Wykład 2 Prawo Coulomba i pole elektryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 2 Prawo Coulomba i pole elektryczne"

Transkrypt

1 Wykład 2 Prawo Coulomba i pole elektryczne (oraz krew kozła i czosnek) Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 1 marca 2017 Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

2 Wprowadzenie Sprawy organizacyjne Literatura Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

3 Karygodnie wybiórczy rys historyczny Efekt bursztynu Po grecku: ἤλεκτρον (elektron) Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

4 Karygodnie wybiórczy rys historyczny Giambattista della Porta ( ) Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

5 Karygodnie wybiórczy rys historyczny Robert Symmer ( ) Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

6 Karygodnie wybiórczy rys historyczny Stephen Gray ( ) Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

7 Karygodnie wybiórczy rys historyczny Peppers Adventures in Time (Sierra, 1993) Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

8 Karygodnie wybiórczy rys historyczny Peppers Adventures in Time (Sierra, 1993) Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

9 Karygodnie wybiórczy rys historyczny Peppers Adventures in Time (Sierra, 1993) Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

10 Karygodnie wybiórczy rys historyczny Peppers Adventures in Time (Sierra, 1993) Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

11 Karygodnie wybiórczy rys historyczny Benjamin Franklin ( ) Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

12 Karygodnie wybiórczy rys historyczny CharlesAugustin de Coulomb ( ) II~ I. jak kwadrat od legtosci mi~dz) nami", ni e podat jedn ak zadn c s.::: kt6rq osiqgnqf ten wyn ik. '~~= Mayer ( ), a w 176 Lambert ( ), r6wn ez c~ mego wniosku i opisali sposov.es ich wyn iki byty poddaw an e rj. :e wiary. Dopiero wyni ki Co ulombe. biazgowq analizq i opise m par "' to,prawo Cou lomba dl a mas cytowane w podr~czni k ach i zr_ dop iero po utrwaleniu nowyc ~ ~ magnetyzmu ElEKTRYCZNOSC ZWlE W 1791 r. profesor anato mi i u~ Luigi Galvani, wydat ksi qz kfi' De motu musculari commentarius \ trycznosci przy ruchach mi~sm). swoich ki lku nasto letnich dos, c.c:r juz w listopadzie 1780 r ~ 2017 _ 1 marca Rye J. Waga skr~cen(if Coulomba to by! szklany walec Maciej Mrowiński PW) Wykład 2 relacji, 9 / 20

13 Podstawy Ładunki elektryczne Dwa rodzaje ładunków: ładunki dodatnie ładunki ujemne Zasada zachowania ładunku W układzie izolowanym ładunek jest zachowany. Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

14 Podstawy Kwantyzacja ładunku elektrony Masa: m e = [kg] Ładunek: q e = e = [C] protony Masa: m p = [kg] Ładunek: q p = +e = [C] neutrony Masa: m n = [kg] Ładunek: q n = 0[C] Ładunek jest wielokrotnością ładunku elementarnego: Q = Ne Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

15 Podstawy Klasyfikacja ciał Klasyfikacja ciał: przewodniki materiały ze swobodnymi elektronami Na przykład złoto, żelazo miedź aluminium. izolatory elektrony związane z atomami Na przykład ebonit, drewno, szkło. Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

16 Podstawy Ładowanie ciał Ładowanie przez tarcie Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

17 Podstawy Ładowanie ciał Ładowanie przez tarcie Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

18 Podstawy Ładowanie ciał Ładowanie przez indukcję Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

19 Podstawy Ładowanie ciał Ładowanie przez indukcję Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

20 Podstawy Ładowanie ciał Ładowanie przez indukcję Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

21 Podstawy Ładowanie ciał Ładowanie przez indukcję Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

22 Podstawy Ładowanie ciał Ładowanie przez kontakt Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

23 Podstawy Ładowanie ciał Ładowanie przez kontakt Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

24 Podstawy Ładowanie ciał Ładowanie przez kontakt Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

25 Prawo Coulomba Oddziaływania między ładunkami Prawo Coulomba: F 12 = k q 1q 2 r12 2 r 12 gdzie k = [Nm 2 /C 2 ]. Inaczej k = 1 4πε 0, gdzie ε 0 = [C 2 /Nm 2 ] to przenikalność elektryczna próżni. q 1 r 12 q 2 ^ r 12 Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

26 Prawo Coulomba Porównanie z grawitacją atom wodoru Dla atomu wodoru średnio R = [m] Siła Coulomba: F c = k e2 R 2 = [N] Siła grawitacyjna: + F g = G m em p R 2 = [N] Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

27 Pole elektryczne Wektor natężenia pola elektrycznego Wektor natężenia pola elektrycznego E: E = F q Dla ładunku punktowego Q: Q q + F r E = k Q r 2 r Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

28 Pole elektryczne Wektor natężenia pola elektrycznego Wektor natężenia pola elektrycznego E: E E = F q Dla ładunku punktowego Q: Q r E = k Q r 2 r Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

29 Pole elektryczne Pole elektryczne Ładunek dodatni: +Q Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

30 Pole elektryczne Pole elektryczne Ładunek ujemny: +Q Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

31 Pole elektryczne Pole elektryczne Ładunki dodatnie: +Q +Q Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

32 Pole elektryczne Pole elektryczne Ładunki ujemne: Q Q Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

33 Pole elektryczne Pole elektryczne Ładunki przeciwne: +Q Q Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

34 Pole elektryczne Addytywny charakter pola Dla rozkładów o znanych polach E i (r): E(r) = E i (r) i Dla rozkładu ciągłego: E = i k q i w 2 ŵ = po rozkladzie k dq w 2 ŵ r E 2 E 1 E Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

35 Pole elektryczne Addytywny charakter pola Dla rozkładów o znanych polach E i (r): E(r) = E i (r) i Dla rozkładu ciągłego: E = i k q i w 2 ŵ = po rozkladzie k dq w 2 ŵ Q Δq r w ΔE Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

36 Pole elektryczne Ciągłe rozkłady ładunków gęstość liniowa λ Rozkład jednorodny: λ = Q L Element długości: dl = dx = rdϕ Ładunek: dq = λdl Y gęstość powierzchniowa σ Rozkład jednorodny: σ = Q A Element powierzchni: da = dxdy = rdϕdr Ładunek: dq = σda gęstość objętościowa p Rozkład jednorodny: p = Q V Element powierzchni: dv = dxdydz = r 2 sin θdϕdθdr Ładunek: dq = pdv x dx X Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

37 Pole elektryczne Ciągłe rozkłady ładunków gęstość liniowa λ Rozkład jednorodny: λ = Q L Element długości: dl = dx = rdϕ Ładunek: dq = λdl Y gęstość powierzchniowa σ Rozkład jednorodny: σ = Q A Element powierzchni: da = dxdy = rdϕdr Ładunek: dq = σda gęstość objętościowa p Rozkład jednorodny: p = Q V Element powierzchni: dv = dxdydz = r 2 sin θdϕdθdr Ładunek: dq = pdv dφ φ r dφ r dr X Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

38 Pole elektryczne Ciągłe rozkłady ładunków gęstość liniowa λ Rozkład jednorodny: λ = Q L Element długości: dl = dx = rdϕ Ładunek: dq = λdl gęstość powierzchniowa σ Rozkład jednorodny: σ = Q A Element powierzchni: da = dxdy = rdϕdr Ładunek: dq = σda gęstość objętościowa p Rozkład jednorodny: p = Q V Element powierzchni: dv = dxdydz = r 2 sin θdϕdθdr Ładunek: dq = pdv Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

39 Pole elektryczne Przykład Maciej J. Mrowiński (IF PW) Wykład 2 1 marca / 20

Wykład 8: Elektrostatyka Katarzyna Weron

Wykład 8: Elektrostatyka Katarzyna Weron Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory

Bardziej szczegółowo

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych: POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa

Bardziej szczegółowo

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Elektrostatyka Elektryczność nas otacza i tworzy...

Elektrostatyka Elektryczność nas otacza i tworzy... Elektrostatyka Elektryczność nas otacza i tworzy... Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elektryczność

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Fizyka 2 Podstawy fizyki

Fizyka 2 Podstawy fizyki Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Część IV. Elektryczność i Magnetyzm

Część IV. Elektryczność i Magnetyzm Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 551 479 p.n.e.) Dialogi, II/15 Wykład 10 Wprowadzenie

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Elektrostatyczna energia potencjalna U

Elektrostatyczna energia potencjalna U Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Podstawy fizyki sezon 2 1. Elektrostatyka 1

Podstawy fizyki sezon 2 1. Elektrostatyka 1 Biblioteka AGH Podstawy fizyki sezon 2 1. Elektrostatyka 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Bardziej szczegółowo

Podstawy fizyki sezon 2

Podstawy fizyki sezon 2 Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.

Bardziej szczegółowo

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty.

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Elektrostatyka Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty. Pozostawało to odosobnioną ciekawostką aż do XVIw., kiedy Wlliam Gilbert wykazał, że podobną

Bardziej szczegółowo

Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11

Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11 Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka

Wykład FIZYKA II. 1. Elektrostatyka Wykład FIZYKA II. Elektrostatyka Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html ELEKTROMAGNETYZM Już starożytni

Bardziej szczegółowo

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 1. Elektrostatyka.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Elektrostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ELEKTROMAGNETYZM Już starożytni Grecy Potarty kawałek

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Elektryczność i Magnetyzm. Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki 1 III 2016

Elektryczność i Magnetyzm. Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki 1 III 2016 Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki 1 III 216 Sprawy organizacyjne Zaliczenie Udział w ćwiczeniach 2 kolokwia: 5% punktów zalicza ćwiczenia 5 kwietnia

Bardziej szczegółowo

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r 1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r. Sporządź wykres zależności F(r) dla tych ładunków. 2. Naelektryzowany płatek waty zbliża się do przeciwnie

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11

Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11 Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek elektryczny

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Elektrostatyczna energia potencjalna. Potencjał elektryczny

Elektrostatyczna energia potencjalna. Potencjał elektryczny Elektrostatyczna energia potencjalna Potencjał elektryczny Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłą pola nadając ładunkowi

Bardziej szczegółowo

Wykłady z Fizyki. Magnetyzm

Wykłady z Fizyki. Magnetyzm Wykłady z Fizyki 07 Magnetyzm Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Linie sił pola elektrycznego

Linie sił pola elektrycznego Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

znak minus wynika z faktu, że wektor F jest zwrócony

znak minus wynika z faktu, że wektor F jest zwrócony Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman 26 II 2019 Sprawy organizacyjne Zaliczenie Udział w ćwiczeniach 2 kolokwia: 50% punktów zalicza

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

ĆWICZENIE 86 BADANIE ZMIAN ŁADUNKU ELEKTRYCZNEGO ZGROMADZONEGO NA OKŁADKACH KONDENSATORA PODCZAS ROZŁADOWANIA METODĄ CAŁKOWANIA GRAFICZNEGO.

ĆWICZENIE 86 BADANIE ZMIAN ŁADUNKU ELEKTRYCZNEGO ZGROMADZONEGO NA OKŁADKACH KONDENSATORA PODCZAS ROZŁADOWANIA METODĄ CAŁKOWANIA GRAFICZNEGO. ĆWICZENIE 86 BADANIE ZMIAN ŁADUNKU ELEKTRYCZNEGO ZGROMADZONEGO NA OKŁADKACH KONDENSATORA PODCZAS ROZŁADOWANIA METODĄ CAŁKOWANIA GRAFICZNEGO. ŁADUNKI STATYCZNE. POLE ELEKTROSTATYCZNE. Wprowadzenie Oddziaływaniem

Bardziej szczegółowo

Wymiana ciepła ELEKTROSTATYKA. Tales z Miletu. 600 p.n.e. czas

Wymiana ciepła ELEKTROSTATYKA. Tales z Miletu. 600 p.n.e. czas Wymiana ciepła -500 0 500 1000 1500 2000 Wymiana ciepła ELEKTROSTATYKA Tales z Miletu Grecki filozof zna zjawisko przyciągania przez potarty przez sukno bursztyn (grecka nazwa: elektron) słomek, piór,

Bardziej szczegółowo

k e = 2, Nm 2 JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE.

k e = 2, Nm 2 JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE. JEDNOŚĆ TRZECH RODZAJÓW PÓL. STRESZCZENIE. Pokazano na czym polega jedność pola elektrycznego, pola magnetycznego i pola grawitacyjnego. Po raz pierwszy w historii fizyki obiektywnie porównano ze sobą

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

Pojęcie ładunku elektrycznego

Pojęcie ładunku elektrycznego Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

Podstawy fizyki sezon 2

Podstawy fizyki sezon 2 Podstawy fizyki sezon 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pole elektryczne i magnetyczne: Elektrostatyka.

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek

Bardziej szczegółowo

Wykład 2. 4. Ładunki elektryczne

Wykład 2. 4. Ładunki elektryczne Wykład 2 4. Ładunki elektryczne Czym są ładunki elektryczne? Odpowiedź na to pytanie jest tak trudne, jak odpowiedź na pytanie, czym jest masa. Istnienie ładunków w przyrodzie jest faktem, który musimy

Bardziej szczegółowo

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Między

Bardziej szczegółowo

W rozdziale 11.1 wymieniono, jako główne, dwa rodzaje oddziaływań występujących w przyrodzie: oddziaływanie

W rozdziale 11.1 wymieniono, jako główne, dwa rodzaje oddziaływań występujących w przyrodzie: oddziaływanie 16. Ładunek elektryczny W rozdziale 11.1 wymieniono, jako główne, dwa rodzaje oddziaływań występujących w przyrodzie: oddziaływanie grawitacyjne oraz oddziaływanie elektromagnetyczne. Pierwsze z nich omówiono

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Reinhard Kulessa II semestr r. akademickiego 2006/2007 Literatura E.M. Purcell, Berkeley Physics Course, Elektryczność i Magnetyzm David J. Griffiths:, "Podstawy Eelektrodynamiki",

Bardziej szczegółowo

W p r o wadzenie ROZDZIAŁ 1. Elektrotechnika podstawowa 9

W p r o wadzenie ROZDZIAŁ 1. Elektrotechnika podstawowa 9 Elektrotechnika podstawowa 9 ROZDZIAŁ 1 W p r o wadzenie Elektrotechnika jest działem wiedzy obejmującym zagadnienia związane z zastosowaniami elektryczności w technice. Na powstanie i początki nauki o

Bardziej szczegółowo

Rozdział 1. Pole elektryczne i elektrostatyka

Rozdział 1. Pole elektryczne i elektrostatyka Rozdział 1. Pole elektryczne i elektrostatyka 2018 Spis treści Ładunek elektryczny Prawo Coulomba Pole elektryczne Prawo Gaussa Zastosowanie prawa Gaussa: Izolowany przewodnik Zastosowanie prawa Gaussa:

Bardziej szczegółowo

Temat XIX. Elektrostatyka

Temat XIX. Elektrostatyka Temat XIX Elektrostatyka Warunki konieczne do rozwoju nauki o elektryczności Metody wytwarzania elektryczności Metody przechowywania elektryczności Metody pomiarowe dla wielkości elektrycznych Wytwarzanie

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Fizyka 2, wykład 1. Kiedy? CZ(TN) ; 14.03; 11.04; 25.04; 9.05; 23.05;29.05(ŚR); 6.06 Gdzie? Sala 322 /A1 Z kim? dr inż. Janusz Andrzejewski

Fizyka 2, wykład 1. Kiedy? CZ(TN) ; 14.03; 11.04; 25.04; 9.05; 23.05;29.05(ŚR); 6.06 Gdzie? Sala 322 /A1 Z kim? dr inż. Janusz Andrzejewski Fizyka 2, wykład 1 Kiedy? CZ(TN) 15.15 28.02; 14.03; 11.04; 25.04; 9.05; 23.05;29.05(ŚR); 6.06 Gdzie? Sala 322 /A1 Z kim? dr inż. Podsumowanie wyników egzaminu 1 termin 04.02.2013 przystąpiło do egzaminu

Bardziej szczegółowo

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

Witam na teście z działu ELEKTROSTATYKA

Witam na teście z działu ELEKTROSTATYKA Witam na teście z działu ELEKTROSTATYKA Masz do rozwiązania 22 zadania oto jaką ocenę możesz uzyskać: dopuszczająca jeśli rozwiążesz 6 zadań z zakresu pytań od 1 7 dostateczna jeśli rozwiążesz zadania

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

R o z d z i a ł 7 POLE ELEKTRYCZNE

R o z d z i a ł 7 POLE ELEKTRYCZNE R o z d z i a ł 7 POLE ELEKTRYCZNE Zjawiska elektryczne towarzyszyły człowiekowi od samego początku jego pojawienia się. Wyładowania atmosferyczne napawały grozą, zaś zjawiska bioelektryczne i elektryzacja

Bardziej szczegółowo

Pole przepływowe prądu stałego

Pole przepływowe prądu stałego Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera

Bardziej szczegółowo

Electromagnetic interactions. Oddziaływania elektromagnetyczne

Electromagnetic interactions. Oddziaływania elektromagnetyczne Electromagnetic interactions Oddziaływania elektromagnetyczne Odziaływania grawitacyjne - siła powszechnego ciążenia (Newton) F = G grawit m m 1 2 r 2 G = 6.67 10 11 Nm 2 s 2 http://universeadventure.org/universe_4-6.html

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny)

Bardziej szczegółowo

Prawo Coulomba. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Prawo Coulomba. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Prawo Couomba Autorzy: Zbigniew Kąko Kami Kutorasiński 2019 Prawo Couomba Autorzy: Zbigniew Kąko, Kami Kutorasiński Siłę wzajemnego oddziaływania dwóch naładowanych punktów materianych (ładunków punktowych)

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Podstawy fizyki sezon 2 2. Elektrostatyka 2 Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prawo Coulomba a prawo Newtona Janusz Andrzejewski 2 Natężenie i potencjał pola elektrycznego A q A B q A D q A C q A q 0 D B C A E E E E r r r r 0 0 + + + + + + D

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Lp. Temat lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Rozdział 7 Fale elektromagnetyczne 7.1 Prąd przesunięcia. II równanie Maxwella Poznane dotąd prawa elektrostatyki, magnetostatyki oraz indukcji elektromagnetycznej można sformułować w czterech podstawowych

Bardziej szczegółowo

Helena Stech: Scenariusz lekcji Elektrostatyka powtórzenie. Scenariusz lekcji fizyki w gimnazjum

Helena Stech: Scenariusz lekcji Elektrostatyka powtórzenie. Scenariusz lekcji fizyki w gimnazjum 1 Helena Stech: Scenariusz lekcji Elektrostatyka powtórzenie. Temat: Elektrostatyka powtórzenie. Scenariusz lekcji fizyki w gimnazjum Cele lekcji: powtórzenie wiadomości o rodzajach elektryzowania ciał

Bardziej szczegółowo

Elektryczność i magnetyzm

Elektryczność i magnetyzm Władysław Tomaszewicz Przemysław Ciesielski Elektryczność i magnetyzm (na prawach rękopisu) Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska 2002 Wstęp Przedmiotem wykładu jest elektrodynamika

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo