ČVUT FEL, K October 1, Radek Mařík Ověřování modelů II October 1, / 39
|
|
- Jacek Jabłoński
- 5 lat temu
- Przeglądów:
Transkrypt
1 Ověřování modelů II Radek Mařík ČVUT FEL, K13132 October 1, 2014 Radek Mařík Ověřování modelů II October 1, / 39
2 Obsah 1 Temporální logiky LTL logika 2 Jazyk modelů Vlastnosti ověřování modelů Čas v UPPAAL Urgentní přechody UPPAAL 3 UPPAAL příklady Přejezd vlaků přes most Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
3 Obsah Temporální logiky LTL logika 1 Temporální logiky LTL logika 2 Jazyk modelů Vlastnosti ověřování modelů Čas v UPPAAL Urgentní přechody UPPAAL 3 UPPAAL příklady Přejezd vlaků přes most Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
4 Temporální logiky LTL logika LTL syntaxe [Voj10] LTL je sublogikou CTL* Povoluje pouze formule tvaru Aϕ, ve kterých stavové podformule jsou atomickými výroky LTL formule se vytváří dle následující gramatiky: ϕ ::= Aψ (A se často vynechává) ψ ::= p ψ ψ ψ ψ ψ X ψ F ψ Gψ ψuψ ψrψ, kde p AP. LTL se vyjadřuje o specifických cestách v dané Kripkeho struktuře tj. ignoruje větvění Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
5 Temporální logiky LTL logika LTL, CTL, CTL* [Voj10] LTL a CTL nelze vůči sobě porovnat: CTL nemůže např. vyjádřit LTL formuli A(FGp) LTL nemůže např. vyjádřit CTL formuli AG(EFp) CTL* pokrývá jak LTL, tak i CTL disjunkce (A(FGp)) (AG(EFp)) se nedá vyjádřit ani v LTL, ani v CTL. Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
6 Obsah Jazyk modelů 1 Temporální logiky LTL logika 2 Jazyk modelů Vlastnosti ověřování modelů Čas v UPPAAL Urgentní přechody UPPAAL 3 UPPAAL příklady Přejezd vlaků přes most Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
7 Jazyk modelů Podmínky nad hodinami [BDL05] C... množina hodin B(C)... množina konjunkcí nad jednoduchými podmínkami typu x c x y c kde x, y C, c N, {<,, =,, >} Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
8 Jazyk modelů Dotazovací jazyk [BDL05] Stavové formule... popisují individuální stavy. Běhové formule... vyhodnocují se podél cest a stop modelu. dosažitelnost, bezpečnost, živost. Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
9 Jazyk modelů Stavové formule [BDL05] výraz, který lze vyhodnotit pro daný stav, aniž by bylo nutné analyzovat chování modelu. nadmnožinou stráží, tj. nemá žádný postranní efekt, na rozdíl od stráží, použití disjunkcí není omezeno. Test, zda proces je v dané pozici... P.l P... proces l... pozice zablokování (deadlock)... speciální stavová formule, která je splněna pro všechny zablokované stavy, Stav je zablokovaný, jestliže neexistuje žádný akční přechod z daného stavu či jakéhokoliv jeho zpožděného následníka. Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
10 Obsah Vlastnosti ověřování modelů 1 Temporální logiky LTL logika 2 Jazyk modelů Vlastnosti ověřování modelů Čas v UPPAAL Urgentní přechody UPPAAL 3 UPPAAL příklady Přejezd vlaků přes most Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
11 Vlastnosti ověřování modelů Dosažitelnost [BDL05] nejjednodušší vlastnost, požaduje, zda-li existuje možnost, že daná stavová formule ϕ je splněná v každém dosažitelném stavu. tj. existuje cesta z počátečního stavu taková, že ϕ bude jednou splněná podél této cesty. kontrola základních vlastností modelu že platí alespoň základní chování příklad komunikačního protokolu s jedním vysílačem a jedním přijímačem je vůbec možné odeslat zprávu vysílačem zpráva má nadějí být prijmuta přijímačem. v UPPAAL: E[]ϕ Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
12 Vlastnosti ověřování modelů Bezpečnost [BDL05] něco špatného nikdy nenastane příklad modelu jaderné elektrárny provozní teplota je vždy (invariantně) pod určitým prahem, nikdy nedojde k roztavení nádoby varianta: něco není možné, aby vůbec nastalo příklad hraní hry bezpečný stav je takový, že pokud můžeme ještě hru, pak už neexistuje možnost, abychom ji prohráli. v UPPAAL: formuluje se pozitivně nechť ϕ je stavová formule A[]ϕ E ϕ... ϕ by měla být pravdivá ve všech dosažitelných stavech E[]ϕ... existuje maximální cesta, podél které ϕ je vždy pravdivá Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
13 Vlastnosti ověřování modelů Živost [BDL05] něco jednoho dne určitě nastane příklady stisknutí tlačítka on na dálkovém ovladačí způsobí, že se televize jednou zapne. v modelu komunikačního protokolu: jakákoliv vyslaná zpráva bude jednou přijmuta. v UPPAAL: A<>ϕ E ϕ... ϕ bude vždy jednou splněna ϕ --> ψ A (ϕ A ψ)... kdykoliv je splněna ϕ, potom bude jednou splněna i ψ Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
14 Obsah Čas v UPPAAL 1 Temporální logiky LTL logika 2 Jazyk modelů Vlastnosti ověřování modelů Čas v UPPAAL Urgentní přechody UPPAAL 3 UPPAAL příklady Přejezd vlaků přes most Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
15 Čas v UPPAAL Pozorovatel [BDL05] Příklad přidaný automat detekuje události, aniž by bylo nutné měnit vlastní model detekce resetování hodin navíc resetování hodin (x:=0) Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
16 Čas v UPPAAL Výchozí varianta příkladu [BDL05] Cílem je zůstat v pozici, pokud platí podmínka na hodinách a poté opustit pozici Varianta 1: bez invariantu Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
17 hodiny x Čas v UPPAAL 1. varianta příkladu [BDL05] čas Cílem je zůstat v pozici, pokud platí podmínka na hodinách a poté opustit pozici Varianta 1: bez invariantu A[] obs.taken imply x>=2 E<> obs.idle and x>3 Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
18 hodiny x Čas v UPPAAL 2. varianta příkladu [BDL05] čas Cílem je zůstat v pozici, pokud platí podmínka na hodinách a poté opustit pozici Varianta 2: s invariantem A[] obs.taken imply (x>=2 and x<=3) E<> obs.idle and x>2 E<> obs.idle and x>3... neplatí A[] obs.idle imply x<=3 Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
19 hodiny x Čas v UPPAAL 3. varianta příkladu [BDL05] čas Cílem je zůstat v pozici, pokud platí podmínka na hodinách a poté opustit pozici Varianta 3: bez invariantu se stráží A[] x>3 imply not obs.taken... zablokování A[] not deadlock... neplatí Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
20 hodiny x Čas v UPPAAL 4. varianta příkladu [BDL05] čas Cílem je zůstat v pozici, pokud platí podmínka na hodinách a poté opustit pozici Varianta 4: bez invariantu se stráží s rovností A[] x>2 imply not obs.taken... zablokování A[] not deadlock... neplatí Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
21 hodiny x Čas v UPPAAL 5. varianta příkladu [BDL05] čas Cílem je zůstat v pozici, pokud platí podmínka na hodinách a poté opustit pozici Varianta 5: s invariantem a se stráží s rovností A[] obs.taken imply x==2 E<> obs.idle and x>2... neplatí A[] obs.idle imply x<=2 Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
22 Obsah Urgentní přechody UPPAAL 1 Temporální logiky LTL logika 2 Jazyk modelů Vlastnosti ověřování modelů Čas v UPPAAL Urgentní přechody UPPAAL 3 UPPAAL příklady Přejezd vlaků přes most Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
23 Urgentní přechody UPPAAL Příklad 1, procesy P, Q [?] Cílem je provést přechod se synchronizací co možná nejdříve. tj. jakmile jsou oba automaty P a Q připraveny (současně v pozicích l 1 a s 1 ). Jak zvolit model, když se do pozic dostanou v jiný okamžik? Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
24 Urgentní přechody UPPAAL Příklad 1, procesy P, Q, X 3 [?] Cílem je provést přechod se synchronizací co možná nejdříve. tj. jakmile jsou oba automaty P a Q připraveny (současně v pozicích l 1 a s 1 ). Jak zvolit model, když se do pozic dostanou v jiný okamžik? Řešení: urgent chan a Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
25 Urgentní přechody UPPAAL Příklad 1, procesy P, Q, X 3 [?] Cílem je provést přechod se synchronizací co možná nejdříve. tj. jakmile jsou oba automaty P a Q připraveny (současně v pozicích l 1 a s 1 ). Jak zvolit model, když se do pozic dostanou v jiný okamžik? Řešení: urgent chan a Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
26 Urgentní přechody UPPAAL Příklad 2, procesy P, Q, X 3 [?] Cílem je provést přechod s podmínkou i == 5, jakmile je splněna. Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
27 Urgentní přechody UPPAAL Příklad 2, procesy P, Q, R, X 3 [?] Cílem je provést přechod s podmínkou i == 5, jakmile je splněna. tj. jakmile jsou oba automaty P a Q připraveny (současně v pozicích l 1 a s 1 ). Jak zvolit model, když se do pozic dostanou v jiný okamžik? Řešení: urgent chan go další proces emitující akci go! Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
28 Urgentní přechody UPPAAL Příklad 2, procesy P, Q, R, X 3 [?] Cílem je provést přechod s podmínkou i == 5, jakmile je splněna. tj. jakmile jsou oba automaty P a Q připraveny (současně v pozicích l 1 a s 1 ). Jak zvolit model, když se do pozic dostanou v jiný okamžik? Řešení: urgent chan go další proces emitující akci go! Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
29 Urgentní přechody UPPAAL Urgentní kanály [?] urgent chan hurry Semantika: Nenastane žádné zpoždění, pokud hrana s urgentní akcí může být provedena. Omezení: Na hranách s urgentní akcí nejsou povoleny žádné stráže s hodinami. Invarianty a stráže na datovými proměnnými jsou povoleny. Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
30 Urgentní přechody UPPAAL Urgentní pozice pomocí hodin [?] Předpokládejme, že modelujeme jednoduché systém M, které přijímá baĺıky na kanálu a a ihned je odesílá na kanál b P 1 modeluje systém pomocí hodin x Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
31 Urgentní přechody UPPAAL Urgentní pozice [?] Předpokládejme, že modelujeme jednoduché systém M, které přijímá baĺıky na kanálu a a ihned je odesílá na kanál b P 2 modeluje systém pomocí urgentní pozice P 1 a P 2 mají totožné chování Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
32 Urgentní přechody UPPAAL Urgentní kanály [?] Semantika: Nenastane žádné zpoždění v urgentní pozici. Poznámka: Použití urgetních pozic redukuje počet hodin v modelu a tím i složitost analýzy. Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
33 Obsah UPPAAL příklady Přejezd vlaků přes most 1 Temporální logiky LTL logika 2 Jazyk modelů Vlastnosti ověřování modelů Čas v UPPAAL Urgentní přechody UPPAAL 3 UPPAAL příklady Přejezd vlaků přes most Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
34 UPPAAL příklady Přejezd vlaků přes most Myšlenka příkladu [BDL05] Radek Mařík Ověřování modelů II October 1, / 39
35 UPPAAL příklady Přejezd vlaků přes most Slovní zadání příkladu [BDL05] Zadání řízení přístupu k mostu pro několik vlaků most jako kriticky sdílený zdroj může být přejížděn pouze jedním vlakem systém je definován jako několik vlaků a řadič vlak nemůže být zastaven okamžitě, rovněž rozjezd trvá dobu. Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
36 UPPAAL příklady Přejezd vlaků přes most Časování a komunikace [BDL05] Časová omezení a komunikace při příjezdu k mostu vlak včas vyšle appr! signál poté vlak má 10 časových jednotek, aby přijal signál k zastavení umožňuje bezpečné zastavení před mostem po těchto 10 časových jednotkách, trvá dalších 10 jednotek, než vlak dojede k mostu, pokud není zastaven jestliže je vlak zastaven, vlak se rozjede po té, co přijme signál go! z řadiče mostu když vlak opouští most, vyšle signál leave! Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
37 UPPAAL příklady Přejezd vlaků přes most Synchronizační signály [BDL05] Radek Mařík Ověřování modelů II October 1, / 39
38 UPPAAL příklady Přejezd vlaků přes most Šablona vlaku [BDL05] Radek Mařík Ověřování modelů II October 1, / 39
39 UPPAAL příklady Přejezd vlaků přes most Šablona řadiče mostu [BDL05] Radek Mařík Ověřování modelů II October 1, / 39
40 UPPAAL příklady Přejezd vlaků přes most Ověření modelu [BDL05] E<> Gate.Occ E<> Train(0).Cross E<> Train(1).Cross E<> Train(0).Cross and Train(1).Stop E<> Train(0).Cross and (forall (i : id_t) i!= 0 imply Train(i).Stop) A[] forall (i : id_t) forall (j : id_t) Train(i).Cross && Train(j).Cross imply i == j A[] Gate.list[N] == 0 Train(0).Appr --> Train(0).Cross Train(1).Appr --> Train(1).Cross Train(2).Appr --> Train(2).Cross Train(3).Appr --> Train(3).Cross Train(4).Appr --> Train(4).Cross Train(5).Appr --> Train(5).Cross A[] not deadlock Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
41 Literatura I UPPAAL příklady Přejezd vlaků přes most Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL, updated 25th october Technical report, Department of Computer Science, Aalborg University, Denmark, October Tomas Vojnar. Formal analysis and verification. Lecture handouts, August Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II October 1, / 39
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Automatové modely. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Automatové modely Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Stefan
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.
Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
CA CZ, s.r.o. May 21, Radek Mařík Testování řídicích struktur May 21, / 45
Testování řídicích struktur Radek Mařík CA CZ, s.r.o. May 21, 2010 Radek Mařík (radek.marik@ca.com) Testování řídicích struktur May 21, 2010 1 / 45 Obsah 1 Testování cest Princip Kritéria pokrytí Demo
NÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky
CANON INC. 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan Europe, Africa & Middle East CANON EUROPA N.V. PO Box 2262, 1180 EG Amstelveen, The Netherlands For your local Canon office, please refer
Register and win! www.kaercher.com
Register and win! www.kaercher.com A B A, B A B 2 6 A régi készülékek értékes újrahasznosítható anyagokat tartalmaznak, amelyeket tanácsos újra felhasználni. Szárazelemek, olaj és hasonló anyagok ne kerüljenek
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Návod k použití BUBNOVÁ SUŠIČKA
Návod k použití BUBNOVÁ SUŠIČKA CZ Česky, 1 SK Slovenčina, 52 TCD 83B HU Magyar, 18 TR Türkçe, 69 PL Polski, 35 Při prvním zapnutí sušičky musíte zvolit preferovaný jazyk, viz str. 6 Obsah Důležité informace,
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
3. Problémy s omezujícími podmínkami (CSP Constraint Satisfaction Problems)
Základy umělé inteligence 3. Problémy s omezujícími podmínkami (CSP Constraint Satisfaction Problems) Jiří Kubaĺık Katedra kybernetiky, ČVUT-FEL http://cw.felk.cvut.cz/doku.php/courses/y33zui/start pproblémy
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156
Vysvětlování modelovacích chyb Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Vysvětlování modelovacích chyb 133 / 156 Co nás čeká 1 Konjunktivní dotazy 2 Vyhodnocování konjunktivních dotazů v jazyce ALC
Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;
Deterministické zásobníkové automaty Definice 3.72. Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je deterministický (DPDA), jestliže jsou splněny tyto podmínky: 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z),
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Expresivní deskripční logiky
Expresivní deskripční logiky Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Expresivní deskripční logiky 79 / 156 Co nás čeká 1 Inference v deskripčních logikách 2 Inferenční algoritmy Tablový algoritmus
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
TVL 26925 LED NÁVOD K POUŽITÍ NÁVOD NA POUŽITIE
TVL 26925 LED NÁVOD K POUŽITÍ NÁVOD NA POUŽITIE BAREVNÝ TELEVIZNÍ PŘÍJÍMAČ S DÁLKOVÝM OVLÁDÁNÍM FAREBNÝ TELEVÍZNY PRIJÍMAČ S DIALKOVÝM OVLÁDÁNÍM TELEWIZOR KOLOROWY Z PILOTEM Obsah Vlastnosti... 2 Úvod...
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
ZÁVĚREČNÁ KONFERENCE Poslanecká sněmovna PČR Praha 28. 4. 2014 MEZINÁRODNÍ DOTAZNÍKOVÉ ŠETŘENÍ ANKIETY MIEDZYNARODOWE
ZÁVĚREČNÁ KONFERENCE oslanecká sněmovna ČR raha 28. 4. 2014 MEZINÁRODNÍ DOTAZNÍKOVÉ ŠETŘENÍ ANKIETY MIEDZYNARODOWE ZÁKLADNÍ INFORMACE ODSTAWOWE INFORMACJE sběr dat proběhl v olsku a v České republice ankiety
Obkládačky a dlaždičky Płytki ścienne i podłogowe: SIGHT šedá szary
SIGHT 2 Obkládačky a dlaždičky Płytki ścienne i podłogowe: SIGHT šedá szary SIGHT Fascinující design pro přirozený moderní akcent: SIGHT série obkládaček a dlaždiček ze slinutého materiálu vilbostone vytváří
ULS4805FE. Návod k použití Návod na použitie Instrukcja obsługi Instruction Manual Használatı utasítás. Licensed by Hyundai Corporation, Korea
ULS4805FE Návod k použití Návod na použitie Instrukcja obsługi Instruction Manual Használatı utasítás Licensed by Hyundai Corporation, Korea Obsah Bezpečnostní informace...2 Označení na produktu...2 Informace
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
IEL Přechodové jevy, vedení
Přechodové jevy Vedení IEL/přechodové jevy 1/25 IEL Přechodové jevy, vedení Petr Peringer peringer AT fit.vutbr.cz Vysoké učení technické v Brně, Fakulta informačních technologíı, Božetěchova 2, 61266
A71100TSW0 CS MRAZNIČKA NÁVOD K POUŽITÍ 2 PL ZAMRAŻARKA INSTRUKCJA OBSŁUGI 18 SL ZAMRZOVALNIK NAVODILA ZA UPORABO 35
A71100TSW0 CS MRAZNIČKA NÁVOD K POUŽITÍ 2 PL ZAMRAŻARKA INSTRUKCJA OBSŁUGI 18 SL ZAMRZOVALNIK NAVODILA ZA UPORABO 35 2 PRO DOKONALÉ VÝSLEDKY Děkujeme vám, že jste si zvolili výrobek značky AEG. Aby vám
Vlastnosti. Příprava. Czech - 2 -
Obsah Vlastnosti... 2 Úvod... 2 Příprava... 2 Bezpečnostní opatření... 3 Obsah balení... 4 Informace o životním prostředí... 5 Tlačítka dálkového ovládání... 6 LCD TV a Ovládací tlačítka... 7 Přehled zapojení
Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu
Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ
Obsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
CS Návod k použití 2 Chladnička s mrazničkou PL Instrukcja obsługi 23 Chłodziarko-zamrażarka S93820CMX2
CS Návod k použití 2 Chladnička s mrazničkou PL Instrukcja obsługi 23 Chłodziarko-zamrażarka S93820CMX2 2 OBSAH 1. BEZPEČNOSTNÍ INFORMACE... 3 2. BEZPEČNOSTNÍ POKYNY...4 3. POPIS SPOTŘEBIČE...6 4. PROVOZ...7
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Formálne jazyky Automaty. Formálne jazyky. 1 Automaty. IB110 Podzim
Formálne jazyky 1 Automaty 2 Generatívne výpočtové modely IB110 Podzim 2010 1 Jednosmerné TS alebo konečné automaty TS sú robustné voči modifikáciam existuje modifikácia, ktorá zmení (zmenší) výpočtovú
Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se
Algebra I Cvičení Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se kterými jsem při přípravě cvičení spolupracoval. Sbírka vznikla modifikací některých
TGH01 - Algoritmizace
TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl
F88030VI. Instrukcja obsługi
F88030VI Návod k použití Instrukcja obsługi Návod na používanie Myčka nádobí Zmywarka Umývačka riadu 2 Obsah Děkujeme, že jste si vybrali jeden z našich vysoce kvalitních výrobků. Přečtěte si prosím pozorně
Minimalizace automatů. Z. Sawa (VŠB-TUO) Teoretická informatika 2. října / 53
Minimlizce utomtů Z. Sw (VŠB-TUO) Teoretická informtik 2. říjn 2018 1/ 53 Minimlizce konečného utomtu Předpokládejme deterministický konečný utomt A = (Q,Σ,δ,q 0,F). Definice Stvy q,q Q nzýváme ekvivlentní,
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ Katedra matematiky. Dudek Martin. obor Matematická studia
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ Katedra matematiky BAKALÁŘSKÁ PRÁCE Některé řadící algoritmy Dudek Martin obor Matematická studia Vedoucí práce: PhDr. Lukáš HONZÍK, Ph.D. Plzeň 2018
SANTO 70318-5 KG. mrazničkou
SANTO 70318-5 KG Návod k použití Instrukcja obsługi Kullanma Kılavuzu Chladnička s mrazničkou Chłodziarkozamrażarka Buzdolabı 2 Obsah Děkujeme, že jste si vybrali jeden z našich vysoce kvalitních výrobků.
(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
TVL 22800 UMP2 NÁVOD K POUŽITÍ NÁVOD NA POUŽITIE
TVL 22800 UMP2 NÁVOD K POUŽITÍ NÁVOD NA POUŽITIE 50193148 BAREVNÝ TELEVIZNÍ PŘÍJÍMAČ S DÁLKOVÝM OVLÁDÁNÍM FAREBNÝ TELEVÍZNY PRIJÍMAČ S DIALKOVÝM OVLÁDÁNÍM TELEWIZOR KOLOROWY Z PILOTEM Obsah Obsah balení...
Nekomutativní Gröbnerovy báze
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní
L 75270 FL L 75470 FL CS PRAČKA NÁVOD K POUŽITÍ 2 PL PRALKA INSTRUKCJA OBSŁUGI 34
L 75270 FL L 75470 FL CS PRAČKA NÁVOD K POUŽITÍ 2 PL PRALKA INSTRUKCJA OBSŁUGI 34 2 OBSAH 4 BEZPEČNOSTNÍ INFORMACE 6 POZNÁMKY K OCHRANĚ ŽIVOTNÍHO PROSTŘEDÍ 6 TECHNICKÉ INFORMACE 7 POPIS SPOTŘEBIČE 8 OVLÁDACÍ
FAVORIT 45002. Instrukcja obsługi
FAVORIT 45002 Návod k použití Instrukcja obsługi Návod na používanie Myčka nádobí Zmywarka Umývačka riadu 2 Obsah Děkujeme, že jste si vybrali jeden z našich vysoce kvalitních výrobků. Přečtěte si prosím
FAVORIT 78400 I CS MYČKA NÁDOBÍ NÁVOD K POUŽITÍ 2 PL ZMYWARKA INSTRUKCJA OBSŁUGI 23 SK UMÝVAČKA NÁVOD NA POUŽÍVANIE 46
FAVORIT 78400 I CS MYČKA NÁDOBÍ NÁVOD K POUŽITÍ 2 PL ZMYWARKA INSTRUKCJA OBSŁUGI 23 SK UMÝVAČKA NÁVOD NA POUŽÍVANIE 46 2 PRO DOKONALÉ VÝSLEDKY Děkujeme vám, že jste si zvolili výrobek značky AEG. Aby vám
ČVUT FEL, K Radek Mařík Strukturované testování 20. října / 52
Strukturované testování Radek Mařík ČVUT FEL, K13132 20. října 2016 Radek Mařík (radek.marik@fel.cvut.cz) Strukturované testování 20. října 2016 1 / 52 Obsah 1 Návrh testů řízené modelem Principy 2 Testování
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Obsah: CLP Constraint Logic Programming. Úvod do umělé inteligence 6/12 1 / 17
Problémy s omezujícími podmínkami Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Průběžná písemná práce Problémy s omezujícími podmínkami Úvod do umělé inteligence 6/12 1 / 17 Průběžná
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
návod k použití instrukcja obsługi manual de instruções návod na používanie
návod k použití instrukcja obsługi manual de instruções návod na používanie Myčka nádobí Zmywarka Máquina de lavar loiça Umývačka ESI 67070 2 electrolux Obsah Electrolux. Thinking of you. Více o nás naleznete
HL24285SMART. Návod k použití Návod na použitie Instrukcja obsługi Használatı utasítás. Licensed by Hyundai Corporation, Korea
HL24285SMART Návod k použití Návod na použitie Instrukcja obsługi Használatı utasítás Licensed by Hyundai Corporation, Korea Obsah Bezpečnostní opatření... 1 Informace o životním prostředí... 2 Zahrnuté
Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52
í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr
POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY
POLIURETAOWE SPRĘŻYY ACISKOWE. POLYURETHAOVÉ TLAČÉ PRUŽIY Oferowane są wymiary wyrobów o różnych twardościach. Konstrukcja tych sprężyn umożliwia zastąpienie sprężyn tradycyjnych tam, gdzie korozja, wibracje,
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Registrace vašeho spotřebiče, kterou získáte lepší servis: www.registerelectrolux.com
ENN2841AOW CS Chladnička s mrazničkou Návod k použití 2 PL Chłodziarko-zamrażarka Instrukcja obsługi 21 SK Chladnička s mrazničkou Návod na používanie 41 2 OBSAH 1. BEZPEČNOSTNÍ INFORMACE... 3 2. BEZPEČNOSTNÍ
Úvod do umělé inteligence Prohledávání stavového prostoru -mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ bsah: Problém osmi dam Prohledávání stavového prostoru Prohledávání do hloubky Prohledávání
FAVORIT 60660. naczyń
FAVORIT 60660 Návod k použití Instrukcja obsługi Návod na používanie Myčka nádobí Zmywarka do naczyń Umývačka riadu 2 Obsah Děkujeme, že jste si vybrali jeden z našich vysoce kvalitních výrobků. Přečtěte
návod k použití instrukcja obsługi
návod k použití instrukcja obsługi Pračka Pralka EWS 106540 W EWS 126540 W 2 electrolux Obsah Electrolux. Thinking of you. Více o nás naleznete na adrese www.electrolux.com Bezpečnostní informace 2 Popis