Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 1/20
|
|
- Julia Kasprzak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Lineární kódy, část 1 Odpřednesenou látku naleznete v kapitolách 2.1, 2.3 a 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 1/20
2 Dnešní přednáška 1 Základní myšlenky lineárních kódů. 2 Kódování nad Z 11 kód 10-ISBN. 3 Základní informace o obecných konečných tělesech. Dobré zdroje dalších informací 1 Richard Wesley Hamming ( ): Bellovy laboratoře, 1946, technika pro opravu chyb na děrných štítcích 2 J. Adámek, Foundations of Coding, John Wiley & Sons, New York, D. J. C. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge Univ. Press, 2003 Jiří Velebil: A7B01LAG : Lineární kódy, část 1 2/20
3 Kódování versus šifrování 1 Kódování: dvě strany (Alice a Bob) si vyměňují zprávy. Při přenosu zpráv může dojít k poškození vyslané zprávy. Předpokládejme, že Alice píše Bobovi. Chceme umožnit Bobovi opravit poškozenou zprávu bez nutnosti zpětného dotazu Alice. Můžeme použít metody lineární algebry: lineární kódy. 2 Šifrování: dvě strany (Alice a Bob) si vyměňují zprávy. Při přenosu zpráv nemůže dojít k poškození vyslané zprávy, ale může dojít k odposlechu třetí stranou (ta se jmenuje Eve a ). Předpokládejme, že Alice píše Bobovi. Chceme takovou komunikaci, kterou Eve nedokáže efektivně přečíst. K účinnému šifrování je třeba použít sofistikovaných metod. Více předmět A7B01MCS (2. ročník). a Z anglického eavesdropper ten, kdo tajně naslouchá. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 3/20
4 Důležité upozornění V teorii lineárních kódů je zvykem psát vektory z F n do řádku (na rozdíl od zbytku této přednášky). Co tím ztrácíme a co tím získáváme? 1 Vycvičeni dosavadním průběhem této přednášky, ztrácíme okamžitý geometrický přehled o tom, co se při kódování skutečně děje. Pro zájemce: ve skutečnosti geometrický přehled neztrácíme; pracujeme jen s kovektory místo s vektory, viz kapitolu 3.5 skript. To znamená, že kódování má jasnou geometrickou interpretaci v duálním prostoru. 2 Získáváme kompatibilitu s rozsáhlou literaturou o kódování. Protože nám jde jen o velmi krátký úvod do lineárních kódů, přijmeme práci s řádkovými vektory v teorii kódů jako fakt. Kdo to nemůže přijmout (a nechce pracovat v duálním prostoru), at všechny matice a maticové rovnice z teorie kódů transponuje. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 4/20
5 Která lineární algebra je tedy ta správná? 1 Psaní vektorů z F n do sloupců nám umožnilo chápat součin A x jako funkční hodnotu lineárního zobrazení A v bodě x. Chápání součinu A x jako funkční hodnoty vedlo k přirozené geometrické interpretaci maticových výpočtů. To je ve shodě s tím, jak značíme funkční hodnoty ve zbytku matematiky: značku f (x) chápeme jako funkční hodnotu funkce f v bodě x. 2 Při psaní vektorů z F n do řádku bychom museli hodnotu lineárního zobrazení A v bodě x značit x A. a Tento způsob uvažování o maticovém součinu je ve shodě s (menšinovým) názorem, že funkční hodnotu funkce f v bodě x bychom měli značit (x)f. Takovému značení funkčních hodnot se říká reverse Polish notation (RPN). a A přesně to se v teorii lineárních kódů děje, viz generování kódových slov pomocí generující matice. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 5/20
6 Proč jsme v přednášce zvolili sloupcovou lineární algebru? 1 Protože na RPN nejsme zvykĺı, zvolili jsme sloupcovou lineární algebru. Je totiž ve shodě s tím, jak uvažujeme ve zbytku matematiky. 2 lineární algebra navíc není ve svém značení úplně Řádková důsledná. Dochází tak k absurditám: a například soustava ( ) rovnic ze sloupcové lineární algebry by se v řádkové lineární algebře měla správně zapisovat ale neděje se tak. Řádková lineární algebra pro soustavy rovnic přebírá zápis sloupcové lineární algebry! a Vzpomeňte si, kolikrát se v textech z řádkové lineární algebry objevuje rčení:... jednotlivé vektory nyní napíšeme do sloupců matice... Jiří Velebil: A7B01LAG : Lineární kódy, část 1 6/20
7 Rovina v R 3 jako lineární kód Rovina x + y z = 0 je lineární podprostor W dimense 2 v R 3. 1 Volbou báze W lze generovat prvky W. 1 W má bázi (např.): g 1 = (1, 2, 3), g 2 = (0, 1, 1). 2 Tudíž x W iff existují a 1, a 2 R tak, že a 1 g 1 + a 2 g 2 = x. (Protože báze určuje systém souřadnic.) 3 Neboli: volbou a 1, a 2 lze vygenerovat ( x W ) takto: x = (a 1, a 2 ) }{{} generující matice G Vektor (a 1, a 2 ) budeme považovat za vektor informačních bitů. Vektor x = (a 1, a 2 ) G = (a 1, 2a 1 + a 2, 3a 1 + a 2 ) Alice odešle Bobovi. Vektor x obsahuje redundantní informaci. Tato informace chrání informační bity před poškozením. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 7/20
8 Rovina v R 3 jako lineární kód (pokrač.) Rovina x + y z = 0 je lineární podprostor W dimense 2 v R 3. 2 Volbou ortogonálního doplňku W lze testovat, zda vektory leží ve W. 1 W má ortogonální doplněk (např.): H = (1, 1, 1). 2 Tudíž x W iff H x T = o. (Protože ortogonální doplněk tu je normálový vektor.) 3 Neboli: syndrom s vektoru x = (x 1, x 2, x 3 ), kde s = ( ) }{{} kontrolní matice H určuje míru příslušnosti do W. x 1 x 2 x 3 Jiří Velebil: A7B01LAG : Lineární kódy, část 1 8/20
9 Rovina v R 3 jako lineární kód (pokrač.) Rovina x + y z = 0 je lineární podprostor ( ) W dimense 2 v R Generující a kontrolní matice G = H = ( ) Alice z informace (3, 2) vygeneruje kódové slovo (3, 2) G = (3, 8, 11) z prostoru W. Toto slovo odešle Bobovi. Bob přijme slovo (3, 7, 11). Došlo k poškození? Bob spočte syndrom přijatého slova: 3 H 7 = 1 11 Syndrom je nenulový, k chybě došlo. Na jaké posici k chybě došlo? Jak ji opravit? Jiří Velebil: A7B01LAG : Lineární kódy, část 1 9/20
10 Problémy při opravě v lineárních kódech nad R 1 Základní problém při opravě: reálných čísel je příliš mnoho. 2 Potřebujeme konečné číselné obory, které se chovají stejně jako R. Neboli: potřebujeme obecná konečná tělesa. Důvod: chceme použít lineární algebru. Existence konečných těles Potřebujeme dostatečnou zásobu konečných těles F. Existence nekonečně mnoha konečných těles souvisí s existencí nekonečného počtu prvočísel. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 10/20
11 Příklad: kód 10-ISBN Deset cifer: použity jsou symboly z množiny {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X }. Chápeme je jako zbytky po dělení číslem 11. Příklad: X kde jednotlivé skupiny znamenají: 1 0 jazyk knihy (angličtina) nakladatelství (Penguin Mathematics) číslo knihy, přidělené nakladatelstvím 4 X kontrolní bit Obecně: kódové slovo kódu 10-ISBN je x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10, kde 10 i=1 ix i = 0 jako zbytek po dělení číslem 11. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 11/20
12 Kód 10-ISBN (pokrač.) Kdy je řetězec x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 kódem ISBN? Právě tehdy, když jeho syndrom (1, 2, 3, 4, 5, 6, 7, 8, 9, X ) }{{} kontrolní matice H kódu 10-ISBN x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 je nula (počítáno jako zbytek po dělení číslem 11). Jiří Velebil: A7B01LAG : Lineární kódy, část 1 12/20
13 Kód 10-ISBN (pokrač.) Jak vytvořit kód ISBN? Info o knize = 9 bitů. Jak spočítat kontrolní bit? (x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9 ) } {{ } generující matice G kódu 10-ISBN = (x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10 ) počítáno jako zbytek po dělení číslem 11. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 13/20
14 Kód 10-ISBN (pokrač.) 1 Kódy 10-ISBN = vektory v lineárním podprostoru W lineárního prostoru (Z 11 ) 10. Báze B prostoru W = řádky matice G. Dimense W = 9. 2 Info o knize = souřadnice x ve W vzhledem k bázi B. 3 Test při příjmu = syndrom H x T. Řádky H = báze ortogonálního doplňku k W. Kód 10-ISBN = lineární 11-kód délky 10 a dimense 9. Je schopen detekovat jednu chybu a prohození dvou pozic. a a To jsou běžné písařské chyby. 10-ISBN je starý kód, začíná být nahrazován kódem 13-ISBN. Co je Z 11? Jiří Velebil: A7B01LAG : Lineární kódy, část 1 14/20
15 Připomenutí (viz první přednášku) definice tělesa Množině F spolu se dvěma operacemi sčítání + : F F F, násobení : F F F, říkáme těleso, pokud jsou splněny následující podmínky: 1 Axiomy pro sčítání: sčítání je komutativní, asociativní a má neutrální prvek 0. Každý prvek má opačný prvek vzhledem ke sčítání. 2 Axiomy pro násobení: násobení je komutativní, asociativní a má neutrální prvek 1. 3 Distributivní zákon: platí a (b + c) = a b + a c. 4 Test invertibility: a 0 právě tehdy, když existuje a 1. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 15/20
16 Počítání modulo číslo Zvolme přirozené číslo m 1. Sčítání a násobení definujeme na zbytcích po dělení číslem m. Množinu zbytků označíme Z m. Například: pro m = 4 je Z 4 = {0, 1, 2, 3}. Tabulky sčítání a násobení v Z 4 jsou: Například (jako zbytky): = 5 = 1, 2 3 = 6 = 2 v Z 4. Pozor: 3 1 = 3 (protože 3 3 = 1), ale 2 1 neexistuje. Tedy Z 4 není těleso. Důvod: existuje a 0, pro které neexistuje a 1. Test invertibility je jediný z axiomů tělesa, který je v Z 4 porušen. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 16/20
17 Věta Z m je těleso právě tehdy, když m je prvočíslo. Důkaz. A7B01MCS, 2. ročník. Příklady těles tvaru Z p, p prvočíslo 1 Těleso Z 2 : 2 Těleso Z 3 : Jiří Velebil: A7B01LAG : Lineární kódy, část 1 17/20
18 Příklady těles tvaru Z p, p prvočíslo (pokrač.) 3 Násobení v tělese Z 11 (vzpomeňte si na 10-ISBN): Jiří Velebil: A7B01LAG : Lineární kódy, část 1 18/20
19 Poznámky k existenci prvočísel (více A7B01MCS, 2. ročník) 1 Množina P všech prvočísel je nekonečná množina. Hledání velkých prvočísel je ale velmi obtížné. 2 The Great Internet Mersenne Prime Search. Ke dni je největším známým prvočíslem číslo (GIMPS, leden 2013) Má cifer. Viz například stránky: O některých testech prvočíselnosti se lze dočíst například v textu J. Velebil, Diskrétní matematika, Praha, Jiří Velebil: A7B01LAG : Lineární kódy, část 1 19/20
20 Úplný popis konečných těles Tělesa tvary Z p, kde p je prvočíslo, netvoří úplný seznam konečných těles. Vytvoření úplného seznamu konečných těles vyžaduje rozumět výpočtům v okruhu Z p [x] (okruh polynomů nad Z p ) modulo polynom. Více v předmětu A7B01MCS a například v textu J. Velebil, Diskrétní matematika, Praha, Obecná konečná tělesa umožňují studium dalších aplikací: 1 Cyklické kódy. 2 Šifrování na eliptických křivkách. 3 A řadu dalších. Jiří Velebil: A7B01LAG : Lineární kódy, část 1 20/20
Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Co byste měl/a zvládnout po 1. týdnu
Co byste měl/a zvládnout po 1. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: Lineární algebra, ZS 2017 Zvládnutá látka po 1. týdnu 1/5 Upozornění Řada z následujících
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
(A B) ij = k. (A) ik (B) jk.
Příklady z lineární algebry Michael Krbek 1 Opakování 1.1 Matice, determinanty 1. Je dána matice 1 2 0 M = 3 0 1. 1 0 1 Určete M 2, MM T, M T M a vyjádřete M jako součet symetrické a antisymetrické matice!
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Nekomutativní Gröbnerovy báze
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7
Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy
1 Úvodem Prezentace předmětu VMP je vytvořena pro nový předmět, který si klade za cíl seznámit studenty se základy lineární algebry a se základy numerické matematiky. Zejména v prvním tématu budeme pracovat
Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková
6 Dedekindovy řezy (30 bodů)
Pokročilá lineární algebra 3. série 6 Dedekindovy řezy (3 bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval Dedekind
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.
1 Kapitola 1 Množiny 1.1 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky. Pro známé množiny
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se
Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých
1 Dedekindovy řezy (30 bodů)
Pokročilá matematická analýza úlohy pro zimní semestr Dedekindovy řezy ( bodů) V této úloze se pokusíme seznámit s Dedekindovými řezy, pomocí nichž zavedeme reálná čísla. Tuto konstrukci vymyslel a publikoval
Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
ÚVOD DO ARITMETIKY Michal Botur
ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.
Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156
Vysvětlování modelovacích chyb Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Co nás čeká 1 Konjunktivní dotazy 2 Vyhodnocování konjunktivních dotazů v jazyce ALC
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Ústav teorie informace a automatizace RESEARCH REPORT. Pavel Boček, Karel Vrbenský: Implementace algoritmu MIDIA v prostředí Google Spreadsheets
Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Pavel Boček, Karel Vrbenský:
Poznámky z matematiky
Poznámky z matematiky Verze: 6. října 04 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu
Základy obecné algebry
. Základy obecné algebry Ústav matematiky, Fakulta strojního inženýrství VUT v Brně, 2013 Obsah 1 Algebraické struktury 3 1.1 Operace a zákony................................. 3 1.2 Některé důležité typy
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura
Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. algoritmu. Katedra algebry
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jiří Lechner Dekodér konvolučního kódu pomocí Viterbiho algoritmu Katedra algebry Vedoucí bakalářské práce: doc. RNDr. Jiří Tůma,
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Univerzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Lukáš Perůtka Hledání optimálních strategií číselného síta Katedra algebry Vedoucí diplomové práce: Prof. RNDr. Aleš Drápal, CSc.,
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A
1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}
Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
Výzvy, které před matematiku staví
1 / 21 Výzvy, které před matematiku staví výpočetní technika Edita Pelantová Katedra matematiky, FJFI, České vysoké učení technické v Praze 25. pledna 2018 Praha Zápisy čísel v minulosti 2 / 21 Římský
Numerické metody a statistika
Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 2016-2017 ( ) Numerické metody a statistika 2016-2017 1 / 17 Číslo předmětu: 714-0781/02 Rozsah: 2+2 Hodnocení: 6 kreditů Přednáší: Radek Kučera
Univerzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita arlova v Praze Matematicko-fyzikální fakulta BAALÁŘSÁ PRÁCE Matěj Novotný Operátory skládání na prostorech funkcí atedra matematické analýzy Vedoucí bakalářské práce: doc. RNDr. Jiří Spurný
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
RSA. Jakub Klemsa. 3. dubna Úvod do kryptologie
Úvod do kryptologie Fakulta jaderná a fyzikálně inženýrská 3. dubna 2013 1. Teorie Bude se hodit Asymetrická šifra 2. Lámání Fermatova metoda Pollardova p 1 metoda Wienerův útok Využití jiných chyb nepřítele
Západočeská univerzita v Plzni Fakulta aplikovaných věd. Katedra matematiky. Semestrální práce - matematika a byznys
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Obor: Matematické inženýrství Optimální výrobní program Semestrální práce - matematika a byznys Vypracovala: Radka Zahradníková
MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,
Paradoxy geometrické pravděpodobnosti
Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Úvod do Informatiky (FI:IB000)
Fakulta Informatiky Masarykova Univerzita Úvod do Informatiky (FI:IB000) Doc. RNDr. Petr Hliněný, Ph.D. hlineny@fi.muni.cz 15. března 2010 Obsažný a dobře přístupný úvod do nezbytných formálních matematických
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.
MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:
Kapitola 2. Nelineární rovnice
Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné
David Nádhera Kontinuace implicitně zadané křivky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE David Nádhera Kontinuace implicitně zadané křivky Katedra numerické matematiky Vedoucí bakalářské práce: Doc. RNDr. Vladimír Janovský
FAKULTA STAVEBNÍ JOSEF DALÍK NUMERICKÉ METODY II
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JOSEF DALÍK NUMERICKÉ METODY II STUDIJNÍ MATERIÁL Tento studijní materiál byl zpracován s podporou projektu OPVK ESF Rozvoj a modernizace doktorského studijního
Martin Pergel. 26. února Martin Pergel
26. února 2017 Užitečné informace Navážeme na Programování I, změníme jazyk na C#, podrobnosti o C# budou v navazujícím kurzu, soustředíme se na totéž, co v zimě, tedy: technické programování, návrh a
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Chyby, podmíněnost a stabilita
Chyby, podmíněnost a stabilita Numerické metody 4. března 2018 FJFI ČVUT v Praze 1 Úvod Čísla v počítači Chyby Citlivost Stabilita 1 Čísla v počítači Čísla v počítači - Celá čísla jméno bity rozsah typy
7. Aplikace derivace
7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,
FAKULTA STAVEBNÍ NUMERICKÉ METODY II
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JOSEF DALÍK, JIŘÍ VALA, OTO PŘIBYL NUMERICKÉ METODY II STUDIJNÍ MATERIÁL Tento studijní materiál byl zpracován s podporou projektu OPVK ESF Rozvoj a modernizace
Kombinatorika a komplexní aritmetika
a komplexní aritmetika katedra matematiky, FEL ČVUT v Praze, http://math.feld.cvut.cz/ Jan Hamhalter Datum Komplexní čísla, kombinatorika 1/56 Historie: Zavedení komplexních čísel bylo motivováno snahou
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
Mendelova univerzita v Brně user.mendelu.cz/marik
INŽNÝRSKÁ MATMATIKA Robert Mařík Mendelova univerzita v Brně marik@mendelu.cz user.mendelu.cz/marik ABSTRAKT. Učební text k mým přednáškám z předmětu Inženýrská matematika. Text je poměrně hutný a není
02GR - Odmaturuj z Grup a Reprezentací
02GR - Odmaturuj z Grup a Reprezentací podle přednášky doc. Ing. Goce Chadzitaskose, CSc 27. června 2019 Obsah 1 Grupy 4 1.1 Algebraický koncept................................ 4 1.2 Vlastnosti grup...................................