PROBLEM ROZMIESZCZENIA MASZYN LICZĄCYCH W DUŻYCH SYSTEMACH PRZEMYSŁOWYCH AUTOMATYCZNIE STEROWANYCH
|
|
- Kamila Bielecka
- 5 lat temu
- Przeglądów:
Transkrypt
1 CZESŁAW KULIK PROBLEM ROZMIESZCZENIA MASZYN LICZĄCYCH W DUŻYCH SYSTEMACH PRZEMYSŁOWYCH AUTOMATYCZNIE STEROWANYCH Duże systemy przemysłowe, jak kopalnie, kombinaty metalurgiczne, chemiczne itp., mają złożoną strukturę i rozgałęzioną sieć połączeń, po której krążą informacje. W takich warunkach niezawodność linii informacyjnych, zależna w dużym stopniu od sposobu rozmieszczenia maszyn liczących i pomocniczego sprzętu informacyjnego w systemie sterowania, jest ważnym zagadnieniem, którego rozwiązanie decyduje o poprawności pracy całego układu. Celem niniejszego opracowania jest omówienie problemu optymalnego rozmieszczenia maszyn liczących w dużym obiekcie przemysłowym automatycznie sterowanym. Układ sterowania kombinatem można podzielić na trzy stopnie hierarchii, mianowicie: 1) systemy lokalne (podsystemy systemu sterowania), 2) system sterowania transportem, np. wewnętrznym węzłem kolejowym, 3) system sterowania kombinatem. Przyjmijmy, że w pierwszym (najniższym) stopniu sterowania nie przewiduje się zainstalowania maszyn liczących. Drugi stopień sterowania będzie wyposażony w jedną EMC, rozwiązującą zadania związane ze sterowaniem ruchem transportu kolejowego w granicach węzła wewnętrznego. Trzeci stopień rozwiązuje globalne zadania związane ze sterowaniem kombinatem, a także zadania sterowania ruchem transportu kolejowego na odcinkach między stacjami i wyposażony jest również w jedną EMC. Z trzecim stopniem sterowania są bezpośrednio związane wyższe służby kombinatu, rozmieszczone w pomieszczeniu sterowiania kombinatem. Spośród tych służb, nas będzie głównie interesować dyspozytor kombinatu. Tak więc rozpatrywany system będzie posiadał 4 węzły przyjmowania i wydawania informacji, które oznaczymy jako m j (j = 1, 2, 3, 4): 1) Sterowany obiekt m 1 : 16 Ruch Prawniczy z. 4/74
2 242 Czesław Kulik 2) EMC 1 m 2 ; 3) EMC 2 m 3 ; 4) Dyspozytor kombinatu m 4. Dla tych węzłów istnieją następujące możliwe miejsca położenia (oznaczone jako c i ): 1) Węzeł c 1, 2) Sterowanie (zarząd) portu c 2, 3) Sterowanie projektowane c 3, 4) Stacja osobowa c 4, 5) Sterowanie transportem kolejowym c 5, 6) Sterowanie kombinatem c 6. Należy podkreślić, że przebiegu między stacjami nie rozpatruje się jako oddzielnego węzła nadawania i przyjmowania informacji, ponieważ w dowolnym wariancie bezpośrednie połączenie z przebiegiem realizuje się z pomieszczenia sterowania transportu kolejowego, które jest już uwzględnione wśród węzłów połączeń. Wymienione węzły m j (j = 1, 2, 3, 4) należy w optymalny sposób rozmieścić w komórkach c i (i = 1, 2,..., 6), przy czym można wprowadzić pewne ograniczenia, np.: 1) Węzeł m 1 umieszcza się w komórce c 1, 2) Węzeł m 4 umieszcza się w komórce c 6, 3) Węzeł m 3 można umieścić tylko w komórce c 5 albo w komórce c 6. Jako kryterium optymalizacji można przyjąć korzyść w okresie T (mierzoną w kategoriach ekonomicznych). Wymienione wyżej komórki c i mogą być połączone między sobą liniami w sposób przedstawiony na rycinie. Wprowadźmy następujące oznaczenia: 1) Intensywność potoku informacji między węzłem j i k h jk bitów/sek. Schemat połączeń komórek układu sterowania
3 Problem rozmieszczenia maszyn liczących 243 2) Intensywność błędów przekazywania linii połączeń (z urządzeniami nadawczo-odbiorczymi) między komórką j i s f si, 3) Odpowiednie wagi informacji krążących między węzłem j i k 4) Funkcja kosztu linii połączenia c f = c f (h, f, l), l długość linii. W celu wyboru optymalnego rozmieszczenia węzłów w komórkach można zastosować metodykę postępowania omówioną szczegółowo w innej pracy. Ponieważ tę metodykę stosuje się tylko w odniesieniu do grafów liniowych, wydzielimy w naszym grafie (ryc.) wszystkie drogi prowadzące od c 1 do c 6. Otrzymamy następujące drogi: 1) c 1, c 2, c 3, c 4, c 5, c 6. 2) c 1, c 3, c 2, c 4, c 5, c 6. 3) c 1, c 3, c 4, c 5, c 6. 4) c 1, c 4, c 5, c 6. Dla każdej z tych dróg odszukujemy optymalne rozmieszczenie węzłów w komórkach, a następnie porównując wartość kryterium dla każdej z dróg, wybieramy ten schemat rozmieszczenia, dla którego wartość kryterium jest najważniejsza (najmniejsza). Prześledźmy postępowanie zgodne z tą metodyką dla jednej w wymienionych wyżej dróg np.: dla 1. Najpierw oblicza się wartość g TS według wzoru: g TS =c m (f T, T+1, l T, T+1, h r, r+1 )+Kp r f T, T+1, f T, T+1 intensywność błędów potoku przesyłania informacji w linii łączącej T i T+1 komórkę, l T, T+1 długość linii łączącej T i T+1 komórkę, h r, r+1 intensywność potoku informacji między r i r+1 węzłem, p r odpowiednia waga potoku informacji między r i r+1 węzłem. Następnie przyjmiemy, że r straty w przekazywaniu informacji całego systemu, w jednostce czasu (można je szacować poprzez korzyści uzyskiwane dzięki systemowi w tej samej jednostce czasu), T okres czasu, w którym maksymalizuje się korzyści. Otrzymane wartości g TS można zestawić w postaci macierzy M+N, M liczba węzłów, N liczba komórek. Przyjęte kryterium korzyść wynikająca z eksploatacji systemu w okresie T w/g może zostać sprowadzone do postaci 16*
4 244 Czesław Kulik c m koszt linii połączeń systemu, c n wielkość strat powstałych wskutek zawodności systemu, w wyrażeniu kosztowym. Powyższe wyrażenie będzie podlegać minimalizacji. Mamy już macierz: Optymalnemu rozmieszczeniu węzłów m j w komórkach c i, z uwzględnieniem omówionych poprzednio ograniczeń, odpowiada pewien zestaw elementów (droga) macierzy, mający następujące cechy: 1) numer porządkowy elementu (jego miejsce z zestawie, licząc od lewej strony do prawej) określa się na podstawie jego pierwszego indeksu; 2) liczba elementów w zestawie w rozważanym przypadku wynosi 6; 3) każdy element zestawu znajduje się w macierzy albo bezpośrednio pod poprzednim (w zestawie) albo na prawo (lecz nie na lewo), tj. jeśli w macierzy G połączyłoby się elementy pewnego zestawu liniami, to otrzymalibyśmy linię łamaną idącą od lewej strony do prawej i od góry do dołu; 4) suma elementów zestawu odpowiadającego optymalnemu rozmieszczeniu węzłów w komórkach, jest minimalna. Poszukiwany zestaw elementów można otrzymać posługując się następującym algorytmem: 1) Wybieramy element g 11, a następnie w pierwszym wierszu wybieramy szereg elementów takich, żeby każdy z nich był mniejszy od poprzedniego. Te elementy są pierwszymi elementami możliwych zestawów. Uzyskamy: 2) Do drugiego wiersza wybieramy elementy stojące w macierzy G bezpośrednio pod wybranymi elementami pierwszego wiersza. Tak więc rozpatrywać będziemy pary elementów np.: [g 11, g 21 ] i do drugiego wiersza wybierzemy elementy g 2T, spełniające następujące warunki: a) g 2T <g 21, b) g 11 <g 1T. Analogicznie będziemy wybierać elementy drugiego wiersza spełniające te warunki, lecz w odniesieniu do pary, itd. i w ten sposób otrzymujemy drugie elementy możliwych zestawów.
5 Problem rozmieszczenia maszyn liczących 245 3) W taki sam sposób rozpatruje się trzeci wiersz oraz następne i otrzymuje poszczególne zestawy. Obliczając sumę elementów każdego zestawu możemy zdecydować się na wybór poszukiwanego zestawu. Następnie według otrzymanej najkrótszej drogi znajdziemy odpowiadające jej optymalne rozmieszczenie węzłów w komórkach. W tym celu wypiszemy wszystkie pary indeksów elementów znalezionej drogi, w porządku odpowiadającym kolejności występowania tych elementów w zestawie: T 1 r 1, T 2 r 2,..., T 6 r 6. W rozpatrywanym przypadku słuszne są następujące nierówności: i T j 6; i r i 4, przy czym T j = j. Uwzględniając te nierówności, wypisane pary indeksów będą miały postać: 1r 1, 2r 2,..., 6r 6. Obecnie rozpatrujemy te pary od lewej strony do prawej otrzymując: 1) W komórce c 1 rozmieszcza się węzły m 1, m 2,..., m r1. 2) Następnie, jeśli r 2 = r 1, to w komórce c 2 nie wystąpią węzły. 3) Jeśli r 1 >r 2 (zgodnie z warunkami poszukiwania drogi niemożliwy jest przypadek r 2 <r 1 ), to w komórce c 2 rozmieszcza się węzły Rozpatrując wszystkie pary indeksów, możemy w ten sposób znaleźć poszukiwane rozmieszczenie. Opisane postępowanie powinno być przeprowadzone dla wszystkich dróg grafu, a następnie z wszystkich znalezionych wariantów rozmieszczenia należy wybrać najlepszy według przyjętego kryterium. Przy realizacji analizy strukturalnej wygodne jest stosowanie efektywnych k-spisowych procedur. Tak więc problem optymalnego rozmieszczenia maszyn liczących w dużym obiekcie automatycznie sterowanym może być stosunkowo łatwo rozwiązany, szczególnie gdy przedstawiony algorytm dla bardziej złożonych przypadków zostanie zaprogramowany i zrealizowany za pomocą komputera. W aktualnych warunkach, gdy mało jest obiektów automatycznie sterowanych, wyposażonych w kilka maszyn cyfrowych, przedstawione zagadnienia mogą się wydawać mało ważne, obserwując jednak silny rozwój metod oraz technicznych środków automatyzacji można dojść do wniosku, że omówione zagadnienia będą w przyszłości nabierać coraz większego znaczenia. PROBLEM OF COMPUTER LOCATION IN THE LARGE AUTOMATICALLY STEARED INDUSTRIAL SYSTEMS Summary The author deals with the methods of choice of the optimal location of points on the basis of linear graphs. He has also proposed an algorithm which may be aeasily programmed and used with the help of a computer.
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem
MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego
Przykład wykorzystania dodatku SOLVER 1 w arkuszu Ecel do rozwiązywania zadań programowania matematycznego Firma produkująca samochody zaciągnęła kredyt inwestycyjny w wysokości mln zł na zainstalowanie
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 13 ROZMIESZCZENIE STANOWISK (LAYOUT)
1 LOGISTYKA ZAOPATRZENIA I PRODUKCJI ĆWICZENIA 13 ROZMIESZCZENIE STANOWISK (LAYOUT) Autor: dr inż. Roman DOMAŃSKI 2 LITERATURA Marek Fertsch, Danuta Głowacka-Fertsch Zarządzanie produkcją, WSL Poznań 2004
Programowanie sieciowe. Tadeusz Trzaskalik
Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście
(x j x)(y j ȳ) r xy =
KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
znalezienia elementu w zbiorze, gdy w nim jest; dołączenia nowego elementu w odpowiednie miejsce, aby zbiór pozostał nadal uporządkowany.
Przedstawiamy algorytmy porządkowania dowolnej liczby elementów, którymi mogą być liczby, jak również elementy o bardziej złożonej postaci (takie jak słowa i daty). Porządkowanie, nazywane również często
Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych
Rola stacji gazowych w ograniczaniu strat gazu w sieciach dystrybucyjnych Politechnika Warszawska Zakład Systemów Ciepłowniczych i Gazowniczych Prof. dr hab. inż. Andrzej J. Osiadacz Dr hab. inż. Maciej
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Przykład planowania sieci publicznego transportu zbiorowego
TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład
Estymacja wektora stanu w prostym układzie elektroenergetycznym
Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Zestaw C-11: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp i.h)!!! Zad. 1: Zad. 2:
Zestaw C-11: funkcję usun rozpatrującą rozłączne trójki elementów sznura i usuwającą te z elementów trójki, które nie zawierają wartości najmniejszej w obrębie takiej trójki (w każdej trójce pozostaje
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Laboratorium ochrony danych
Laboratorium ochrony danych Ćwiczenie nr 3 Temat ćwiczenia: Kod BCH Cel dydaktyczny: Zapoznanie się z metodami detekcji i korekcji błędów transmisyjnych za pomocą binarnych kodów cyklicznych, na przykładzie
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
a) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
Algorytmy przeszukiwania
Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy
Microsoft EXCEL SOLVER
Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A
Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia
Zestaw A-1: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: 4,3,3 2,2,1 Zad. 2: 3,3,3 Zad.
Zestaw A-1: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: Napisać pakiet rodzajowy udostępniający: typ Sznur będący dynamiczną listą łączoną, której elementy przechowują
Wyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
ALGORYTM OPTYMALNEGO WYRÓWNANIA WYKRESU ZATRUDNIENIA METODĄ GRAFICZNĄ
ALGORYTM OPTYMALNEGO WYRÓWNANIA WYKRESU ZATRUDNIENIA METODĄ GRAFICZNĄ Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowiska, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa, ul. Nowoursynowska
Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ
1 Iwona Konarzewska Programowanie celowe - wprowadzenie Katedra Badań Operacyjnych UŁ 2 Programowanie celowe W praktycznych sytuacjach podejmowania decyzji często występuje kilka celów. Problem pojawia
Modelowanie niezawodności prostych struktur sprzętowych
Modelowanie niezawodności prostych struktur sprzętowych W ćwiczeniu tym przedstawione zostaną proste struktury sprzętowe oraz sposób obliczania ich niezawodności przy założeniu, że funkcja niezawodności
Program Analiza systemowa gospodarki energetycznej kompleksu budowlanego użyteczności publicznej
W programie zawarto metodykę wykorzystywaną do analizy energetyczno-ekologicznej eksploatacji budynków, jak również do wspomagania projektowania ich optymalnego wariantu struktury gospodarki energetycznej.
Temat 9. Zabłocone miasto Minimalne drzewa rozpinające
Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej
Zestaw 1: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: Zad. 2: 2,2,2 5,5,5,5,5,5 Zad.
Zestaw 1: procedurę Wstaw wstawiającą do sznura podanego jako parametr element zawierający liczbę podaną jako parametr tak, aby sznur był uporządkowany niemalejąco (zakładając, że sznur wejściowy jest
Optymalizacja systemów
Optymalizacja systemów Laboratorium Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania binarnego.
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 6/15 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania
Klasyczne zagadnienie przydziału
Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI
Autoreferat do rozprawy doktorskiej OPTYMALIZACJA HARMONOGRAMOWANIA MONTAŻU SAMOCHODÓW Z ZASTOSOWANIEM PROGRAMOWANIA W LOGICE Z OGRANICZENIAMI Michał Mazur Gliwice 2016 1 2 Montaż samochodów na linii w
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 4 Modelowanie niezawodności prostych struktur sprzętowych Prowadzący: mgr inż. Marcel Luzar Cel
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych
ZARZĄDZANIE ENERGIĄ I TELEINFORMATYKA, ZET 03 Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych Jacek Wasilewski Politechnika Warszawska
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Lista 4. Kamil Matuszewski 22 marca 2016
Lista 4 Kamil Matuszewski 22 marca 2016 1 2 3 4 5 6 7 8 9 10 Zadanie 2 Ułóż algorytm który dla danego n-wierzchołkowego drzewa i liczby k pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce
Optymalizacja systemów
Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 6/14 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów
Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego
Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)
METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach
Całka nieoznaczona, podstawowe wiadomości
Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej
WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW
Uniwersytet Ekonomiczny we Wrocławiu WIELOKRYTERIALNE PORZĄDKOWANIE METODĄ PROMETHEE ODPORNE NA ZMIANY WAG KRYTERIÓW Wprowadzenie Wrażliwość wyników analizy wielokryterialnej na zmiany wag kryteriów, przy
Wielokryteriowa optymalizacja liniowa cz.2
Wielokryteriowa optymalizacja liniowa cz.2 Metody poszukiwania końcowych rozwiązań sprawnych: 1. Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego
Materiały dla finalistów
Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
Priorytetyzacja przypadków testowych za pomocą macierzy
Priorytetyzacja przypadków testowych za pomocą macierzy W niniejszym artykule przedstawiony został problem przyporządkowania priorytetów do przypadków testowych przed rozpoczęciem testów oprogramowania.
Projektowanie rozmieszczenia stanowisk roboczych
Projektowanie rozmieszczenia stanowisk roboczych Metoda trójkątów Schmigalli Metoda trójkątów Schmigalli Dane wejściowe: - liczba rozmieszczonych stanowisk - macierz powiązań transportowych Metoda trójkątów
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1
Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Wykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej
Matematyka Dyskretna - zadania
zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Przykładowe rozwiązania
Przykładowe rozwiązania Poniższy dokument zawiera przykładowe rozwiązania zadań z I etapu I edycji konkursu (2014 r.). Rozwiązania w formie takiej jak przedstawiona niżej uzyskałyby pełną liczbę punktów
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Rozdział 9 PROGRAMOWANIE DYNAMICZNE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 9 PROGRAMOWANIE DYNAMICZNE 9.2. Ćwiczenia komputerowe Ćwiczenie 9.1 Wykorzystując
Z pojedynczym obiekcie zasady grupy znajdziemy dwa główne typy ustawień:
Zasady grupy (GPO) Windows Server 2008 R2 Zasady grupy to potężne narzędzie udostępnione administratorom systemów Windows w celu łatwiejszego zarządzania ustawieniami stacji roboczych. Wyobraźmy sobie
Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15
Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:
2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
Metody uporządkowania
Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której ilość zapełnień będzie
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W tym tekście zobaczymy rozwiązanie zadania 41 z Informatora o egzaminie maturalnym z matematyki od roku szkolnego 014/015 oraz rozwiązania
[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985.
Metody optymalizacji, wykład nr 10 Paweł Zieliński 1 Literatura [1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. [2] R.S. Garfinkel, G.L. Nemhauser Programowanie całkowitoliczbowe
Programowanie dynamiczne. Tadeusz Trzaskalik
Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
2.1. Duszek w labiryncie
https://app.wsipnet.pl/podreczniki/strona/38741 2.1. Duszek w labiryncie DOWIESZ SIĘ, JAK sterować duszkiem, stosować pętlę zawsze, wykorzystywać blok warunkowy jeżeli. Sterowanie żółwiem, duszkiem lub
łączny czas pracy (1 wariant) łączny koszt pracy (2 wariant) - całkowite (opcjonalnie - dla wyrobów liczonych w szt.)
14. Zadanie przydziału z ustalonym poziomem produkcji i limitowanym czasem pracy planowanie wielkości produkcji (wersja uproszczona) Producent może wytwarzać n rodzajów wyrobów. Każdy z wyrobów można być
6. Organizacja dostępu do danych przestrzennych
6. Organizacja dostępu do danych przestrzennych Duża liczba danych przestrzennych oraz ich specyficzny charakter sprawiają, że do sprawnego funkcjonowania systemu, przetwarzania zgromadzonych w nim danych,