Laboratorium Technik Obrazowania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium Technik Obrazowania"

Transkrypt

1 Laboratorium Techni Obrazowania Krzyszto Kacpersi Zała Fizyi Meycznej, Centrum Onoloii - Instytut im. Marii Słoowsiej-Curie

2 Dysretyzacja problem liniowy Problem: H Zmierzone Macierz Rozła projecje ane systemu atywności niewiaoma Uła równań liniowych i h i prawopoobieństwo etecji otonu z vosela i obietu w piselu etetora N i =,2,,D h i i Rozmiary obietów: : ~ 00x00x00 : ~ 00x00x00 H: ~ 0 6 x0 6

3 Metoy statystyczne Problem estymacji: H Próba statystyczna wetor losowy Macierz systemu ana stała Parametry moelu zmienna szuana Znaleźć wetor parametrów ˆ - estymator, tóry najlepiej pasuje o zmierzonej próby losowej Metoy ryteria wyznaczania estymatorów: Metoa momentów Metoa najmniejszych waratów ˆ : ˆ N h i ar min i D ˆ i E[ N ] i h i i 2 FBP, ART WLS Metoa najwięszej wiaryoności maximum lielihoo ML ˆ ar max P ; MLEM

4 Pożąane cechy estymatorów: Metoy statystyczne nieobciążoność zoność ˆ E[ˆ] ^ eetywność eˆ var ˆ max var ˆ e Twierzenie nierówność Cramera-Rao: Wariancja owolneo estymatora nieobciążoneo var ˆ i ln P, E i i I var ˆ i 2 max e i ˆ spełnia nierówność: Estymator masymalnej wiaryoności jest estymatorem nieobciążonym, zonym, o masymalnej eetywności I inormacja Fishera

5 Statystya rozpaów promieniotwórczych Śrenia liczba zliczeń w piselu etetora: Rozła Poissona prawopoobieństwa zliczeń : i Funcja wiaryoności : ˆ ar max P ; MLEM

6 Metoa ML-EM Ja obliczyć estymator masymalnej wiaryoności? Alorytm EM expectation maximisation: Dempster, Lair, Rubin 977 Estymacja na postawie nieompletnych anych statystycznych ro E: s i liczba otonów wyemitowanych z vosela i zarejestrowanych w piselu etetora ane ompletne Oblicz wartość oczeiwaną uncji wiaryoności: ro M: Kolejną estymację wybierz jao: ˆ n ar max E[ Można poazać, że alorytm EM zwięsza uncję wiaryoności w ażym rou, tzn. P ; ˆ P ; ˆ n n N i s i E[ i ln P s; s ; ˆ n ] s ; ˆ E[ s ] h i ln P s; n ] i i

7 Metoa ML-EM Rozwiązanie - wzór iteracyjny: n n D h D h N j h j n j Nowa estymacja obrazu Poprzenia estymacja obrazu Norma Zmierzona projecja Estymowana projecja Śrenia ważona po wszystich projecjach

8 Reonstrucja iteracyjna ML-EM Obraz początowy n-ta estymacja Projecje estymacji Projecja nie Zbieżność? Projecja wsteczna Porównanie N j h j n j ta Obraz zreonstruowany Zmierzone projecje

9 Reonstrucja iteracyjna ML-EM Iteracje: Funcja wiaryoności: Pr ; ˆ n E[ D ] Pr D! ; ˆ exp E[ n ] lo[pr ] -.0E E E E[ ] N i h i n ˆ i -2.5E+06 iteracja

10 Metoa ML-EM - właściwości D N j n j j D n n h h h

11 MLEM vs FBP analityczne Filtrowana projecja wsteczna FBP oparta na transormacji Fouriera liniowa szyba załaa uproszczony moel izyczny arteaty prążowe przy małej liczbie zliczeń statystyczne iteracyjne Metoa ML-EM uwzlęnia statystyczny charater zmierzonych anych pozwala uwzlęnić ołany moel izyczny znacznie lepsza jaość obrazu mniejszy szum nieliniowa Wolna; wymaa użej mocy obliczeniowej

12 MLEM vs FBP FBP MLEM FBP + iltr MLEM + iltr 30 min 9 iter. 25 iter. 5 min

13 Reularyzacja obrazów Surowe metoy reonstrucji zarówno analityczne ja i statystyczne ają zwyle obraz wysoce zaszumiomy. Potrzebne są metoy reucji szumu, zwyle osztem możliwie niewielieo poorszenia zolności rozzielczej ostrości obrazu. Filtrowanie w ziezinie współrzęnych obrazu lub częstotliwości przestrzennych - w ziezinie częstotliwości przestrzennych - w ziezinie współrzęnych obrazu splot z uncją jąrem iltującą - post-iteracyjne - śróiteracyjne Wyonanie niewieliej liczby iteracji Reonstrucja statystyczna MAP maximum a posteriori

14 Filtrowanie W ziezinie współrzęnych obrazu W ziezinie częstotliwości FFT. FFT -

15 Filtrowanie Post-reonstrucyjne: D N j n j j D n n h h h Mięzy-iteracyjne: D N j n j j D n n h h h inal inal w n w

16 Tylo ilrt rampowy FBP - reularyzacja x,y 2 0 F, Namierny szum P Filrt Butterwortha, c =0.25 N Filrt olnoprzepustowy Butterworth: Shepp-Loan x,y W 2 c 2 W sinc rect c 2 0 F W P, c W 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, 0 0 0,2 0,4 0,6 0,8 Ramp Butterworth Shepp-Loan

17 Reularyzacja - reonstrucja MAP Maximum a Posteriori ar max ˆ P P P P P P P D N j n j j D n n U h h h exp U Z P j i j i ij w V U, 2 x x V Funcja osztu Gibbsa: Alorytm MAP: MAP: ML: ; ar max ˆ P } lo ar max{lo ˆ P P

18 Przyspieszanie alorytmów iteracyjnych Alorytm OSEM Orere Subsets Expectation Maximisation ML-EM OSEM RBI - EM RAMLA P zmierzonych projecji zielimy na K pozbiorów zwyle równej wielości, rozłącznych Pozbiory powinny być zrównoważone być reprezentatywną próbą pełneo zbioru projecji Obliczając estymację obrazu w n-tej iteracji używamy tylo projecji z -teo pozbioru szybość zbieżności jest prawie ientyczna ja przy wyorzystaniu pełneo zbioru projecji n przyspieszenie liczba pozbiorów projecji ip n h i ip h i N j h i ij,2,..., K j

19 Przyspieszanie alorytmów iteracyjnych Alorytm OSEM Orere Subsets Expectation Maximisation ML-EM OSEM Problemy: Bra warancji zbieżności; możliwe cyle perioyczne Możliwe zerowanie voseli w obszarach o b. małej liczbie zliczeń Problemy przy niezrównoważonych pozbiorach n ip n h i ip h i N j h i ij,2,..., K j

20 Eety izyczne wpływające na obrazowanie Osłabienie promieniowania y Rozproszenia s Funcja opowiezi olimatora/etetora * * x iealny Osłabienie + rozmycie olimatora + rozproszenia

21 Eety izyczne wpływające na obrazowanie Osłabienie promieniowania Rozproszenia Funcja opowiezi olimatora/etetora FBP ieał y s * * x iealny rozmycie olimatora Osłabienie + rozmycie olimatora

22 Oziaływanie promienoiwania w tanach 40 ev

23 Osłabienie promienoiwania w tanach 40 ev 0,9 5 ev 0,8 0,7 N/N0 0,6 0,5 0,4 0,3 0,2 0, [cm]

24 Osłabienie promienoiwania w tanach 0, PET SPECT N/N0 0,0 0,00 40 ev 5 ev 0,000 [cm]

25 Korecja osłabienia PET Osłabienie promieniowania : s y 5 ev l Zmierzone projecje: x p, s exp x', y' l' x, y exp x', y' l' x, y l l 5 ev Czynni orecji zmierzony np. w CT

26 Korecja osłabienia - SPECT Zmierzone projecje: p, s exp x ', y' l' x, y l l s y l x Reonstrucja Zreonstruowany obraz: Korecja osłabienia nietrywialna ˆ x, y [ p, s, x, y] x, y -Mapa współczynniów osłabienia znana Do nieawna nie był znany wzór na owrotną transormatę Raona z osłabieniem Noviov 2000 Sompliowany wzór Silne wzmacnianie szumów!

27 Korecja osłabienia metoa Chana Metoa przybliżona post-reonstrucyjna x, y -Mapa współczynniów osłabienia znana y l x Korecja rzęu zero: Korecja rzęu n: Oblicz projecję n- Oblicz błą - n- aa Zreonstruuj obraz błęu n = n- + TF Rec - n-

28 Korecja otonów rozproszonych Metoa TEW Triple Enery Winow S scatter S H S 2 L

29 Reonstrucja iteracyjna moelowanie eetów izycznych H h i prawopoobieństwo etecji otonu z vosela i obietu w piselu etetora i Wszystie eety izyczne można uwzlęnić w macierzy systemu H Attenuation correction AC Scatter correction Collimator resolution moellin Collimator-etector response moellin Resolution recovery

30 Reonstrucja iteracyjna moelowanie eetów izycznych H Jaość reonstucji Czas obliczeń Liczba elementów moelu

31 Implementacja alorytmów iteracyjnych Obliczanie projecji i Ray tracin Oparte na obrotach obrazu Obliczenie macierzy systemu precompute + Fast iterations Lare RAM require Slow isc access compute on the ly + Less RAM require iterations Slow iterations

32 Ocena jaości obrazów Problem złożony lasyiacja estymacja Parametry ilościowe: Optymalnie: Miary jaości onoszące się o onretneo problemu liniczneo Zolność rozzielcza ontrast Poziom szumu: Wariancja; współczynni zmienności Śreni błą waratowy Wimo mocy; SNR Analiza ROC Receiver Operatin Characteristics Obserwatorzy numeryczni Obserwator anałowy Hotellina Metoy statystyczne są nieliniowe Parametry ilościowe zależą o obrazu

33 Ocena jaości obrazów Otworzenie synału Zolność rozzielcza: Oryinał y max atywność 2 y max FWHM x Reonstrucja Szeroość połówowa FWHM Full With at Hal Maximum Dla uncji Gaussa: FWHM 2.35

34 Ocena jaości obrazów Otworzenie synału Kontrast: tło C NL NB NB NL śrenia amplitua w obszarze obietu uza, eetu obiet NB śrenia amplitua w obszarze tła Współczynni otworzenia ontrastu: Contrast recovery coeicient CRC C C rec or

35 Ocena jaości obrazów Poziom szumu: Śrenie ochylenie stanarowe: la pojeynczeo vosela M j j M 2 Po zespole statystycznym M opiach obrazu różniących się realizacją szumu Współczynni zmienności: Coeicient o Variation COV Śreni COV na wybranym obszarze: COV L COV NL

36 Ocena jaości obrazów Poziom szumu Przybliżenie: Dla obszaru o jenoronej atywności śrenie ochylenie stanarowe i wartość śrenią możemy liczyć po obszarze na jenym obrazie, zamiast po M opiach obrazu zespole statystycznym Śrenie ochylenie stanarowe: Współczynni zmienności: Coeicient o Variation

37 Ocena jaości obrazów synał + szum: Śreni błą waratowy: il rec i i MSE or 2 il i or 2 Stosune synału o szumu SNR, Stosune ontrastu o szumu CNR:

38 ontrast/crc Kompromis: rozzielczość - szum; rzywe ontrast-szum Goo system Ba system poziom szumu

39 Krzywe ontrast-szum

40 Krzywe ontrast-szum HR 30 min. HR 0 min. HS9 30 min. HS9 0 min.

41 Metooloia ROC Ocena jaości obrazu oparta na ryterium suteczności ianostycznej, onosząca się o onretneo problemu liniczneo Obiet Metoa Metoa 2 Złoty stanar Klasyiacja Obraz normalny Patoloia Analiza ROC Receiver Operatin Characteristics

42 Metooloia ROC Obiet Metoa Metoa 2 l l 2 l >l c Pró ecyzyjny Obraz normalny Patoloia

43 Metooloia ROC Możliwe wynii: TP true positive TN true neative FP alse positive FN alse neative

44 Metooloia ROC Możliwe wynii: TP true positive TN true neative FP alse positive FN alse neative Krzywe ROC Receiver Operatin Characteristics Miara jaości metoy: AUC area uner curve

45 Nowe technoloie sprzętowe w meycynie nulearnej

Laboratorium Technik Obrazowania

Laboratorium Technik Obrazowania Laboratorium Technik Obrazowania Krzyszto Kacperski Zakład Fizyki Medycznej, Centrum Onkologii - Instytut im. Marii Skłodowskiej-Curie Gamma kamera Funkcja odpowiedzi na źródło punktowe d T D Zdolność

Bardziej szczegółowo

Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu.

Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu. Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu. Ćwiczenie dla studentów Wydziału Fizyki Politechniki Warszawskiej Opracował: Dr inż.

Bardziej szczegółowo

Restauracja a poprawa jakości obrazów

Restauracja a poprawa jakości obrazów Restauracja obrazów Zadaniem metod restauracji obrazu jest taie jego przeształcenie aby zmniejszyć (usunąć) znieształcenia obrazu powstające przy jego rejestracji. Suteczność metod restauracji obrazu zależy

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Estymacja parametrów, przedziały ufności etc

Estymacja parametrów, przedziały ufności etc Estymacja parametrów, przedziały ufności etc Liniowa MNK przypomnienie Wariancja parametrów Postulat Bayesa: rozkłady p-stwa dla parametrów Przypadek nieliniowy Przedziały ufności Rozkłady chi-kwadrat,

Bardziej szczegółowo

Estymacja parametrów, przedziały ufności etc

Estymacja parametrów, przedziały ufności etc Estymacja parametrów, przedziały ufności etc Liniowa MNK przypomnienie Wariancja parametrów Postulat Bayesa: rozkłady p-stwa dla parametrów Przypadek nieliniowy Przedziały ufności Rozkłady chi-kwadrat,

Bardziej szczegółowo

Modelowanie i Analiza Danych Przestrzennych

Modelowanie i Analiza Danych Przestrzennych Moelowanie i Analiza anych Przestrzennych Wykła Anrzej Leśniak Katera Geoinformatyki i Informatyki Stosowanej Akaemia Górniczo-utnicza w Krakowie Prawopoobieństwo i błą pomiarowy Jak zastosować rachunek

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 5 - Identyfikacja Instytut Automatyki i Robotyki (IAiR), Politechnika Warszawska Warszawa, 2015 Koncepcje estymacji modelu Standardowe drogi poszukiwania modeli parametrycznych M1: Analityczne określenie

Bardziej szczegółowo

(u) y(i) f 1. (u) H(z -1 )

(u) y(i) f 1. (u) H(z -1 ) IDETYFIKACJA MODELI WIEERA METODAMI CZĘSTOTLIWOŚCIOWYMI Opracowanie: Anna Zamora Promotor: dr hab. inż. Jarosław Figwer Prof. Pol. Śl. MODELE WIEERA MODELE WIEERA Modele obietów nieliniowych Modele nierozłączne

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu.

Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu. Tomografia emisyjna pojedynczych fotonów (SPECT) w medycynie nuklearnej: technika skanowania i rekonstrukcji obrazu. Ćwiczenie dla studentów Wydziału Fizyki Politechniki Warszawskiej Opracował: Dr inż.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 7.04.09 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 08/09 Metoda największej wiarygodności ierównosć informacyjna Metoda

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 27.04.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Metoda największej wiarygodności ierównosć informacyjna

Bardziej szczegółowo

Metrologia Techniczna

Metrologia Techniczna Zakła Metrologii i Baań Jakości Wrocław, nia Rok i kierunek stuiów Grupa (zień tygonia i gozina rozpoczęcia zajęć) Metrologia Techniczna Ćwiczenie... Imię i nazwisko Imię i nazwisko Imię i nazwisko Błęy

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

Metody probabilistyczne Rozwiązania zadań

Metody probabilistyczne Rozwiązania zadań Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi

Bardziej szczegółowo

Badanie stacjonarności szeregów czasowych w programie GRETL

Badanie stacjonarności szeregów czasowych w programie GRETL Badanie stacjonarności szeregów czasowych w programie GRETL Program proponuje następujące rodzaje testów stacjonarności zmiennych:. Funcję autoorelacji i autoorelacji cząstowej 2. Test Diceya-Fullera na

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 22.04.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 2015/2016 Próby z odliczaniem. Próbki Metoda największej wiarygodności ierównosć

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie

Bardziej szczegółowo

Algorytmy graficzne. Metody binaryzacji obrazów

Algorytmy graficzne. Metody binaryzacji obrazów Algorytmy graficzne Metoy binaryzacji obrazów Progowanie i binaryzacja Binaryzacja jest procesem konwersji obrazów kolorowych lub monochromatycznych (w ocieniach szarości) o obrazu wupoziomowego (binarnego).

Bardziej szczegółowo

Wnioskowanie statystyczne. Statystyka w 5

Wnioskowanie statystyczne. Statystyka w 5 Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

O nauczaniu oceny niepewności standardowej

O nauczaniu oceny niepewności standardowej 8 O nauczaniu oceny niepewności stanarowej Henryk Szyłowski Wyział Fizyki UAM, Poznań PROBLEM O lat 90. ubiegłego wieku istnieją mięzynaroowe normy oceny niepewności pomiarowych [, ], zawierające jenolitą

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZA 1. Wyład wstępny. Teoria prawdopodobieństwa i elementy ombinatoryi. Zmienne losowe i ich rozłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora

Bardziej szczegółowo

Wykład 1. Andrzej Leśniak KGIS, GGiOŚ AGH. Cele. Zaprezentowanie praktycznego podejścia do analizy danych (szczególnie danych środowiskowych)

Wykład 1. Andrzej Leśniak KGIS, GGiOŚ AGH. Cele. Zaprezentowanie praktycznego podejścia do analizy danych (szczególnie danych środowiskowych) Analiza anych śroowiskowych III rok OŚ Wykła 1 Anrzej Leśniak KGIS, GGiOŚ AGH Cele Zaprezentowanie praktycznego poejścia o analizy anych (szczególnie anych śroowiskowych) Zaznajomienie z postawowymi (!!!)

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Metody optymalizacji nieliniowej (metody programowania nieliniowego) Ewa Niewiadomska-Szynkiewicz Instytut Automatyki i Informatyki Stosowanej

Metody optymalizacji nieliniowej (metody programowania nieliniowego) Ewa Niewiadomska-Szynkiewicz Instytut Automatyki i Informatyki Stosowanej Metody optymalizacji nieliniowej metody programowania nieliniowego Ewa Niewiadomsa-Szyniewicz Instytut Automatyi i Inormatyi Stosowanej Ewa Niewiadomsa-Szyniewicz ens@ia.pw.edu.pl Instytut Automatyi i

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe.

Bardziej szczegółowo

Uogolnione modele liniowe

Uogolnione modele liniowe Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE LABORATORIUM PROMIEIOWAIE w MEDYCYIE Ćw nr STATYSTYKA ZLICZEŃ PROMIEIOWAIA JOIZUJACEGO azwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa Cel ćwiczenia Rozpad izotopu promieniotwórczego wysyłającego

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Zastosowanie metody PCA do opisu wód naturalnych

Zastosowanie metody PCA do opisu wód naturalnych autorzy: Stanisław Koter, Klaudia Wesołowsa 2 Uniwersytet Miołaja Kopernia, Toruń, 2 Politechnia Śląsa, Gliwice Zastosowanie metody PCA do opisu wód naturalnych W niniejszej pracy przedstawiono zastosowanie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka

Bardziej szczegółowo

Sygnały stochastyczne

Sygnały stochastyczne Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Propagacja w przestrzeni swobodnej (dyfrakcja)

Propagacja w przestrzeni swobodnej (dyfrakcja) Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Prawdopodobieństwo i rozkład normalny cd.

Prawdopodobieństwo i rozkład normalny cd. # # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Natalia Neherbecka. 11 czerwca 2010

Natalia Neherbecka. 11 czerwca 2010 Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje

Bardziej szczegółowo

4. Weryfikacja modelu

4. Weryfikacja modelu 4. Weryfiacja modelu Wyznaczenie wetora parametrów struturalnych uładu ończy etap estymacji. Kolejnym etapem jest etap weryfiacji modelu. Przeprowadza się ją w dwóch ujęciach: merytorycznym i statystycznym.

Bardziej szczegółowo

Przestrzenne uwarunkowania lokalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej

Przestrzenne uwarunkowania lokalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej Cezary Ziółowsi Jan M. Kelner Instytut Teleomuniacji Wojsowa Aademia Techniczna Przestrzenne uwarunowania loalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej Problematya loalizacji

Bardziej szczegółowo

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010 STATYSTYKA MATEMATYCZNA WYKŁAD 14 18 stycznia 2010 Model statystyczny ROZKŁAD DWUMIANOWY ( ) {0, 1,, n}, {P θ, θ (0, 1)}, n ustalone P θ {K = k} = ( ) n θ k (1 θ) n k, k k = 0, 1,, n Geneza: Rozkład Bernoulliego

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Przykład zastosowania optymalnej alokacji w estymacji frakcji

Przykład zastosowania optymalnej alokacji w estymacji frakcji optymalnej alokacji w estymacji frakcji Katedra Ekonometrii i Statystyki SGGW XVIII Metody Ilościowe w Badaniach Ekonomicznych Rogów 20 czerwca 2017 r. Plan prezentacji 1 2 3 4 Rozważmy skończona populację

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo