Klasická kryptologie: Historické šifry
|
|
- Patrycja Michalak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Klasická kryptologie: Historické šifry L ubomíra Balková Úvod do kryptologie 13. února 2012 L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
2 Klasická kryptografie končí 2. světovou válkou a nástupem počítačů praxe: rozluštění Enigmy polskými kryptoanalytiky počátkem roku 1933 a stavba prvního počítače v Bletchley Parku teorie: americký matematik Claude Shannon a jeho práce ze 40. let L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
3 Obsah 1 Základní pojmy 2 Substituce 3 Příklady monoalfabetických substitucí 4 Příklady polyalfabetických substitucí 5 Transpozice L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
4 Základní pojmy kryptografie x steganografie nauka o utajování nauka o utajování obsahu komunikace komunikace Kahnova encyklopedická kniha The Codebreakers z roku 1967 ustálila dnešní použití kryptologie kryptografie & kryptoanalýza navrhování odhalování slabin šifrovacích systémů šifrovacích systémů kódy = nahrazování skupin slov či vět vyhrazenými slovy či větami (kódové knihy = seznamy slov či vět otevřeného textu a odpovídajících šifrových textů) kódování = změna zápisu pomocí veřejně známých pravidel (morseovka, Baudotův kód, kódování písmen pomocí 0 25) L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
5 Formální definice kryptosystému Definice pojmů M = konečná množina otevřených textů (message space) C = konečná množina šifrových textů (ciphertext space) K = konečná množina kĺıčů (keyspace) šifrovací transformace = bijekce E e : M C, kde e K dešifrovací transformace = bijekce D d : C M, kde d K Pozn. existuje i obecnější definice, kdy šifrovací transformace nemusí být funkce, při šifrování možnost volby, ale dešifrovací transformace už funkce je (dešifrování musí být jednoznačné), takovým příkladem je homofonní substituce konvence: otevreny text SIFROVY TEXT L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
6 Formální definice kryptosystému Definice kryptosystému Definice Kryptosystém (šifra) je dvojice množin {E e e K} a {Ee 1 e K} = {Dd d K} taková, že pro ( e K) ( 1 d K) ( m M) (D d (E e (m)) = m). (e,d) = pár kĺıčů (keypair) L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
7 Druhy šifer na principu confusion (směšování): zastírá závislost mezi m a c záměnou znaků (substituce) na principu diffusion (rozptyl): rozprostře info obsažené v m po celé šifře pomocí permutace (transpozice) šifry se symetrickým kĺıčem (symmetric-key ciphers, one-key, single-key, conventional): pro každý pár kĺıčů (e, d) výpočetně snadné určit e ze znalosti d a naopak, často: e = d, odtud název blokové: otevřený text se rozděĺı do bloků (strings) pevné délky a ty se šifrují stejným kĺıčem proudové: keystream (proudový kĺıč) se sčítá s m bit po bitu L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
8 Substituce Bloková šifra se symetrickým kĺıčem. Definice Necht A je abeceda, A = n. M je množina slov délky r nad A. Blokovou šifru s bloky délky r a prostorem kĺıčů K = {e = (σ 1,σ 2,...,σ r ) σ i permutace na A} nazveme substitucí, pokud pro každé m = (m 1,m 2,...,m r ) M a každé e K platí E e (m) = (σ 1 (m 1 ),σ 2 (m 2 ),...,σ r (m r )) = c D d (c) = (σ 1 1 (c 1),σ 1 2 (c 2),...,σ 1 r (c r )) = m. Počet možných kĺıčů K = (n!) r. 1 pro σ 1 = σ 2 = = σ r jde o monoalfabetickou substituci (šifrovací tabulka má jen 2 řádky) 2 jinak polyalfabetickou L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
9 Příklady monoalfabetických substitucí Šifra Marie Stuartovny L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
10 Příklady monoalfabetických substitucí Caesarova šifra Šifrová tabulka Caesarovy šifry Plain a b c d e f g h i j k l m Cipher D E F G H I J K L M N O P Plain n o p q r s t u v w x y z Cipher Q R S T U V W X Y Z A B C Příklad Pomocí Caesarovy šifry rozluštěte citát, který Caesar vyslovil při překročení řeky Rubikon určující hranici mezi Galíı a Itálíı. Vyhlašoval tím obrazně válku Římu, protože jeho moc byla v té době omezena na Galii (prokonzul). W,K,H G,L,H L,V F,D,V,W Řešení: The die is cast. = Kostky jsou vrženy. L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
11 Příklady monoalfabetických substitucí Posuvné šifry (shift ciphers) nejznámější je Caesarova šifra Algoritmus: M = C = {0,1,...,25}, E e (m j ) := m j +b mod 26 pro e = b a D d (c j ) := c j b mod 26 šifra se symetrickým kĺıčem e = d = b, bloková šifra s bloky délky 1 Kryptoanalýza: posuvné šifry lehce rozluštitelné, stačí vyzkoušet jen #A možností L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
12 Příklady monoalfabetických substitucí Afinní šifry (affine ciphers) Příklad Algoritmus: necht a,b,n N, M = C = {0,1,...,n 1}, E e (m j ) := am j +b mod n pro e = (a,b), aby existovala Ee 1 (c j ) = a 1 (c j b) mod n, musí existovat a 1 mod n, to je splněno, právě když nsd(a,n)=1 takových a je φ(n), proto pro pevné n existuje φ(n)n afinních šifer posuvné jsou speciálním případem šifra se symetrickým kĺıčem d = (a 1, a 1 b), bloková šifra s bloky délky 1 n = 26, M = C = Z/ 26Z, e = (7,5), pak E e (m j ) = 7m j +5 mod 26 = c j, a tedy D d (c j ) = 15(c j 5) mod 26 = m j. Dešifrujte text c = 19,20,17,6,8,5,18,5,4,17,1,8. m = 2,17,24,15,19,0,13,0,11,24,18,19 Řešení: cryptanalyst. L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
13 Příklady monoalfabetických substitucí Substituce s kĺıčovým slovem Plain a b c d e f g h i j k l m Cipher J U L I S C A E R B D F G Plain n o p q r s t u v w x y z Cipher H K M N O P Q T V W X Y Z L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
14 Příklady monoalfabetických substitucí Polybiův čtverec, šachovnice Příklad Algoritmus: E e : A (ˆ5 ˆ5), tedy písmenům anglické abecedy přiřazuje dvojice čísel od 1 do a b c d e 2 f g h i/j k 3 l m n o p 4 q r s t u 5 v w x y z Pomocí Polybiova čtverce dešifrujte citát přiřazený Augustovi v Životě 12 císařů od římského historika Suetonia ( n.l.) c = m = Make haste slowly. = Spěchej pomalu. L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
15 Příklady monoalfabetických substitucí Playfairova šifra Algoritmus: bigramová šifra, zašifruje pomocí tabulky C H A R L E S B D F G I/J K M N + O P Q T U V W X Y Z úprav otevřeného textu: mm mzm, lichá délka textu na konec se přidá z SF BE (náhrada sousedními znaky vpravo) SI IP (náhrada sousedními znaky dole) VU ZO, KE GB (diagonální řádková náhrada) Příklad Dešifrujte text pomocí kĺıčového slova Charles c = ETGUUYYDPFUYPRDG m = donotztrustzthem L. Balková (FJFI ČVUT v Praze) ˇ Kryptologie 13. února / 32
16 Příklady monoalfabetických substitucí Hillova šifra Příklad Algoritmus: šifruje r-gramy na r-gramy, dáno n,r N, K = {e (Z/ nz ) r r e 1 mod n}, M = C = (Z/ nz ) r, pro m M definujeme E e (m) = m e a D d (c) = c e 1 platí, že e 1 existuje nsd(det(e),n) = 1 r = 2, n = 26, M = C = (Z/ 26Z ) 2, K = všechny invertibilní matice 2 2, tj. e K nsd(det(e),26) = 1. Vezměme e = ( ), jelikož det(e) = 9, může hrát roli kĺıče. Zašifrujte text movie. m = 12,14,21,8,4,25 E e (12,14) = (12,14)( ) mod 26 = (24,12) atd. c = 24,12,19,10,11,19 Šifrový text je tedy YMTKLT. K dešifrování je třeba znát e 1 = ( ). L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
17 Kryptoanalýza monoalfabetické substituce Relativní četnosti písmen v angličtině a b c d e f g h i j k l m n o p q r s t u v w x y z Pořadí od nejčastějšího k nejméně častému písmenu etaonirshdlucmpfywgbvjkqxz D.Kahn, 1967 etaonrishdlfcmugpywbvkxjqz A.G. Konheim, 1981 L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
18 Kryptoanalýza monoalfabetické substituce Frekvenční analýza 9. stol. - al-kindí: Rukopis o dešifrování kryptografických zpráv Příklad Pomocí frekvenční analýzy a nápovědy, že šifrová tabulka obsahuje kĺıčové slovo, prolomte: P GPQOEGPQSUSPH SN P LEVSUE RIM QTMHSHD UIRREE SHQI QOEIMEGN. SR HTGAEMN PME HIQ AEPTQSRTF, HIQOSHD SN. Frekvenční analýza není všemocná, obecně funguje až pro texty s aspoň stovkou slov. From Zanzibar to Zambia and Zaire, ozone zones make zebras run zany zigzags. L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
19 Kryptoanalýza monoalfabetické substituce Vylepšení monoalfabetické substituce klamače (nuly) = šifrování pomocí širší abecedy (např. 0 až 99), mnoho z písmen nemá význam komolení pravopisu kombinace s kódovými slovy = nomenklátory L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
20 Kryptoanalýza monoalfabetické substituce Homofonní substituce Kompromis mezi monoalfabetickou a polyalfabetickou substitucí písmenu odpovídá takové procento znaků šifrové abecedy, kolik je frekvence písmene znemožnění frekvenční analýzy Kryptoanalýza: lze vyjít ze vztahů mezi písmeny v anglických textech, např. za q následuje vždy u, q je reprezentováno jediným symbolem a u třemi symboly, najdeme tedy písmeno, za nímž se vyskytují jen tři další a máme pravděpodobně q a u L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
21 Příklady polyalfabetických substitucí Albertiho šifrovací disk Alberti jako první použil kódovou knihu, číslům 11 až 4444 přiřadil věty, např. číslu 21 odpovídala věta: Poslat v plucích, příjemci pak poslal zprávu: Poslat v plucích & P + šifrový text L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
22 Příklady polyalfabetických substitucí Vigenèrova šifra - Chiffre indéchiffrable Nejčastější varianty: 1 periodický kĺıč - opakující se slovo 2 smysluplný kĺıč - text, který nesouvisí s otevřeným textem nebo kombinace priming key a otevřeného textu (autokláv otevř. text) 3 kĺıč = kombinace priming key a šifrového textu (autokláv šifrtext) 4 náhodný kĺıč Vernamova šifra (Shannon) Příklad Dešifrujte Vigenèrovu šifru s periodickým kĺıčem period. ELZTCVDTYG WV P KRUS ZXXY WPMTGKQJHH EEL BR GYCMG Dešifrujte Vigenèrovu šifru s priming key plain. BLTPRYAMPGE IL I ISUW WOTT VQTXZ RHO RG OOMRQHJEIU L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
23 Příklady polyalfabetických substitucí Beaufortova šifra varianta Vigenèrovy šifry s periodickým kĺıčem Algoritmus: stejná šifrovací i dešifrovací funkce, tj. inverzní sama k sobě M = C = Z/ nz, e = (e 1,e 2,...,e r ) K, E e (m j ) = e j mod r m j mod n Příklad Dešifrujte Beaufortovu šifru s periodickým kĺıčem period. 1,19,14 22,14,10,8,0,5,8,21,21,13,22,17,21,22 16,11,9,13,17 11,21,11. 11,10,4,6,12 23,6,25,15,10,17,23 21,23,16,21 2,11,2,3,22,10 9,2,12,3,23,19,3,14,19,13. L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
24 Kryptoanalýza polyalfabetické substituce Vigenèrova šifra s periodickým kĺıčem Kasiského test = hledání opakujících se bloků v šifrovém textu, které zřejmě vznikly zašifrováním opakujících se úseků otevřeného textu stejným úsekem kĺıče, l =nsd(vzdálenosti opakujících se úseků) a to je pravděpodobná délka kĺıče sepsání šifrového textu do tabulky o l sloupcích a v každém z nich provedení frekvenční analýzy L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
25 Kryptoanalýza polyalfabetické substituce Vigenèrova šifra se smysluplným kĺıčem v otevřeném textu předpokládáme výskyt častých slov (např. the), správně umístěným častým slovům bude odpovídat smysluplný úsek kĺıče nalezený úsek kĺıče hádáním rozšíříme a najdeme odpovídající nové úseky otevřeného textu Příklad Prolomte VHRMHEUZNFQDEZRWXFIDK. L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
26 Kryptoanalýza mono- i polyalfabetické šifry Index koincidence (shody) Definice IC je pravděpodobnost, že dvě náhodně vybraná písmena v textu jsou stejná. Indexy koincidence angličtina 0, 0676 němčina 0, 0824 francouzština 0, 0801 ruština 0, 0470 (32 znaků v abecedě) čeština 0, 0577 náhodný text 1/26 = 0, 0385 L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
27 Transpozice Bloková šifra se symetrickým kĺıčem. Definice Bloková šifra s blokem délky r a prostorem kĺıčů K = {permutace na ˆr} se nazývá jednoduchá transpozice (permutace), pokud platí pro každé m = (m 1,m 2,...,m r ) M a pro každé e K E e (m) = (m e(1),m e(2),...,m e(r) ) = c D d (c) = D e 1(c) = (c d(1),c d(2),...,c d(r) ) = m. Počet možných kĺıčů K = r! L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
28 Příklady transpozic Spart anská transpozice - skytale, scytale Algoritmus: kožený pásek namotaný na tyči určitého průměru, na nějž se napsal text, pak se pásek sejmul, aby šel přečíst, musel mít příjemce tyč stejného průměru L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
29 Příklady transpozic Jednoduchá transpozice s heslem Příklad Algoritmus: R I F L E M I X U J E M I S T A Z A C H O V A P I S M E N A JTHIA XIAAE IMZVM USCPN MEAOS Kryptoanalýza: snadná při znalosti delšího slova otevřeného textu Prolomte, víte-li, že otevř. text obsahuje slovo transpozice. R R J C M N I K N I I H T P D M P T E I I C C Y I S V H V Z N C I A E H I O E A. L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
30 Příklady transpozic Německá ADFGVX kombinace substituce a transpozice Algoritmus: A D F G V X A b 3 m r l i D a 6 f φ 8 2 F c 7 s e u h G z 9 d x k v V 1 q y w 5 p X n j t 4 g o m = field cipher, c = DFAXFGAVGFFAAXVXFXFGAG L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
31 Příklady transpozic Německá ADFGVX poté šifrový text zapsán do obdélníku s použitím číselného kĺıče odpovídajícího slovu RIFLE R I F L E D F A X F G A V G F F A A X V X F X F G A G výsledný šifrový text FFVGAVAXFAAFGXGXFDGFXA ADFGVX vybrána, protože jejich znaky v Morseově abecedě odlišné méně překlepů při telegrafování polygramová monoalfabetická substitučně-transpoziční šifra L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
32 Zlomy v kryptologii monoalfabetická substituce (Caesar, Marie Stuartovna, Hill, Polybius, Playfair) kryptoanalýza frekvenční analýzou (9. stol. - Arabové) polyalfabetická šifra (Alberti, Vigenère, Beaufort) kryptoanalýza testem periodicity + frekvenční analýzou ( Babbage, Kasiski) konec 1. svět. války - Vernamova šifra a šifrovací stroje L. Balková (FJFI ČVUT v Praze) Kryptologie 13. února / 32
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Enigma. 27. února Úvod do kryptologie. L. Balková (ČVUT FJFI) Kryptologie 27. února / 44
Enigma podle učebního textu doc. RNDr. Jiřího Tůmy, DrSc. L ubomíra Balková Úvod do kryptologie 27. února 2012 L. Balková (ČVUT FJFI) Kryptologie 27. února 2012 1 / 44 Program 1 Složení a funkce Enigmy
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
RSA. Jakub Klemsa. 3. dubna Úvod do kryptologie
Úvod do kryptologie Fakulta jaderná a fyzikálně inženýrská 3. dubna 2013 1. Teorie Bude se hodit Asymetrická šifra 2. Lámání Fermatova metoda Pollardova p 1 metoda Wienerův útok Využití jiných chyb nepřítele
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Kombinatorika a komplexní aritmetika
a komplexní aritmetika katedra matematiky, FEL ČVUT v Praze, http://math.feld.cvut.cz/ Jan Hamhalter Datum Komplexní čísla, kombinatorika 1/56 Historie: Zavedení komplexních čísel bylo motivováno snahou
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
Nekomutativní Gröbnerovy báze
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se
Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.
Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,
Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární
Úvod do pravděpodobnosti a statistiky
KMA/MAT1 Přednáška č. 3, Úvod do pravděpodobnosti a statistiky 3. října 2016 1 Pravděpodobnost [Otipka, Šmajstrla] 1.1 Náhodný pokus, náhodný jev Teorie pravděpodobnosti vychází ze studia náhodných pokusů.
Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková
Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
Formálne jazyky Automaty. Formálne jazyky. 1 Automaty. IB110 Podzim
Formálne jazyky 1 Automaty 2 Generatívne výpočtové modely IB110 Podzim 2010 1 Jednosmerné TS alebo konečné automaty TS sú robustné voči modifikáciam existuje modifikácia, ktorá zmení (zmenší) výpočtovú
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.
1 Kapitola 1 Množiny 1.1 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky. Pro známé množiny
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI. asta
N O V I N K A K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI asta MODULOVÉ SCHODY asta...jsou nejnovějším výrobkem švédsko-polského koncernu, který se již 10 let specializuje na výrobu schodů různého typu. Jednoduchá
LBF/ZUB22 Programové vybavení ordinace zubního lékaře. Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc
Databáze LBF/ZUB22 Programové vybavení ordinace zubního lékaře Mgr. Markéta Trnečková, Ph.D. www.marketa-trneckova.cz Palacký University, Olomouc Databáze databáze = uložiště dat dříve členěny hierarchicky,
Výzvy, které před matematiku staví
1 / 21 Výzvy, které před matematiku staví výpočetní technika Edita Pelantová Katedra matematiky, FJFI, České vysoké učení technické v Praze 25. pledna 2018 Praha Zápisy čísel v minulosti 2 / 21 Římský
IEL Přechodové jevy, vedení
Přechodové jevy Vedení IEL/přechodové jevy 1/25 IEL Přechodové jevy, vedení Petr Peringer peringer AT fit.vutbr.cz Vysoké učení technické v Brně, Fakulta informačních technologíı, Božetěchova 2, 61266
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Základní pojmy pravděpodobnosti prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek,
Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 1/20
Lineární kódy, část 1 Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 7.1.2016: Lineární kódy, část 1 1/20 Dnešní přednáška 1 Základní myšlenky
NÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky
CANON INC. 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan Europe, Africa & Middle East CANON EUROPA N.V. PO Box 2262, 1180 EG Amstelveen, The Netherlands For your local Canon office, please refer
Martin Pergel. 26. února Martin Pergel
26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
Poznámky z matematiky
Poznámky z matematiky Verze: 6. října 04 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
z geoinformatických dat
z geoinformatických dat 30. listopadu 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 Dvě DN na úseku Příklad Najděte mezní situaci pro dvě DN na úseku délky L metrů tak, aby se ještě
Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/YDATA: Přednáška I. 5. říjen, / 37
Databázové systémy Relační Model Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci Petr Krajča (UP) KMI/YDATA: Přednáška I. 5. říjen, 2018 1 / 37 Organizační informace email: petr.krajca@upol.cz
Minimalizace automatů. Z. Sawa (VŠB-TUO) Teoretická informatika 2. října / 53
Minimlizce utomtů Z. Sw (VŠB-TUO) Teoretická informtik 2. říjn 2018 1/ 53 Minimlizce konečného utomtu Předpokládejme deterministický konečný utomt A = (Q,Σ,δ,q 0,F). Definice Stvy q,q Q nzýváme ekvivlentní,
Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets
Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Pavel Boček, Karel Vrbenský:
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
02GR - Odmaturuj z Grup a Reprezentací
02GR - Odmaturuj z Grup a Reprezentací podle přednášky doc. Ing. Goce Chadzitaskose, CSc 27. června 2019 Obsah 1 Grupy 4 1.1 Algebraický koncept................................ 4 1.2 Vlastnosti grup...................................
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Referenční plochy. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma
Úvod do TEXu. Brno, L A TEX dokumenty a matematika.
Úvod do TEXu 3 L A TEX dokumenty a matematika. Matematický mód Matematická prostředí v PlainTEXu a L A TEXu Mezery a písma v matematickém módu Matematické značky a symboly Konstrukce v matematickém módu
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
1 Dedekindovy řezy (30 bodů)
Pokročilá matematická analýza úlohy pro zimní semestr Dedekindovy řezy ( bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval
1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A
1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}
Obsah Atributová tabulka Atributové dotazy. GIS1-2. cvičení. ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie
ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie září 2010 prezentace 1 2 Obecně otevření atributové tabulky (vlastnosti vrstvy Open Attribute Table) řádky v tabulce jednotlivé záznamy (objekty)