Sprawozdanie Ćwiczenie nr 14 Sprężyna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sprawozdanie Ćwiczenie nr 14 Sprężyna"

Transkrypt

1 Sprawozdanie Ćwiczenie nr 14 Sprężyna Karol Kraus Budownictwo I rok Studia niestacjonarne Gr. I A

2 1.Wstęp teoretyczny Celem wykonanego zadania jest wyznaczenie stałej sprężystości metodą statyczną i dynamiczna, oraz stwierdzenie prawdziwości prawa Hooke a Zjawisko sprężystości polega na tym że ciało po zadziałaniu na nim siłą odkształca się, a gdy siła przestaje działać ciało wraca do swojego poprzedniego kształtu. Prawo Hooke a określa zależnośd odkształcenia od naprężenia. Głosi ono, że odkształcenie ciała pod wpływem działającej na nie siły jest proporcjonalne do tej siły. Prawo to jest słuszne tylko w przypadku niewielkich odkształceo. Naprężenie jest to siła odkształcająca odniesiona do jednostki pola powierzchni, na jaką działa. Wyznaczamy je wzorem(1.1). - naprężenie wewnętrzne Fs-wartośd siły sprężystości S- płaszczyzna powierzchni przekroju poprzecznego. Metoda statyczna w tym dwiczeniu polega na zawieszaniu na sprężynie niewielkich odważników zaczynając od masy 10g., aż do uzyskania masy 160g. Po zawieszeniu odważnika należy zmierzyd długośd na jaką rozciągnęła się sprężyna. Do wyznaczenia stałej sprężystością ta metoda posłużymy się wzorem(1.2) k stat - stała sprężystości x- odkształcenie F- Siła sprężystości Metoda dynamiczna w tym dwiczeniu polega zawieszeniu na sprężynie odważników o określonych masach a następnie zmierzeniu czasu 20 drgan sprężyny dla każdego z obciążenia. Do wyznaczenia stałej sprężystości ta metodą posłużymy się wzorem(1.3) 2.Opis metody Na sprężynę zaczepiamy haczyk z ciężarkami, sprężynę doczepiamy do statywu z ruchoma skala(skala dokładności 1mm) i wybieramy na niej punkt odniesienia (przesuwając skale) tak aby górna częśd haczyka znajdowała się na początku naszej miarki. Następnie mierzymy wydłużenie sprężyny dla różnych wartości obciążenia. Drugim naszym pomiarem będzie zmierzeniu czasu 20 drgao sprężyny dla każdego z obciążenia

3 Ociązenie(g) Uzyskane wyniki.(tabela1) Ociązenie(g) Wydłuzenie spręzyny(mm) Czas drgan(s) 1 pomiar 2 pomiar 3 pomiar średni czas 20 drgao ,12 7,44 7,38 7, ,41 8,26 8,65 8, ,24 11,47 11,16 11, ,96 14,8 14,94 14, ,12 17,13 17,6 17,28 3.Opracowanie wyników Wykres 1.1 przedstawia zależnośd wydluzenia sprężyny (x) od obciążenia(m). 180 X(m) y = x Sprawdzenie prawdziwości prawa Hook a W poniższej tabeli zostały przedstawione dane (m) masa obciążenia, która zastępuje siłę sprężystości (Fs) i (x) wydłużenie sprężyny, jako powierzchnia przekroju poprzecznego (S) oraz na ich podstawie zostało wyliczone naprężenie ( ). Dzięki temu możemy odczytad, że wraz ze wzrostem masy obciążenia wzrasta wydłużenie sprężyny. Wzrost ten jest jednak nieznaczny i rośnie powoli. Wynika z tego, że odkształcenie sprężyny jest niewielkie, a co za tym idzie, prawo Hooke a okazuje się byd prawdziwe. Fs(m) s(x) ( ) , , , , ,84 Wyznaczenie stałej sprężystości metodą statyczną

4 W odniesieniu do sprężyn, czy innych ciał o skomplikowanych kształtach do obliczenia stałej sprężystości korzystamy z wzoru(1.2) Po przekształceniu otrzymujemy Wynik przedstawiam w formie tabeli(3) F(N) x(cm) ( ) Wynik uśredniony , , , , ,04 7,65 Stała sprężystości dla badanej sprężyny wynosi Wyznaczenie stałej sprężystości metodą dynamiczną Badana sprężyna porusza się ruchem harmonicznym, współczynnik sprężystości można więc obliczyd ze wzoru(1.3) Po przekształceniu otrzymujemy Do obliczenia stałej sprężystości posłużymy się wykresem m(t 2 ). Do sporządzenia wykresu potrzebujemy danych o czasie jednego drgnięcia sprężyny. Dane przedstawiam w tabeli(4) m(kg) 0,02 7,31 0,73 0,53 0,04 8,44 0,84 0,71 0,06 11,29 1,13 1,27 0,11 14,90 1,49 2,22 0,16 17,28 1,79 2,99

5 3,50 3,00 Wykres(2) przedstawia zależnośd wiążącą masę z okresem T^2(m) y = 18,242x + 0,1229 2,50 2,00 1,50 1,00 T^2(m) Liniowy (T^2(m)) 0,50 0,00 0 0,05 0,1 0,15 0,2 Korzystając z naszego wykresu oraz ze wzoru(1.3), możemy przystąpid do obliczania stałej sprężystości metodą dynamiczną. Odczytujemy z wykresu współczynnik kierunkowy: Ze wzoru Wyznaczamy Przyrównujemy nasz współczynnik kierunkowy do i wyznaczamy k. Podstawiając dane do wzoru otrzymujemy

6 Obliczenie niepewności pomiarowej Podczas padania sprężyny zaszła niepewnośd pomiarowa przy mierzeniu czasu drgao sprężyny dla każdego obciążenia. Niepewności te przedstawię w formie tabeli Wartośd średnia Dodatnia bezwzględna niepewnośd pomiarowa Ujemna bezwzględna niepewnośd pomiarowa Względna wartośd pomiarowa Obciążenie (g) T 20 maksymalne T 20 minimalne 20 7,44 7,12 7,31 0,19-0,19 2,6% 40 8,65 8,26 8,44 0,18-0,18 2,1% 60 11,47 11,16 11,29 0,13-0,13 1,2% ,96 14,8 14,90 0,1 0,1 0,6% ,6 17,12 17,28 0,16 0,16 0,9% 4.Wnioski Współczynnik w stosunku do różni się znacznie pomimo faktu, że badana była ta sama sprężyna z tymi samymi obciążeniami. Druga metoda wyznaczania współczynnika sprężystości, obarczona jest dużym błędem. Podczas mierzenia drgao sprężyna kołysze się na boki co ma duży wpływ na dokładnośd pomiaru, metoda ta opiera się na ruchu harmonicznym, który w tym przypadku zostaje mocno zakłócony i powoduje rozbieżnośd wyniku. Zatem pierwsza metoda wydaje się bardziej wiarygodna. 4.Literatura

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

Ćw. 32. Wyznaczanie stałej sprężystości sprężyny

Ćw. 32. Wyznaczanie stałej sprężystości sprężyny 0/0/ : / Ćw.. Wyznaczanie stałej sprężystości sprężyny Ćw.. Wyznaczanie stałej sprężystości sprężyny. Cel ćwiczenia Sprawdzenie doświadczalne wzoru na siłę sprężystą $F = -kx$ i wyznaczenie stałej sprężystości

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej Doświadczalne wyznaczanie (sprężystości) sprężyn i zastępczej Statyczna metoda wyznaczania. Wprowadzenie Wartość użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3

Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3 Wyznaczanie. Ćwiczenie nr 3 Metoda teoretyczna Znając średnicę D, średnicę drutu d, moduł sprężystości poprzecznej materiału G oraz liczbę czynnych zwojów N, współczynnik można obliczyć ze wzoru: Wzór

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,

Bardziej szczegółowo

Miarą oddziaływania jest siła. (tzn. że siła informuje nas, czy oddziaływanie jest duże czy małe i w którą stronę się odbywa).

Miarą oddziaływania jest siła. (tzn. że siła informuje nas, czy oddziaływanie jest duże czy małe i w którą stronę się odbywa). Lekcja 4 Temat: Pomiar wartości siły ciężkości. 1) Dynamika dział fizyki zajmujący się opisem ruchu ciał z uwzględnieniem przyczyny tego ruchu. Przyczyną ruchu jest siła. dynamikos (gr.) = potężny, mający

Bardziej szczegółowo

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. 2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie.

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie. Mając do dyspozycji 20 kartek papieru o gramaturze 80 g/m 2 i wymiarach 297mm na 210mm (format A4), 2 spinacze biurowe o masie 0,36 g każdy, nitkę, probówkę, taśmę klejącą, nożyczki, zbadaj, czy maksymalna

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

Ćwiczenie 11. Moduł Younga

Ćwiczenie 11. Moduł Younga Ćwiczenie 11. Moduł Younga Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego materiału obciążonego stałą siłą.

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl

Bardziej szczegółowo

Podstawy niepewności pomiarowych Ćwiczenia

Podstawy niepewności pomiarowych Ćwiczenia Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Temat ćwiczenia:

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje

Bardziej szczegółowo

Rozwiązanie: Część teoretyczna

Rozwiązanie: Część teoretyczna Zgodnie z prawem Hooke a idealnie sprężysty pręt o długości L i polu przekroju poprzecznego S pod wpływem przyłożonej wzdłuż jego osi siły F zmienia swoją długość o L = L F/(S E), gdzie współczynnik E

Bardziej szczegółowo

LABORATORIUM FIZYCZNE

LABORATORIUM FIZYCZNE LABORATORIUM FIZYCZNE Instytut Fizyki Politechniki Krakowskiej ĆWICZENIE 5 Wyznaczanie modułu sztywności G metodą dynamiczną. Ćwiczenie 5 ĆWICZENIE 5 Wyznaczanie modułu sztywności G metodą dynamiczną 1.

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. XLVIII OLIMPIADA FIZYCZNA (1998/1999). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, 2000. Autor: Nazwa zadania: Działy: Słowa kluczowe:

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania

2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania UT-H Radom Instytut Mechaniki Stosowanej i Energetyki Laboratorium Wytrzymałości Materiałów instrukcja do ćwiczenia 2.2 Wyznaczanie modułu Younga na podstawie ścisłej próby rozciągania I ) C E L Ć W I

Bardziej szczegółowo

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Dowiadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Wprowadzenie Wahadło Oberbecka jest bryłą sztywną utworzoną przez tuleję (1) i cztery identyczne wkręcone

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana

Bardziej szczegółowo

U: Dyskutują na temat przykładów podanych przez nauczyciela.

U: Dyskutują na temat przykładów podanych przez nauczyciela. [Wpisz tekst] Typ szkoły: Liceum ogólnokształcące Dział: Ruch punktu materialnego : Tarcie kinetyczne i dynamiczne Cel główny: uczeo poznaje naturę zjawiska tarcia, towarzyszącego nam w codziennym działaniu

Bardziej szczegółowo

Badanie ugięcia belki

Badanie ugięcia belki Badanie ugięcia belki Szczecin 2015 r Opracował : dr inż. Konrad Konowalski *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest: 1. Sprawdzenie doświadczalne ugięć belki obliczonych

Bardziej szczegółowo

Wyznaczanie modułu sztywności metodą Gaussa

Wyznaczanie modułu sztywności metodą Gaussa Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z

Bardziej szczegółowo

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na

Bardziej szczegółowo

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA Agnieszka Głąbała Karol Góralczyk Wrocław 5 listopada 008r. SPRAWDZENIE PRAWA STEFANA - BOLTZMANA LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE z Ćwiczenia 88 1.Temat i cel ćwiczenia: Celem niniejszego ćwiczenia

Bardziej szczegółowo

Rys. 1Stanowisko pomiarowe

Rys. 1Stanowisko pomiarowe ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 8

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 8 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 8 DO ZDOBYCIA 50 PUNKTÓW Jest to powtórka przed etapem szkolnym. zadanie 1 10 pkt Areometr służy do pomiaru gęstości cieczy. Przedstawiono go na rysunku poniżej, jednak ty

Bardziej szczegółowo

prędkości przy przepływie przez kanał

prędkości przy przepływie przez kanał Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

FIZYKA METALI - LABORATORIUM 3 Badanie współczynnika rozszerzalności cieplnej wybranych metali i stopów

FIZYKA METALI - LABORATORIUM 3 Badanie współczynnika rozszerzalności cieplnej wybranych metali i stopów FIZYKA METALI - LABORATORIUM 3 Badanie współczynnika rozszerzalności cieplnej wybranych metali i stopów. CEL DWICZENIA Celem laboratorium jest zdobycie umiejętności i wiedzy w zakresie wyznaczenia współczynnika

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

Scenariusz lekcji fizyki Temat: SIŁA SPRĘŻYSTOŚCI I JEJ ZALEŻNOŚĆ OD BEZWZGLĘDNEGO PRZYROSTU DŁUGOŚCI SPRĘŻYNY.

Scenariusz lekcji fizyki Temat: SIŁA SPRĘŻYSTOŚCI I JEJ ZALEŻNOŚĆ OD BEZWZGLĘDNEGO PRZYROSTU DŁUGOŚCI SPRĘŻYNY. Scenariusz lekcji fizyki Temat: SIŁA SPRĘŻYSTOŚCI I JEJ ZALEŻNOŚĆ OD BEZWZGLĘDNEGO PRZYROSTU DŁUGOŚCI SPRĘŻYNY. I klasa Gimnazjum Towarzystwa Salezjańskiego Nauczyciel fizyki prowadzący lekcje: Bożena

Bardziej szczegółowo

Wyznaczenie reakcji belki statycznie niewyznaczalnej

Wyznaczenie reakcji belki statycznie niewyznaczalnej Wyznaczenie reakcji belki statycznie niewyznaczalnej Opracował : dr inż. Konrad Konowalski Szczecin 2015 r *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest sprawdzenie doświadczalne

Bardziej szczegółowo

Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości

Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości Przykładowe zadania z działu: Pomiary, masa, ciężar, gęstość, ciśnienie, siła sprężystości Zad.1 Za pomocą mierników elektronicznych, mierzących czas z dokładnością do 0,01(s), trójka uczniów mierzyła

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

Pracownia Astronomiczna. Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu

Pracownia Astronomiczna. Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu Pracownia Astronomiczna Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu Każdy pomiar obarczony jest błędami Przyczyny ograniczeo w pomiarach: Ograniczenia instrumentalne

Bardziej szczegółowo

ZJAWISKO PIEZOELEKTRYCZNE.

ZJAWISKO PIEZOELEKTRYCZNE. ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Doświadczalne badanie drugiej zasady dynamiki Newtona

Doświadczalne badanie drugiej zasady dynamiki Newtona Doświadczalne badanie drugiej zasady dynamiki Newtona (na torze powietrznym) Wprowadzenie Badane będzie ciało (nazwane umownie wózkiem) poruszające się na torze powietrznym, który umożliwia prawie całkowite

Bardziej szczegółowo

Scenariusz lekcji fizyki

Scenariusz lekcji fizyki Scenariusz lekcji fizyki Temat: BADAMY SIŁĘ CIĘZKOŚCI. JAK SIŁA ZALEŻY OD MASY CIAŁA. I klasa Gimnazjum Towarzystwa Salezjańskiego Studenci prowadzący lekcje: Agnieszka Gościniak i Anna Kimlińska Studenci

Bardziej szczegółowo

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 N 0 3 19-0_1 Rok: II Semestr: 3 Forma studiów:

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Modelowanie Wspomagające Projektowanie Maszyn

Modelowanie Wspomagające Projektowanie Maszyn Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga metodą jednostronnego rozciągania Wprowadzenie Ze względu na budowę struktury cząsteczkowej, ciała stałe możemy podzielić

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą zginania pręta

Wyznaczanie modułu Younga metodą zginania pręta POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu FIZYKA Kod przedmiotu KS017; KN017; LS017; LN017 Ćwiczenie Nr 1 Wyznaczanie modułu Younga metodą

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA

INŻYNIERIA MATERIAŁOWA POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW INŻYNIERIA MATERIAŁOWA INŻYNIERIA POLIMERÓW Właściwości tworzyw polimerowych przy rozciąganiu. Streszczenie: Celem ćwiczenia jest przeprowadzenie

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem.

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących pomiaru prędkości obrotowej zgodnie z poniższym przykładem Tab Wyniki i błędy pomiarów U [V] U [V] f [Hz] U [V] δ U

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową. Klasa I Lekcja wstępna omówienie programu nauczania i Przedmiotowego Systemu Oceniania Tytuł rozdziału w

Bardziej szczegółowo

KONSPEKT ZAJĘĆ EDUKACYJNYCH

KONSPEKT ZAJĘĆ EDUKACYJNYCH KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Przedmiot: fizyka Klasa: II technikum poziom rozszerzony Czas trwania: 45 min. Data: Część merytoryczna: Dział programowy: Ruch harmoniczny i fale mechaniczne

Bardziej szczegółowo

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0 2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

SPRAWDZANIE PRAWA HOOKE A I WYZNACZANIE MODUŁU YOUNGA

SPRAWDZANIE PRAWA HOOKE A I WYZNACZANIE MODUŁU YOUNGA ĆWICZENIE 10 SPRAWDZANIE PRAWA HOOKE A I WYZNACZANIE MODUŁU YOUNGA Cel ćwiczenia: Sprawdzenie prawa Hooke a oraz wyznaczenie modułu Younga badanego metalu metodą pomiaru wydłużenia. Zagadnienia: sprężystość,

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Laboratorium Metod Badania Materiałów Statyczna próba rozciągania

Laboratorium Metod Badania Materiałów Statyczna próba rozciągania Robert Gabor Laboratorim Metod Badania Materiałów Statyczna próba rozciągania Więcej na: www.tremolo.prv.pl, www.tremolo.pl dział laboratoria 1 CZĘŚĆ TEORETYCZNA Statyczna próba rozciągania ocenia właściwości

Bardziej szczegółowo

Metody badań materiałów konstrukcyjnych

Metody badań materiałów konstrukcyjnych Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ROZSZERZALNOŚCI CIEPLNEJ METODĄ ELEKTRYCZNĄ

WYZNACZANIE WSPÓŁCZYNNIKA ROZSZERZALNOŚCI CIEPLNEJ METODĄ ELEKTRYCZNĄ Ćwiczenie 29 WYZNACZANIE WSPÓŁCZYNNIKA ROZSZERZALNOŚCI CIEPLNEJ METODĄ ELEKTRYCZNĄ Cel ćwiczenia: pomiar wydłużenia względnego drutu w funkcji temperatury oraz wyznaczenie liniowego współczynnika rozszerzalności

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 1 Pomiary napięcia i prądu miernikami analogowymi i cyfrowymi Rzeszów 2016/2017 Imię i nazwisko Grupa Rok studiów

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:

Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego:

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..

Bardziej szczegółowo

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2 Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą zginania pręta MATEMATYKA Z ELEMENTAMI FIZYKI. Ćwiczenie Nr 1 KATEDRA ZARZĄDZANIA PRODUKCJĄ

Wyznaczanie modułu Younga metodą zginania pręta MATEMATYKA Z ELEMENTAMI FIZYKI. Ćwiczenie Nr 1 KATEDRA ZARZĄDZANIA PRODUKCJĄ POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu ISO17; INO17 Ćwiczenie Nr 1 Wyznaczanie modułu Younga

Bardziej szczegółowo

Drgania. O. Harmoniczny

Drgania. O. Harmoniczny Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

Laboratorium Podstaw Fizyki. Ćwiczenie 100a Wyznaczanie gęstości ciał stałych

Laboratorium Podstaw Fizyki. Ćwiczenie 100a Wyznaczanie gęstości ciał stałych Prowadzący: najlepszy Wykonawca: mgr Karolina Paradowska Termin zajęć: - Numer grupy ćwiczeniowej: - Data oddania sprawozdania: - Laboratorium Podstaw Fizyki Ćwiczenie 100a Wyznaczanie gęstości ciał stałych

Bardziej szczegółowo

SZCZEGÓŁOWE CELE EDUKACYJNE

SZCZEGÓŁOWE CELE EDUKACYJNE Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego.

3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego. Badanie woltomierza 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rożnymi układami nastawienia napięcia oraz metodami jego pomiaru za pomocą rożnych typów woltomierzy i nabranie umiejętności posługiwania

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo