O ŚREDNIEJ STATYSTYCZNEJ
|
|
- Jarosław Bednarek
- 9 lat temu
- Przeglądów:
Transkrypt
1 O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, IX 2009 r.
2 WYNIKI OBSERWACJI X 1, X 2,..., X n
3 WYNIKI OBSERWACJI X 1, X 2,..., X n Model statystyczny: X i = µ + ε i, i = 1, 2,..., n
4 WYNIKI OBSERWACJI X 1, X 2,..., X n Model statystyczny: X i = µ + ε i, i = 1, 2,..., n µ
5 UŚREDNIENIE X = 1 n X j n j=1
6 UŚREDNIENIE X = 1 n X j n j= X. µ
7 UZASADNIENIE średnia X minimalizuje względem µ funkcję n j=1 (X i µ) 2
8 p 2. p p 1... q p i p i q 2 min 2... p 5
9 astronomia, metrologia, geodezja,... ROZKŁAD NORMALNY N(µ, σ 2 ) ϕ(x) = 1 σ 2π exp { 1 2 ( ) x µ 2 } σ
10 n= n=4 0.2 n= µ = 2.
11 Jak to się dzieje? Funkcja charakterystyczna rozkładu normalnego N(µ, σ): φ X (t) = exp{iµt 1 2 σ2 t 2 }
12 FUNKCJA CHARAKTERYSTYCZNA (przypomnienie) zmiennej losowej X o rozkładzie z gęstością z dystrybuantą F : φ X (t) = e itx df (x) (Transformata Fouriera rozkładu F ) Dla stałej λ: φ λx (t) = φ X (λt) Jeżeli X i Y są niezależne, to φ X +Y (t) = φ X (t) φ Y (t)
13 Funkcja charakterystyczna rozkładu normalnego N(µ, σ): φ X (t) = exp{iµt 1 2 σ2 t 2 } Funkcja charakterystyczna średniej X = n j=1 X j /n: φ X (t) = exp{iµt 1 ( ) σ 2 t 2 } 2 n
14 Funkcja charakterystyczna rozkładu normalnego N(µ, σ): φ X (t) = exp{iµt 1 2 σ2 t 2 } Funkcja charakterystyczna średniej X = n j=1 X j /n: φ X (t) = exp{iµt 1 ( ) σ 2 t 2 } 2 n Inne rozkłady?
15 Rozkłady o trochę tłuściejszych ogonach:
16 TŁUSTE OGONY - rozmiar finansowej odpowiedzialności ubezpieczyciela w związku z wypadkami losowymi jego klientów przy ubezpieczeniu OC, AC oraz od wypadków przy pracy
17 TŁUSTE OGONY - rozmiar finansowej odpowiedzialności ubezpieczyciela w związku z wypadkami losowymi jego klientów przy ubezpieczeniu OC, AC oraz od wypadków przy pracy - wielkość plików przesyłanych w internecie
18 TŁUSTE OGONY - rozmiar finansowej odpowiedzialności ubezpieczyciela w związku z wypadkami losowymi jego klientów przy ubezpieczeniu OC, AC oraz od wypadków przy pracy - wielkość plików przesyłanych w internecie - pojemność złóż ropy naftowej
19 TŁUSTE OGONY - rozmiar finansowej odpowiedzialności ubezpieczyciela w związku z wypadkami losowymi jego klientów przy ubezpieczeniu OC, AC oraz od wypadków przy pracy - wielkość plików przesyłanych w internecie - pojemność złóż ropy naftowej - rozmiary osiedli ludzkich
20 TŁUSTE OGONY - rozmiar finansowej odpowiedzialności ubezpieczyciela w związku z wypadkami losowymi jego klientów przy ubezpieczeniu OC, AC oraz od wypadków przy pracy - wielkość plików przesyłanych w internecie - pojemność złóż ropy naftowej - rozmiary osiedli ludzkich - tzw. zwroty w operacjach giełdowych
21 ROZKŁAD CAUCHY EGO (Lorenza, Breita-Wignera) Ca(µ, λ) g(y) = 1 π Funkcja charakterystyczna: λ λ 2 + (y µ) 2, G(y) = π arctg y µ λ φ Y (t) = exp{iµt λt }
22 ROZKŁAD CAUCHY EGO (Lorenza, Breita-Wignera) Ca(µ, λ) g(y) = 1 π Funkcja charakterystyczna: λ λ 2 + (y µ) 2, G(y) = π arctg y µ λ φ Y (t) = exp{iµt λt } Funkcja charakterystyczna średniej Y = n j=1 Y j /n:
23 ROZKŁAD CAUCHY EGO (Lorenza, Breita-Wignera) Ca(µ, λ) g(y) = 1 π Funkcja charakterystyczna: λ λ 2 + (y µ) 2, G(y) = π arctg y µ λ φ Y (t) = exp{iµt λt } Funkcja charakterystyczna średniej Y = n j=1 Y j /n: φ Y (t) = exp{iµt λt }
24 ROZKŁAD CAUCHY EGO ROZKŁAD ŚREDNIEJ ARYTMETYCZNEJ Z PRÓBY JEST TAKI SAM JAK ROZKŁAD POJEDYNCZEJ OBSERWACJI
25 Ogólniej: SYMETRYCZNE ROZKŁADY α-stabilne exp{iµt λt α }
26 Ogólniej: SYMETRYCZNE ROZKŁADY α-stabilne exp{iµt λt α } ( exp{iµ t n λ t n α }) n = exp{iµt n 1/α 1 λt α } α=2 rozkład normalny; α=1 rozkład Cauchy ego
27 rozk lad pojedynczej obserwacji rozk lad średniej
28 MEDIANA Mediana M minimalizuje względem µ funkcję n j=1 X i µ
29 p 2. p p 1... q p i p i q 1 min... p 5
30 MEDIANA Próba: X 1, X 2,..., X n Statystyki pozycyjne: X 1:n, X 2:n,..., X n:n X 1:n X 2:n... X n:n
31 MEDIANA Wyniki obserwacji: X 1, X 2,..., X 2n+1 Mediana z próby: X n:2n+1 (2n + 1)! ( nf (n!) 2 F (x)[1 F (x)]) (x)
32 n= n=5 0.2 n= µ = 2.
33 Mediana z próby X 1, X 2,..., X n M n = 1 2 ( X n 2 :n + X n 2 +1:n ), jeżeli n jest parzyste, X [ n+1 2 ]:n, jeżeli n jest nieparzyste
34 Efektywność mediany w rozkładzie N(0, 1) e(n) = Var(X n) Var(M n ) n e(n)
35 Efektywność mediany w rozkładzie U(0, 1) n e(n)
36 Obciążenie estymatora?
37 Mediana z próby parzystej jest najczęściej definiowana jako średnia arytmetyczna dwóch środkowych obserwacji
38 Mediana z próby parzystej jest najczęściej definiowana jako średnia arytmetyczna dwóch środkowych obserwacji Ogólniej: liniowy estymator kwantyla rzędu q (L-statystyka) c 1 X 1:n + c 2 X 2:n c n X n:n
39 Mediana z próby parzystej jest najczęściej definiowana jako średnia arytmetyczna dwóch środkowych obserwacji Ogólniej: liniowy estymator kwantyla rzędu q (L-statystyka) c 1 X 1:n + c 2 X 2:n c n X n:n Efektywne konstrukcje w modelach z parametrem położenia
40 Mediana z próby parzystej jest najczęściej definiowana jako średnia arytmetyczna dwóch środkowych obserwacji Ogólniej: liniowy estymator kwantyla rzędu q (L-statystyka) c 1 X 1:n + c 2 X 2:n c n X n:n Efektywne konstrukcje w modelach z parametrem położenia Modele statystyczne z parametrem położenia: X = µ + ε, µ nieznane, ε F, F znane
41 Mediana z próby parzystej jest najczęściej definiowana jako średnia arytmetyczna dwóch środkowych obserwacji Ogólniej: liniowy estymator kwantyla rzędu q (L-statystyka) c 1 X 1:n + c 2 X 2:n c n X n:n Efektywne konstrukcje w modelach z parametrem położenia Modele statystyczne z parametrem położenia: X = µ + ε, µ nieznane, ε F, F znane Estymacja kwantyla?
42 Mediana z próby parzystej jest najczęściej definiowana jako średnia arytmetyczna dwóch środkowych obserwacji Ogólniej: liniowy estymator kwantyla rzędu q (L-statystyka) c 1 X 1:n + c 2 X 2:n c n X n:n Efektywne konstrukcje w modelach z parametrem położenia Modele statystyczne z parametrem położenia: X = µ + ε, µ nieznane, ε F, F znane Estymacja kwantyla? Niesymetryczne F,
43 Mediana z próby parzystej jest najczęściej definiowana jako średnia arytmetyczna dwóch środkowych obserwacji Ogólniej: liniowy estymator kwantyla rzędu q (L-statystyka) c 1 X 1:n + c 2 X 2:n c n X n:n Efektywne konstrukcje w modelach z parametrem położenia Modele statystyczne z parametrem położenia: X = µ + ε, µ nieznane, ε F, F znane Estymacja kwantyla? Niesymetryczne F, V@R
44 Liniowy estymator nieobciążony o minimalnej wariancji: C = M 1 R ( ) ( ) 1 R T M 1 F R 1 (q) 1 E F X 1:n 1 R =......, M i,j = Cov F (X i:n, X j:n ) E F X n:n 1
45 Liniowy estymator nieobciążony o minimalnej wariancji: C = M 1 R ( ) ( ) 1 R T M 1 F R 1 (q) 1 E F X 1:n 1 R =......, M i,j = Cov F (X i:n, X j:n ) E F X n:n 1 Minimalna wariancja: Var L (q, n) = ( ) F 1 T ( ) (q) ( ) 1 R T M 1 F R 1 (q) 1 1
46 Liniowy estymator nieobciążony o minimalnej wariancji: C = M 1 R ( ) ( ) 1 R T M 1 F R 1 (q) 1 E F X 1:n 1 R =......, M i,j = Cov F (X i:n, X j:n ) E F X n:n 1 Minimalna wariancja: Var L (q, n) = ( ) F 1 T ( ) (q) ( ) 1 R T M 1 F R 1 (q) 1 1 Var L (q, n + 1) < Var L (q, n)???
47 Przykład: Estymacja kwantyla rzędu q rozkładu normalnego: (Var UMVU (q, 5),Var L (q, 5)) = , , , = dla q = , , ,
48 Przykład: Estymacja mediany rozkładu Cauchy ego: c 3 X 3:n + c 4 X 4:n c n 2 X n 2:n Liniowy estymator nieobciążony o minimalnej wariancji: C = M 1 R ( ) ( ) 1 R T M 1 0 R 1 E F X 3:n 1 R = M i,j = Cov F (X i:n, X j:n ) E F X n 2:n 1
49 Duży model nieparametryczny : rodzina F wszystkich rozkładów o ciągłych i ściśle rosnących dystrybuantach na prostej
50 Duży model nieparametryczny : rodzina F wszystkich rozkładów o ciągłych i ściśle rosnących dystrybuantach na prostej Mediana z próby pochodzącej z rozkładu F jako estymator mediany m(f ) tego rozkładu
51 Duży model nieparametryczny : rodzina F wszystkich rozkładów o ciągłych i ściśle rosnących dystrybuantach na prostej Mediana z próby pochodzącej z rozkładu F jako estymator mediany m(f ) tego rozkładu Twierdzenie. Dla każdego C > 0 istnieje taki rozkład F F, że Med F ( ) X n 2 :n + X n 2 +1:n 2 m(f ) > C
52 Duży model nieparametryczny : rodzina F wszystkich rozkładów o ciągłych i ściśle rosnących dystrybuantach na prostej Mediana z próby pochodzącej z rozkładu F jako estymator mediany m(f ) tego rozkładu Twierdzenie. Dla każdego C > 0 istnieje taki rozkład F F, że Med F ( ) X n 2 :n + X n 2 +1:n 2 m(f ) > C TWIERDZENIE JEST PRAWDZIWE DLA WSZYSTKICH NIETRYWIALNYCH L-STATYSTYK!
53 Duży model nieparametryczny F Rodzina wszystkich rozkładów o ciągłych i ściśle rosnących dystrybuantach Jeżeli X ma rozkład F z rodziny F i jeżeli g : R 1 R 1 jest przekształceniem monotonicznym, to zmienna losowa g(x ) też ma rozkład z rodziny F
54 Duży model nieparametryczny F Rodzina wszystkich rozkładów o ciągłych i ściśle rosnących dystrybuantach Jeżeli X ma rozkład F z rodziny F i jeżeli g : R 1 R 1 jest przekształceniem monotonicznym, to zmienna losowa g(x ) też ma rozkład z rodziny F Jeżeli X ma rozkład F F z medianą m(f ) i jeżeli g : R 1 R 1 jest przekształceniem monotonicznym, to zmienna losowa g(x ) ma rozkład z medianą g(m(f )).
55 Duży model nieparametryczny F Rodzina wszystkich rozkładów o ciągłych i ściśle rosnących dystrybuantach Jeżeli X ma rozkład F z rodziny F i jeżeli g : R 1 R 1 jest przekształceniem monotonicznym, to zmienna losowa g(x ) też ma rozkład z rodziny F Jeżeli X ma rozkład F F z medianą m(f ) i jeżeli g : R 1 R 1 jest przekształceniem monotonicznym, to zmienna losowa g(x ) ma rozkład z medianą g(m(f )). Jeżeli X ma rozkład F F z kwantylem x q (F ) rzędu q i jeżeli g : R 1 R 1 jest przekształceniem monotonicznym, to zmienna losowa g(x ) rozkład z kwantylem rzędu q równym g(x q (F )).
56 Postulat pod adresem estymatora mediany (kwantyla): Jeżeli T jest nieobciążonym estymatorem mediany (kwantyla rzędu q) zmiennej losowej X, to g(t ) jest nieobciążonym estymatorem mediany (kwantyla rzędu q) zmiennej losowej g(x )
57 Postulat pod adresem estymatora mediany (kwantyla): Jeżeli T jest nieobciążonym estymatorem mediany (kwantyla rzędu q) zmiennej losowej X, to g(t ) jest nieobciążonym estymatorem mediany (kwantyla rzędu q) zmiennej losowej g(x ) Nieobciążony?
58 Estymacja kwantyla x q (F ) rzędu q rozkładu F. Konstrukcja medianowo nieobciążonego estymatora o maksymalnej koncentracji:
59 P {T x} x q. x
60 Definiujemy π k (q) = P F {X k:n x q (F )} = n j=k Wybieramy k takie, że π k (q) 1 2 > π k+1(q) Obliczamy λ k = 1 2 π k+1(q) π k (q) π k+1 (q) ( ) n q j (1 q) n j j Medianowo nieobciążony estymator o maksymalnej koncentracji ma postać T = X J :n, P{J =k}=λ k, P{J =k +1}=1 λ k
61 Estymacja mediany (q = 1/2) π k ( 1 2 ) = 1 2 n n ( n ) j j=k 1 ( ), n = 2m + 1, 1 2 π m+1 = ( 2m ), n = 2m 2 2m m X m+1, n = 2m + 1 Estymator = 1 (0,0.5] (R)X m + 1 (0.5,1) (R)X m+1, n = 2m R U(0, 1)
62 WNIOSKI:
63 WNIOSKI: W modelu statystycznym {F µ ( ) = F ( µ)}, na podstawie obserwacji X 1, X 2,..., X n, estymuj µ za pomocą:
64 WNIOSKI: W modelu statystycznym {F µ ( ) = F ( µ)}, na podstawie obserwacji X 1, X 2,..., X n, estymuj µ za pomocą: Gdy F = N(0, σ 2 ) średniej arytmetycznej z próby
65 WNIOSKI: W modelu statystycznym {F µ ( ) = F ( µ)}, na podstawie obserwacji X 1, X 2,..., X n, estymuj µ za pomocą: Gdy F = N(0, σ 2 ) średniej arytmetycznej z próby Gdy F N(0, σ 2 ), ale F znane pomyśl np o L-statystykach
66 WNIOSKI: W modelu statystycznym {F µ ( ) = F ( µ)}, na podstawie obserwacji X 1, X 2,..., X n, estymuj µ za pomocą: Gdy F = N(0, σ 2 ) średniej arytmetycznej z próby Gdy F N(0, σ 2 ), ale F znane pomyśl np o L-statystykach Gdy F nie jest znane, pomyśl o medianowo nieobciążonym estymatorze o maksymalnej koncentracji wokół µ
67 WNIOSKI: W modelu statystycznym {F µ ( ) = F ( µ)}, na podstawie obserwacji X 1, X 2,..., X n, estymuj µ za pomocą: Gdy F = N(0, σ 2 ) średniej arytmetycznej z próby Gdy F N(0, σ 2 ), ale F znane pomyśl np o L-statystykach Gdy F nie jest znane, pomyśl o medianowo nieobciążonym estymatorze o maksymalnej koncentracji wokół µ ZAWSZE PRZED WYBOREM ESTYMATORA STARANNIE PRZEMYŚL WSZYSTKO CO WIESZ O ROZKŁADZIE. ZBYT POCHOPNE UŚREDNIANIE OBSERWACJI MOŻE POPSUĆ WNIOSKOWANIE
68 WNIOSKI: W modelu statystycznym {F µ ( ) = F ( µ)}, na podstawie obserwacji X 1, X 2,..., X n, estymuj µ za pomocą: Gdy F = N(0, σ 2 ) średniej arytmetycznej z próby Gdy F N(0, σ 2 ), ale F znane pomyśl np o L-statystykach Gdy F nie jest znane, pomyśl o medianowo nieobciążonym estymatorze o maksymalnej koncentracji wokół µ ZAWSZE PRZED WYBOREM ESTYMATORA STARANNIE PRZEMYŚL WSZYSTKO CO WIESZ O ROZKŁADZIE. ZBYT POCHOPNE UŚREDNIANIE OBSERWACJI MOŻE POPSUĆ WNIOSKOWANIE ;)
O ŚREDNIEJ STATYSTYCZNEJ
Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla
STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar
O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE
Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru
O średniej arytmetycznej i medianie
MATEMATYKA STOSOWANA TOM 11/5 010 Ryszard Zieliński Warszawa) O średniej arytmetycznej i medianie Streszczenie. Mierząc pewną wielkość μ długość, ciężar, temperaturę...) otrzymujemy wynik X, zwykle różniący
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war
Wykład 5 Estymatory nieobciążone z jednostajnie minimalną wariancją Wrocław, 25 października 2017r Statystyki próbkowe - Przypomnienie Niech X = (X 1, X 2,... X n ) będzie n elementowym wektorem losowym.
Metody probabilistyczne
Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Metody probabilistyczne
Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy
Pozyskiwanie wiedzy z danych
Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy
Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów
Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we
Statystyczna analiza danych
Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie
STATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
Statystyka w analizie i planowaniu eksperymentu
22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego
Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Wykład 10 Testy jednorodności rozkładów
Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.
W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne. dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Plan wykładu: 1. Etapy wnioskowania statystycznego 2. Hipotezy statystyczne,
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Metoda największej wiarygodności
Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna
Prawdopodobieństwo i statystyka
Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Rozkłady statystyk z próby. Statystyka
Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Wykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
x x 0.5. x Przykłady do zadania 4.1 :
Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.
Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Dokładne i graniczne rozkłady statystyk z próby
Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Metoda reprezentacyjna
Metoda reprezentacyjna Stanisław Jaworski Katedra Ekonometrii i Statystyki Zakład Statystyki Populacja, cecha, parametr, próba Metoda reprezentacyjna Przedmiotem rozważań metody reprezentacyjnej są metody
Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013
0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.