METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
|
|
- Ryszard Sikora
- 6 lat temu
- Przeglądów:
Transkrypt
1 METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 4 RACHUNEK TABLICOWY NA MACIERZACH W PROGRAMIE KOMPUTEROWYM MATLAB Dr inż. Sergiusz Sienkowski
2 ĆWICZENIE NR 4 Rachunek tablicowy na macierzach w programie komputerowym Matlab 4.1. Cel ćwiczenia Celem ćwiczenia est opanowanie umieętności wykonywania obliczeń tablicowych na macierzach w programie komputerowym Matlab Obliczenia tablicowe na macierzach W niektórych zastosowaniach rachunek macierzowy nie est wystarczaący do wykonania określonych obliczeń na macierzach. Wykonue się wówczas obliczenia nazywane tablicowymi. Do podstawowych obliczeń tablicowych na macierzach zaliczamy dodawanie i odemowanie, mnożenie i dzielenie. Do obliczeń tablicowych zaliczamy również podnoszenie do potęgi, odwracanie i transpozycę macierzy Tablicowe dodawanie i odemowanie macierzy Niech T będzie macierzą nm o elementach t i,, 1in, 1m, oraz będzie dowolną liczbą rzeczywistą (skalarem). Tablicowe dodawanie lub odemowanie macierzy T i skalara tożsame est dodawaniu lub odemowaniu macierzy i skalara. Wynikiem tablicowego dodawania lub odemowania macierzy T i skalara est macierz W=T o rozmiarze nm i elementach w i,, 1in, 1m, przy czym w t. i, i, Tablicowe dodawanie lub odemowanie macierzy T i skalara est przemienne, t. W=T=T.
3 Ćwiczenie 4. Rachunek tablicowy na macierzach Niech V będzie macierzą pr o elementach v i,, 1ip, 1r, taką, że n=p i m=r. Wynikiem tablicowego dodawania lub odemowania macierzy T i V est macierz W=TV o rozmiarze nm i elementach w i,, 1in, 1m, przy czym w t v. i, i, i, Tablicowe dodawanie macierzy T i V est przemienne (odemowanie tylko co do wartości bezwzględne), t. W=T+V=V+T (W= T-V = V-T ). Jeżeli edna z macierzy lub obie macierze będą ednoelementowe, to ich tablicowe dodawanie lub odemowanie odbywa się ak w przypadku dodawania macierzy i skalara lub dodawania dwóch skalarów. Przykład. Wynikiem tablicowego dodawania do macierzy skalara = est macierz 1 2 T, W T Wynikiem tablicowego dodawania macierzy T i macierzy 5 6 V, 7 8 est macierz W T+V Tablicowe mnożenie macierzy Niech T będzie macierzą nm o elementach t i,, 1in, 1m. Wynikiem tablicowego mnożenia macierzy T przez skalar est macierz W=T o rozmiarze nm i elementach w i,, 1in, 1m, przy czym
4 66 Metody komputerowe w obliczeniach inżynierskich w t. i, i, Tablicowe mnożenie macierzy T przez skalar est przemienne, t. W=T=T. Niech V będzie macierzą pr o elementach v i,, 1ip, 1r, taką, że n=p i m=r. Tablicowe mnożenie macierzy nie est tożsame mnożeniu macierzy. Wynikiem tablicowego mnożenia macierzy T i V est macierz W=TV o rozmiarze nm i elementach w i,, 1in, 1m, gdzie w t v. i, i, i, Tablicowe mnożenie macierzy T i V est możliwe tylko wówczas, gdy T i V maą tyle samo kolumn i tyle samo wierszy. Tablicowe mnożenie macierzy est przemienne, t. W=TV=VA. Jeżeli edna z macierzy lub obie macierze będą ednoelementowe, to ich tablicowe mnożenie odbywa się ak w przypadku mnożenia macierzy przez skalar lub mnożenia dwóch skalarów. Przykład. Wynikiem tablicowego mnożenia macierzy przez skalar = est macierz 1 2 T, W T. 3 4 Wynikiem tablicowego mnożenia macierzy T i V, est macierz W TV
5 Ćwiczenie 4. Rachunek tablicowy na macierzach Tablicowe dzielenie macierzy Niech T będzie macierzą nm o elementach t i,, 1in, 1m. Wynikiem tablicowego dzielenia macierzy T przez skalar est macierz W=T/ o rozmiarze nm i elementach w i,, 1in, 1m, przy czym t w. i, i, Wykonanie tablicowego dzielenia skalara przez macierz T nie est możliwe, chyba, że t i, będzie macierzą ednoelementową. Niech V będzie macierzą pr o elementach v i,, 1ip, 1r, taką, że n=p i m=r. Tablicowe dzielenie macierzy nie est tożsame dzieleniu macierzy. Wynikiem tablicowego prawostronnego dzielenia macierzy T i V est macierz W=T/V o rozmiarze nm i elementach w i,, 1in, 1m, takich, że t i, w i,. vi, Tablicowym ilorazem lewostronnym macierzy T i V est macierz W=T\V o rozmiarze nm i elementach w i,, 1in, 1m, takich, że v i, w i,. ti, Z powyższego wynika, że W=T/VT\V, ale W=T/V=V\T i W=T\V=V/T. Ponadto tablicowe dzielenie macierzy T przez V i odwrotnie, est możliwe tylko wówczas, gdy T i V maą tyle samo kolumn i tyle samo wierszy. Przykład. Wynikiem tablicowego dzielenia macierzy przez skalar = est macierz 1 2 T, 3 4
6 68 Metody komputerowe w obliczeniach inżynierskich 1 2 T W. 3 4 Wynikiem tablicowego prawostronnego dzielenia macierzy 1 2 T, 3 4 przez macierz 5 6 V, 7 8 est macierz W T / V W wyniku tablicowego lewostronnego dzielenia macierzy T przez macierz V otrzymuemy macierz 5 3 W T \ V Tablicowe potęgowanie macierzy Niech T będzie macierzą nm o elementach t i,, 1in, 1m. Powiemy, że macierz T została podniesiona tablicowo do potęgi k0, eżeli 0 T I, k1 k T T T, gdzie I to macierz ednostkowa nm. Elementy macierzy (A) k przymuą wówczas postać
7 Ćwiczenie 4. Rachunek tablicowy na macierzach i, i, k t t. Tablicowe potęgowanie macierzy T est w istocie e wielokrotnym tablicowym wymnożeniem. Tablicowe potęgowanie macierzy nie est tożsame potęgowaniu macierzy. Przykład. Wynikiem tablicowego podniesienia do potęgi piąte macierzy est macierz T, W T Tablicowe odwracanie macierzy Niech T będzie macierzą nm o elementach t i,, 1in, 1m. Tablicowe odwracanie macierzy nie est tożsame odwracaniu macierzy. W wyniku tablicowego odwrócenia macierzy T otrzymuemy następuą macierz t1,1 t1,2 t 1, m tn,1 tn,2 tn, m 1 T t2,1 t2,2 t2, m. Przykład. Wynikiem tablicowego odwrócenia macierzy est macierz 1 2 T, 3 4
8 70 Metody komputerowe w obliczeniach inżynierskich T Tablicowa transpozyca macierzy Niech T będzie macierzą nm o elementach t i,, 1in, 1m. Tablicowa transpozyca macierzy T polega na zamianie miescami wierszy i kolumn w macierzy. W wyniku te operaci otrzymuemy macierz transponowaną (T) T, które elementy T i,, i t t. Jeżeli macierz T zawiera tylko elementy rzeczywiste, to tablicowa transpozyca macierzy dae te same wyniki, co w przypadku transpozyci macierzowe. Jeżeli T zawiera elementy zespolone to tablicowa transpozyca macierzy zamienia wiersze i kolumny macierzy, natomiast transpozyca macierzy skutkue otrzymaniem macierzy, która zawiera elementy sprzężone z odpowiednimi elementami macierzy zespolone. Przykład. Wynikiem tablicowe transpozyci macierzy est macierz T 4 5 6, T T
9 Ćwiczenie 4. Rachunek tablicowy na macierzach Programowa obsługa obliczeń tablicowych na macierzach Wprowadzanie do Matlaba macierzy, na których wykonywane będą obliczenia tablicowe, odwoływanie się do elementów takich macierzy, czy też stosowanie funkci wbudowanych, odbywa się na te same zasadzie, co w przypadku innych macierzy. Różnice między obliczeniami tablicowymi i macierzowymi wynikaą ze sposobów wykonywania operaci arytmetycznych na elementach macierzy. Do wykonywania obliczeń tablicowych na macierzach wykorzystue się operatory. W programie Matlab stosue się operatory z poniższe tabeli. Operator Zadanie + Dodawanie macierzy - Odemowanie macierzy.* Tablicowe mnożenie macierzy./ Tablicowe dzielenie prawostronne macierzy.\ Tablicowe dzielenie lewostronne macierzy.^ Tablicowe potęgowanie macierzy.' Tablicowa transpozyca macierzy 1 Przykład. Zastosowanie operatorów tablicowych na macierzach T i V oraz operatorów macierzowych na macierzach 1 Operator transpozyci " ' " położony est na klawiaturze zwykle w pobliżu klawisza PShift lub Enter.
10 72 Metody komputerowe w obliczeniach inżynierskich A i B Rachunek macierzowy Rachunek tablicowy Dodawanie Odemowanie Mnożenie
11 Ćwiczenie 4. Rachunek tablicowy na macierzach Dzielenie prawostronne Dzielenie lewostronne Potęgowanie Transpozyca
12 74 Metody komputerowe w obliczeniach inżynierskich 4.4. Program ćwiczenia 1. Niech dane będą następuące macierze 1 x 5 0 A i B, 0 2 x 1 x oraz 1 x 5 0 T i V, 0 2 x 1 x gdzie x to numer podgrupy. a) Zastosować arytmetykę macierzową i obliczyć w sposób analityczny A+B, A-2B, AB, (A) T, (B) T, A -1, B -1, A/B, A\B. Podczas obliczeń wykorzystać informace z instrukci do ćwiczenia 3 z punktu 3.2. b) Wykonać w Matlabie obliczenia z punktu a). Porównać wyniki obliczeń z otrzymanymi w punkcie a). c) Zastosować arytmetykę tablicową i obliczyć w sposób analityczny T+V, T-2V, TV, (T) T, (V) T, T -1, V -1, T/V, T\V. Podczas obliczeń wykorzystać informace z punktu 4.2. Porównać wyniki obliczeń z otrzymanymi w punkcie a). d) Wykonać w Matlabie obliczenia z punktu c). Do obliczeń zastosować operatory tablicowe z punktu 4.3. Porównać wyniki obliczeń z otrzymanymi w punkcie b). 2. Utworzyć za pomocą Matlaba a) wektor wierszowy T zawieraący elementy o wartościach z przedziału [-10, 10] z krokiem 0.01x, b) wektor wierszowy Y zawieraący elementy o wartościach uzyskanych na podstawie wzoru y(t)=t 2, gdzie t przymue wartości wektora T,
13 Ćwiczenie 4. Rachunek tablicowy na macierzach c) wektor wierszowy Z zawieraący elementy o wartościach uzyskanych na podstawie wzoru z(t)=sin(2t 2 /(x+10)) cos(2t 2 /(x+10)), gdzie t przymue wartości wektora T. 3. Utworzyć za pomocą Matlaba wektor kolumnowy W zawieraący n liczb pseudolosowych z rozkładu równomiernego na przedziale [-x, x]. Stosuąc arytmetykę tablicową wyznaczyć na podstawie elementów wektora a) wartość średnią (ws), b) wartość średniokwadratową (wskw), c) wariancę (war) z zastosowaniem wzoru war=wskw-(ws) 2, d) wariancę ( 2 ) z zastosowaniem funkci wbudowane w Matlaba i uzupełnić poniższą tabelę n=10 n=10 2 n=10 3 n=10 4 n=10 5 war 2 Wielkości ws i wskw obliczyć z zastosowaniem funkci sum lub mean z Matlaba. Wariancę 2 obliczyć z zastosowaniem funkci var z Matlaba. Wyaśnić powód zmnieszania się różnicy między war i 2. Literatura [1] Luzar M., Metody komputerowe w obliczeniach inżynierskich, Wykład dla Studentów Automatyki i Robotyki, WIEA, UZ, [2] Czaka M., MATLAB. Ćwiczenia, Helion 2005 [3] Mrozek B., Mrozek Z., MATLAB i Simulink. Poradnik użytkownika, Helion 2004
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 9 WYRAŻENIA LOGICZNE, INSTRUKCJE WARUNKOWE I INSTRUKCJE ITERACYJNE W PROGRAMIE KOMPUTEROWYM MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Podstawowe operacje na macierzach
Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.
MATLAB - laboratorium nr 1 wektory i macierze
MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych
Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Algebra macierzy
Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 5 SKRYPTY W PROGRAMIE KOMPUTEROWYM MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 5 Skrypty w programie komputerowym Matlab 5.1. Cel ćwiczenia
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab
Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA MATLAB jest zintegrowanym środowiskiem
Numeryczne modelowanie ustalonego pola temperatury
Zakład Aerodynamiki i ermodynamik Instytut echniki Lotnicze, Wydział Mechatroniki Woskowa Akademia echniczna Numeryczne modelowanie ustalonego pola temperatury Piotr Koniorczyk Mateusz Zieliński Warszawa
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Laboratorium Komputerowego Wspomagania Analizy i Projektowania
Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 2. Podstawowe operacje macierzowe. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzę dzia Informatyki Magdalena Deckert Izabela Szczę ch Barbara Wołyń ska Bartłomiej Prę dki Politechnika Poznań ska Instytut Informatyki Agenda Definiowanie macierzy
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.1 Formuły, funkcje, typy adresowania komórek, proste obliczenia.
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY
WPROWADZENIE DO ŚRODOWISKA SCILAB
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 014/015 Kierunek studiów: Gospodarka przestrzenna
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Najmniejszą możliwą macierzą jest macierz 1 x 2 lub 2 x 1 składająca się z dwóch przyległych komórek.
(Na podstawie pomocy OpenOffice.org) Funkcje macierzowe - wstęp Co to jest macierz Macierz jest połączonym zakresem komórek arkusza zawierającym wartości. Kwadratowy zakres komórek składający się z 3 wierszy
d) Definiowanie macierzy z wykorzystaniem funkcji systemu Matlak
OPTYMALIZACJA W ŚRODOWISKU MATLAB. Cel ćwiczeń Celem ćwiczeń jest zaznajomienie studentów z podstawową obsługą środowiska obliczeń inżynierskich Matlab oraz zapoznanie się z możliwościami przeprowadzenia
Obliczenia w programie MATLAB
Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się
Macierze Lekcja I: Wprowadzenie
Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
BADANIE WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO
BADANIE WPŁYWU WYDOBYCIA NA SEJSMICZNOŚĆ W KOPALNIACH WĘGLA KAMIENNEGO Lis Anna Lis Marcin Kowalik Stanisław 2 Streszczenie. W pracy przedstawiono rozważania dotyczące określenia zależności pomiędzy wydobyciem
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
ARKUSZ KALKULACYJNY MICROSOFT EXCEL
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TS1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY MICROSOFT EXCEL
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin
ANALIZA DANYCH I PROCESÓW Mgr inż. Paweł Wojciech Herbin SZCZECIN 29 LUTEGO 2016 Spis treści 1. Wprowadzenie... 4 2. MATLAB wprowadzenie do interfejsu... 5 3. Praca w trybie bezpośrednim... 6 3.1. Wprowadzanie
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA MATLAB jest zintegrowanym
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
A A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =
04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 2 Histogram i arytmetyka obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Wstęp do Programowania Lista 1
Wstęp do Programowania Lista 1 1 Wprowadzenie do środowiska MATLAB Zad. 1 Zapoznaj się z podstawowymi oknami dostępnymi w środowisku MATLAB: Command Window, Current Folder, Workspace i Command History.
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB komputerowe środowisko obliczeń naukowoinżynierskich podstawowe operacje na liczbach
Pomimo rozwoju programów klikologicznych w ekonometrii, istnieje wiele osób, które wciąż cenią sobie programy typu Matlab, czy Gauss. W programach klikologicznych typu EViews użytkownik ma małą kontrolę
Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25
Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n
Algebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,
Lista Algebra z Geometrią Analityczną Układy równań. Zadanie 1 Wyjaśnij na czym polega metoda elininacji Gaussa rozwiązując układ równań: { x + 2y = 5 x y = 9 Zadanie 2 Rozwiąż układ równań metodą eliminacji
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
D1. Algebra macierzy. D1.1. Definicje
D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla
FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
Macierzowe algorytmy równoległe
Macierzowe algorytmy równoległe Zanim przedstawimy te algorytmy zapoznajmy się z metodami dekompozycji macierzy, możemy wyróżnić dwa sposoby dekompozycji macierzy: Dekompozycja paskowa - kolumnowa, wierszowa
Laboratorium Techniki Obliczeniowej i Symulacyjnej
Ćwiczenie 10. Metody numeryczne rozwiązywania układów równań liniowych. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z algorytmami numerycznymi przetwarzania
(Dantzig G. B. (1963))
(Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku
Programowanie w języku Matlab
Programowanie w języku Matlab D. Caban, P. Skurowski Wykład. Składnia języka, podstawowe struktury i operacje Matlab Nazwa pochodzi od MATrix LAboratory Środowisko obliczeń numerycznych i symbolicznych
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
Wykład 7 Macierze i wyznaczniki
Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7
Krótkie wprowadzenie do macierzy i wyznaczników
Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze
Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory
Zakłócenia w układach elektroenergetycznych LABORATORIUM
Zakłócenia w układach elektroenergetycznych LABORATORIUM Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 5 Przekształcenia geometryczne i arytmetyka obrazów Opracowali: dr inż. Krzysztof Mikołajczyk dr inż. Beata Leśniak-Plewińska Zakład Inżynierii
Laboratorium MATLA. Ćwiczenie 4. Debugowanie. Efektywności kodu. Wektoryzacja.
Laboratorium MATLA Ćwiczenie 4. Debugowanie. Efektywności kodu. Wektoryzacja. Opracowali: - dr inż. Beata Leśniak-Plewińska Zakład Inżynierii Biomedycznej, Instytut Metrologii i Inżynierii Biomedycznej,
Grupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4
Lista Algebra z Geometrią Analityczną Zadanie 1 Zapisz za pomocą spójników logicznych i kwantyfikatorów: x jest większe niż 6 lub mniejsze niż 4 jeżeli x jest podzielne przez 4 to jest podzielne przez
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB funkcje zewnętrzne (m-pliki, funkcje) Materiały pomocnicze do ćwiczeń laboratoryjnych
26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 26 marzec, 212 Łańcuchy z czasem ciągłym S = {, 1,..., }, B S = 2 S, ale T = [, ) lub T = (, ). Gdy S skończone,
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka
Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość
Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/
Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Matematyczne metody fizyki 1 Rok akademicki: 2013/2014 Kod: JFT-1-103-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: - Poziom studiów:
MACIERZE I WYZNACZNIKI
Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1
SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego
1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Re +/- Im i lub Re +/- Im j
Rok akademicki 2018/2019, Pracownia nr 5 2/26 Operacje na macierzach Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia niestacjonarne I stopnia Rok akademicki 2018/2019