Dr Łukasz Goczek. Uniwersytet Warszawski
|
|
- Tomasz Urban
- 6 lat temu
- Przeglądów:
Transkrypt
1 Dr Łukasz Goczek Uniwersytet Warszawski
2 Jeżeli y ma charakter bliski błądzeniu losowemu, y i, t 1 jest słabym instrumentem dla yit. Pytanie: które procesy w ekonomii NIE mają takiego charakteru?
3
4 . sort cty num5. correlate lpkb L.lpkb L2.lpkb L3.lpkb L4.lpkb L5.lpkb L6.lpkb L. L2. L3. L4. L5. L6. lpkb lpkb lpkb lpkb lpkb lpkb lpkb lpkb L L L L L L
5 xtunitroot fisher lpkb, dfuller lags(0) Fisher-type unit-root test for lpkb Based on augmented Dickey-Fuller tests Ho: All panels contain unit roots Number of panels = 190 Ha: At least one panel is stationary Avg. number of periods = 9.37 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Not included Drift term: Not included ADF regressions: 0 lags Statistic p-value Inverse chi-squared(376) P Inverse normal Z Inverse logit t(924) L* Modified inv. chi-squared Pm P statistic requires number of panels to be finite. Other statistics are suitable for finite or infinite number of panels
6 Blundell i Bond (1998) zaproponowali zastosowanie, oprócz regresji na różnicach, dodatkowej regresji na poziomach z opóźnionymi zmiennymi jako instrumentami. Wymaga to spełnienia dodatkowych warunków dotyczących momentów, które opierają się na warunkach stacjonarności względem początkowej obserwacji: E y '( v ) 0 i, t s i it E x '( v ) 0 i, t s i it
7 Warunki te są spełnione, gdy proces generowania danych jest stacjonarny co do średniej: ni y przy E( ) E( ) 0 i,1 i i i i (1 ) ni x przy E( ) E( ) 0 i,1 i i i i (1 )
8 Blundell i Bond (2000) pokazują, że warunek ten nie jest w rzeczywistości warunkiem koniecznym. Rozważając równanie w pierwszych można pokazad, że jeśli: E ( ' x ) 0 i i, t
9 oraz zakładając, że ten sam proces generowania danych powodował danymi PKB per capita w danej serii danych w próbie przez dostatecznie długi okres przed wybraną próbą, że wpływ warunków początkowych (w tym przypadku początkowy poziom kapitału) można uznad za nieistotny, to: E ( ' y ) 0 i i, t
10 Można zauważyd, że jeśli pierwsze różnice tych zmiennych były skorelowane z efektami stałymi dla danego kraju, miałoby to nieprawdopodobne implikacje długoterminowe. Nie oznacza, że dla danego kraju efekty stałe nie odgrywają żadnej roli w ustalaniu wzrostu. Ich wpływ jest jednym z wyznaczników stanu ustalonego poziomu produkcji na jednostkę wydajności pracy, uzależnionego od innych uwarunkowao w stanie stacjonarnym. Istotą tych założeo jest, że nie ma korelacji między wzrostem produkcji i efektem stałym, przy braku kontrolowania na obecnośd innych zmiennych.
11 Jak zostało to przedstawionej w symulacjach Monte Carlo (np. (Blundell i Bond, 1998, Blundell, et al. 2000), gdy te warunki są spełnione, otrzymany estymator UMM na różnicach i poziomach (dalej BB, ang. System GMM), ma lepsze właściwości w skooczonych próbach w zakresie obciążeo i RMSE niż estymator różnicowy Arelllano i Bonda.
12 Przy obecności heteroskedastyczności i autokorelacji w modelu, możliwe jest zastosowanie dwustopniowego estymatora UMM, korzystającego z pierwszego kroku (Davidson i MacKinnon, 2004) do oszacowania macierzy wag reszt oszacowania. Chcemy by była ona wprost proporcjonalna do odwrotności macierzy wariancji i kowariancji instrumentów, czyli macierzy: V Z ' E Z ' ' Z i i i i i i
13 Przy obecności heteroskedastyczności i autokorelacji w modelu, możliwe jest zastosowanie dwustopniowego estymatora UMM, korzystającego z pierwszego kroku (Davidson i MacKinnon, 2004) do oszacowania macierzy wag reszt oszacowania. Chcemy by była ona wprost proporcjonalna do odwrotności macierzy wariancji i kowariancji instrumentów, czyli macierzy: V Z ' E Z ' ' Z i i i i i i 1 plim W E Z ' ' Z N N i i i i
14 Przy użyciu średniej: Wˆ opt N N 1 Z ˆ ˆ i'δεiδεi ' Zi N i 1 1 Brak jednak oszacowao wartości reszt. Rozwiązanie: metoda dwustopniowa.
15 Szacuje się model metodą zmiennych instrumentalnych podstawiając w miejsce macierzy W N macierz jednostkową, uzyskując oszacowania reszt Uzyskany estymator jest nieobciążony i zgodny, jednak nie jest efektywny, ponieważ wybrana macierz nie jest optymalna Wykorzystujemy uzyskane oceny składnika losowego z pierwszego stopnia by następnie oszacowad optymalną macierz W N, którą w drugim stopniu wykorzystujemy do oszacowania ostatecznych parametrów.
16 Szacuje się model metodą zmiennych instrumentalnych podstawiając w miejsce macierzy W N macierz jednostkową, uzyskując oszacowania reszt Uzyskany estymator jest nieobciążony i zgodny, jednak nie jest efektywny, ponieważ wybrana macierz nie jest optymalna Wykorzystujemy uzyskane oceny składnika losowego z pierwszego stopnia by następnie oszacowad optymalną macierz W N, którą w drugim stopniu wykorzystujemy do oszacowania ostatecznych parametrów.
17 Chod asymptotycznie bardziej efektywny, dwustopniowy estymator UMM w skooczonych próbach przedstawia szacunki standardowych błędów, które są mocno obciążone w dół. Możliwe jest, aby rozwiązad ten problem za pomocą korekty do dwuetapowej kowariancji w skooczonej próbie zaproponowanej przez Windmeijera (2005). Korekta ta powoduje, że odporny dwustopniowy estymator UMM na różnicach i poziomach jest bardziej efektywny niż odporne estymatory jednostopniowe, nawet gdy panel jest stosunkowo krótki (korekta już omówiona przy okazji estymatora AB)
18 Dodatkowo estymator ten rozwiązuje problem błędu pomiaru i przeciwnej przyczynowości. Bond et al. (2001) wskazują, że dzięki użyciu zmiennych zerojedynkowych odpowiadających kolejnym okresom czasu zmienny w czasie błąd pomiaru w danym obserwowanym szeregu w próbie nie będzie miał konsekwencji dla oszacowania modelu i nie ma to wpływu na ważnośd użytych instrumentów UMM. Z kolei opóźnienia w poziomach pozwalają zmniejszyd problem przeciwnej przyczynowości. Oszacowany w ten sposób współczynnik uwzględnia przyczynowośd w sensie Grangera.
19 W dotychczas prezentowanych metodach instrumentami są instrumenty endogeniczne. Np. w przypadku UMM poziomów i różnic w modelach empirycznych najczęściej w przypadku równania pierwszych różnic wzrostu stosuje się różnice zmiennych objaśniających oraz drugie opóźnienia poziomu zmiennej objaśnianej, a w przypadku równania poziomów są to opóźnione pierwsze różnice zmiennej objaśnianej. Możliwe jest uwzględnienie w modelu zmiennych instrumentalnych o charakterze egzogenicznym, co pozwala na uwzględnienie zmiennych mających byd może przeciwną przyczynowośd, bądź działad jako
20 xtdpdsys dpkb l.lpkb pop ki, lags(1) vce(robust) artests(2) System dynamic panel-data estimation Number of obs = 1402 Group variable: cty Number of groups = 188 Time variable: num5 Obs per group: min = 2 avg = max = 10 Number of instruments = 58 Wald chi2(4) = Prob > chi2 = One-step results Robust dpkb Coef. Std. Err. z P> z [95% Conf. Interval] dpkb L lpkb L pop ki _cons Instruments for differenced equation GMM-type: L(2/.).dpkb Standard: LD.lpkb D.pop D.ki
21 estat abond artests not computed for one-step system estimator with vce(gmm) Arellano-Bond test for zero autocorrelation in firstdifferenced errors Order z Prob > z H0: no autocorrelation (brak podstaw do odrzucenia) Działania identyczne jak xtabond zwiększamy parametr lags, przechodzimy na metodę dwustopniową.
22 estat sargan Też problemy. Aby rozwiązad działania identyczne jak xtabond zwiększamy parametr lags, przechodzimy na metodę dwustopniową. Dwiczenia własne dojśd do właściwej postaci modelu Blundella-Bonda analogicznie do Arellano-Bonda. Podpowiem tylko, że łatwiej będzie ze zmiennymi zero-jedynkowymi. Czyli: xi: polecenie i.num5, parametry
23 Dodatkowe warunki dla estymatora BB można przetestowad różnicowym testem Sargana, znanym jako test C lub test J Hansena. Najprościej ściągnąd moduł xtabond2: net install xtabond2 I powtórzyd oszacowania przy użyciu tego modułu. Syntax dostępny na: Roodman (2006) How to do xtabond2 (wygooglad)
24 Często ma to miejsce w przypadku badao o charakterze regionalnym. Estymator zaproponowany przez Kivietsa (1995), który rozważa korektę modelu pierwszych różnic w zbilansowanym panelu, gdzie liczba N jest niewielka.
25 W ten sposób tworzy się poprawiony estymator efektów stałych, który jest bardziej efektywny niż estymatory Andersona i Hsiao (1981), Arellano i Bonda (1995) i Blundella i Bonda (1998) przy małym T i N. Bruno (2005) przedstawia zmodyfikowaną wersję tego estymatora dla paneli niezbilansowanych, co jest ważne w przypadku modeli wzrostu, gdy dla różnych krajów długośd szeregów czasowych jest różna.
26 Wadą tej metodologii jest założenie ścisłej egzogeniczności zmiennych objaśniających i niemożnośd uwzględnienia przeciwnej przyczynowości i błędu pomiaru, co podważa zastosowanie tego estymatora w dynamicznych modelach wzrostu w innych zastosowaniach niż niewielkie (regionalne) próby krajów.
27 Instalacja estymatora Kivietsa w wersji Bruno (2005): net install xtlsdvc Koniecznośd instalacji dodatkowego pakietu do System GMM: net install xtabond2 Samo polecenie: xtlsdvc lpkb pop ki, initial (bb) Gdzie w nawiasie znajduje się estymator efektywny: Bb Blundell bond AB Arellano Bond FD Anderson Hsiao
28 xtlsdvc lpkb pop ki, initial (bb) LSDVC dynamic regression (SE not computed) lpkb Coef. Std. Err. z P> z [95% Conf. Interval] lpkb L pop ki
29 Kolejnym problemem, poruszanym w literaturze ekonometrycznej dotyczącej szacowania wzrostu, jest heterogenicznośd krajów. Dotąd zakładano, że dla wszystkich krajów oszacowane współczynniki są jednakowe a zatem dla każdego j oraz i: ij j Czy tak jest? Czy wszystkie obiekty są z tego samego rozkładu? Czy jak zwiększymy okres edukacji o rok, to skutek będzie taki sam w Japonii, Polsce i Burkina Faso?
30 Problem tego typu nie da się rozwiązad w przypadku prób krajów. Jest ich za mało. Niemniej jednak można kierowad się w stronę metod z heterogenicznymi współczynnikami. Warunek: N>500. Da się jednak rozwiązad heterogenicznośd pomiędzy współczynnikami krótkookresowymi, zakładając, że przypadku długookresowym są one jednakowe.
31 Estymator Pooled Mean Group (PMG) w zastosowaniu do szacowania wzrostu gospodarczego można opisad następującym równaniem: p 1 q k y y x y x i, t i i, t z i i, t z i i, t 1 i j i, j, t 1 i, t z 1 z 0 j 1. Równanie to pozwala osobno oszacowad krótkookresową dynamikę zmiennej objaśnianej oraz dynamikę długookresową, dzięki zawarciu w próbie przekrojowo czasowej mechanizmu korekty błędem, różnej dla różnych krajów.
32 net install xtpmg xtpmg dpkb d.lpop d.lki, lr(l.lpkb lki lpop) pmg Pooled Mean Group Regression: Estimated Error Correction Form (Estimate results saved as PMG) Coef. Std. Err. z P> z [95% Conf. Interval] ec ki pop SR ec pop D ki D _cons
33 Ok. wszystkie stosowane najczęściej metody zostały omówione. Pozostaje jeszcze omówid, to co jest rzadziej stosowane w makroekonomii ze względu na krótki panel. xtrc pozwala na szacowanie przy założeniu zmiennych współczynników. Odpowiada to innemu współczynnikowi dla każdego kraju, dla każdej zmiennej. xtmixed modele hierarchiczne. Do tej pory modele liniowe. Są również rozszerzenia modeli nieliniowych do paneli.
34 Model Przekształcenie danych Zmienne objaśniające Zgodność FE Wewnątrzobiektowe y, x nie FEDW Wewnątrzobiektowe y i, t 1 i, t, x i, t 1 i, t AH yi, t 1, xi, t tak AB yi, t 1, xi, t tak BB yi, t 1, xi, t, yi, t 1, xi, t tak Kiviets yi, t 1, xi, t, yi, t 1, xi, t tak PMG yi, t 1, xi, t, yi, t 1, xi, t, ECM tak tak
35 1. FE>MNK, chociaż w przypadku niektórych obciążeń MNK bardziej efektywna. 2. FE versus RE, BE - test Hausmanna. 3. Jeżeli FE test Woolridge a, zbadać czy konieczna jest korekta na zaburzenie AR(1) 4. Pozostaje zbadać, czy model FE jednokierunkowy, czy dwukierunkowy test F zmiennych zerojedynkowych.
36 5. Anderson-Hsiao, sprawdzić testem Sargana, czy instrumenty: Poprawne, testem Craig-Donalda czy egzogeniczne. 6. Arellano-Bond jedno czy dwustopniowy, czy z korektą na skończoną próbę test Sargana i Arellano Bonda. 7. Jak źle wychodzą testy, zwiększamy liczbę instrumentów, z metody jednostopniowej przechodzimy na dwustopniową, zwiększamy liczbę instrumentów, ale bez przesady!
37 8. Blundell Bond procedura taka jak przy Arellano Bondzie. Testem J-Hansena zbadać, czy dodatkowe warunki BB są istotne. 9. Jeżeli mało danych rozważyć Kivietsa (sprawdzić, czy wynik wypada pomiędzy MNK a FE z korektą) 10. Jeżeli podejrzewa się heterogeniczność, PMG. Nawet jeżeli wybiera się metody Kivietsa i PMG warto podać wyniki innych! Metody te można ocenić testem Hausmana względem FE!
38 Największym problemem badao empirycznych w makroekonomii pozostaje niepewnośd parametrów modelu, zmiennych objaśniających. Trywializując - co jest z prawej strony?
39 Co robid z outlierami i brakującymi danymi? Dużo różnych testów, np. net install grubbs Ale najlepiej narysowad wykresy jak na pierwszych zajęciach i zobaczyd czy jakieś obserwacje wyjątkowo odstają. Brakujące dane w Stacie: ipolate - interpolacja epolate - ekstrapolacja
40
41 Dziękuję za uwagę.
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski UWAGA OGÓLNA Stata rozróżnia duże i małe litery w poleceniach. Jeśli polecenie skopiowane z mojej prezentacji nie działa w Stacie, proszę zwrócić uwagę, czy Powerpoint
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Penn World Table PWT 6.3 Alan Heston, Robert Summers and Bettina Aten, Penn World Table Version 6.3, Center for International Comparisons of Production, Income and
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski 10000 2000 4000 6000 8000 M3 use C:\Users\as\Desktop\Money.dta, clear format t %tm (oznaczamy tsset t tsline M3 0 1960m1 1970m1 1980m1 1990m1 2000m1 2010m1 t tsline
Problem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Metody ekonometryczne w modelach wzrostu gospodarczego
GOSPODARKA NARODOWA 10 (254) Rok LXXX/XXI październik 2012 s. 49-71 Łukasz GOCZEK * Metody ekonometryczne w modelach wzrostu gospodarczego Streszczenie: Celem artykułu jest przegląd i ocena poszczególnych
Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe
Część 1 to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych Czyli obserwujemy te
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 2 3 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 Diagnostyka a) Test RESET b) Test Jarque-Bera c) Testowanie heteroskedastyczności a) groupwise heteroscedasticity b) cross-sectional correlation d) Testowanie autokorelacji
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Dane krótko i długookresowe stopy procentowe Co wiemy z teorii? Krótkookresowe stopy powodują stopami długookresowymi (toteż taka jest idea bezpośredniego celu
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Problemy z danymi Obserwacje nietypowe i błędne Współliniowość. Heteroskedastycznośd i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne Obserwacje nietypowe i błędne Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2)
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Wpływ wprowadzenia wspólnej waluty do obiegu gotówkowego na zmiany w poziomie cen krajów strefy euro
Wpływ wprowadzenia wspólnej waluty do obiegu gotówkowego na zmiany w poziomie cen krajów strefy euro Karolina Konopczak NBP, Biuro ds. Integracji ze Strefą Euro Marek Rozkrut NBP, Biuro ds. Integracji
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Natalia Nehrebecka. Wykład 1
Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Dwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy organizacyjne
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Egzamin z ekonometrii IiE
Pytania teoretyczne Egzamin z ekonometrii IiE 22.06.2012 1. Kiedy selekcja próby jest problemem i jaki model można stosować w przypadku samoselekcji próby? 2. Jakie są konieczne założenia, by estymator
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne
Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa
O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym
Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 02022015 Pytania teoretyczne 1. Podać treść twierdzenia GaussaMarkowa i wyjaśnić jego znaczenie. 2. Za pomocą jakich testów testuje się autokorelację? Jakiemu założeniu
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Autokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
1.8 Diagnostyka modelu
1.8 Diagnostyka modelu Dotychczas zajmowaliśmy się własnościami estymatorów przy spełnionych założeniach KMRL. W praktyce nie zawsze spełnione są wszystkie założenia modelu. Jeżeli któreś z nich nie jest
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
6 Modele wyborów dyskretnych dla danych panelowych
6 Modele wyborów dyskretnych dla danych panelowych Dane do notatek są danymi do podręcznika Cameron & Trivedi (2008), pochodzą z artykułu Deb i Triverdi (2002). Przedmiotem badania jest eksperyment związany
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i KMRL zakłada, że wszystkie zmienne objaśniające są egzogeniczne
Ekonometria egzamin 06/03/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 06/03/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)
1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,
Egzamin z Ekonometrii
Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem
Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models
Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models ADL ADL Ogólna postać modelu ADL o p-opóźnieniach zmiennej zależnej i r-opóźnieniach zmiennej/zmiennych objaśniających
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada
Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy
Ekonometria egzamin semestr drugi 14/06/09
imię, nazwisko, nr indeksu: Ekonometria egzamin semestr drugi 14/06/09 1. Przed przystąpieniem do pisania egzaminu należy podpisać wszystkie kartki arkusza egzaminacyjnego (na dole w przewidzianym miejscu).
Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.
Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.
Jednowskaźnikowy model Sharpe`a
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Milena Jamroziak i Paweł Androszczuk Model ekonometryczny Jednowskaźnikowy model Sharpe`a dla akcji Amici Praca zaliczeniowa napisana pod kierunkiem mgr
Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści
Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, 2013 Spis treści Przedsłowie 15 Przedmowa do drugiego wydania 17 Przedmowa do trzeciego wydania 21 Nekrolog
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda