms for the knapsack and sum of subset
Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator
9.9 Algorytmy przeglądu
14 9. PODSTAWOWE PROBLEMY JEDNOMASZYNOWE 9.9 Algorytmy przeglądu Metody przeglądu dla problemu 1 r j,q j C max były analizowane między innymi w pracach 25, 51, 129, 238. Jak dotychczas najbardziej elegancka
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016
AUTOMATYZACJA PROCESÓW DYSKRETNYCH 2016 Adam PRUS, Krzysztof PIEŃKOSZ Politechnika Warszawska SZEREGOWANIE ZADAŃ CZĘŚCIOWO PODZIELNYCH NA PROCESORACH RÓWNOLEGŁYCH Streszczenie. W pracy jest rozpatrywany
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 4 część I 2 Kombinatoryka Wariacje z powtórzeniami Permutacje Wariacje bez powtórzeń Kombinacje Łączenie
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
EGZAMIN DYPLOMOWY, część II, Biomatematyka
Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w populacji znajdującej się w warunkach Hardy ego-wainberga wynoszą p 2, 2pq i q 2. Wiadomo, że badany mężczyzna należy do genotypu Aa. Wyznacz
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Metody numeryczne. Sformułowanie zagadnienia interpolacji
Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej
Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem