2.5. RDZEŃ PRZEKROJU

Wielkość: px
Rozpocząć pokaz od strony:

Download "2.5. RDZEŃ PRZEKROJU"

Transkrypt

1 .5. RDZEŃ RZEKRJU Rdenem rekru nwm sr wukł wkół eg śrdk cężkśc w którm rłżn sł rcągąc (ścskąc) wwłue nrężen ednkweg nku w cłm rekru Równne s ętne mżn redstwć w dwóc lterntwnc stcc 0 () l () gde () Równne () mżem nterretwć k leżnść męd ustlnm wsółrędnm unktu rłżen sł mennm wsółrędnm unktów leżącc n s ętną (rs. ). Rs.

2 Ntmst równne () k leżnść męd ustlnm wsółrędnm recęc sę s ętnc (śrdk ęku rstc) mennm wsółrędnm unktów rłżen sł leżącc n rste (rs. ). unktu Rs. Z nl wżsc równń mżem wcągnąć nstęuące wnsk: Wnsek. ddlnu (rlżnu) sę unktu rłżen sł d (d) śrdk cężkśc rekru recneg twrs rlżne (ddlne) sę s ętne d (d) śrdk cężkśc dwrtne. Wnsek. s ętne stcne d ku welku wukłeg rswneg n rekru rsn est unkt rłżen sł ędąc wercłkem rden rekru. Wnsek. rtw s ętne wkół ustlneg unktu dwd remescne sę unktu rłżen sł rste. Wnsek. ękw s ętnc recdącc re wercłek welku wukłeg rswneg n rekru rsn est rst recdąc re k rden rekru. Z wżseg wnką nstęuące dw nstęuące ss wncn rden rekru: Ssó. rswuem rekró welkem wukłm wncm wsółrędne wercłków W eg rden nstęuącc wrów gde... n () ncą dwedn dcęte rędne unktów recęc s ętnc recdącc re k welku sm głównm ntmst n est lcą tc wercłków. Jeśl unkt te ne leżą n sc głównc t c wsółrędne wncm leżnśc k (5) k k k k

3 gde są nnm wsółrędnm wercłków k welku leżącc k k n s ętne. Nstęne łącm trmne wercłk trmuąc rdeń rekru. Ssó. rswuem rekró welkem wukłm wncm wsółrędne unktów recęc rstc sm głównm recdącc re k rden rekru... n () gde są wsółrędnm wercłków (śrdk ęku s ętnc) welku wukłeg rswneg n rekru ntmst n est lcą tc wercłków. unkt recęc sę rstc wncą wercłk rden rekru. Jeśl unkt te ne leżą n sc głównc nleż wncć c wsółrędne. Wkrstuem w tm celu leżnśc (7) l gde (7 ) wsółrędne recęc rste wsółrędne recęc rste sm kłdu sm kłdu Wnsk rdeń rekru est wse fgurą wukłą m tle wercłków le ków m welk wukł rswn n rekru w rdku smetrcneg rekru est fgurą smetrcną eg wercłek leż n s główne eśl k welku est d ne rstdł. rkłd rkłd. W rdku rekru k n rs.. nleż wncć eg rdeń. Dne: Sukne: Wsółrędne wercłków rden rekru

4 Rwąne Krk. lcm crkterstk gemetrcne rekru rs.. Krk. rswuem rekró welkem wukłm któr w nlwnm rdku est rstkątem ędącm rsem dneg rekru (rs..). Ssó Srwdm wr () d stc Krk. Wncm wsółrędne unktów recęc s ętnc recdącc re k rsu rekru (rstkąt) sm głównm. Z uwg n smetrę rekru wstrc t ucnć tlk w rdku s (rs..) Krk. lcm wsółrędne wercłków W rden rekru. Z uwg n smetrę rekru wstrc t ucnć tlk w rdku wercłków W W 0 0 W

5 5 0 0 W Z smetr rekru wnk że ( ) 0 W ( ) 0 W. rs.. Krk 5. Łącm wncne wercłk (wsstke leżą n sc głównc) trmuąc sukwn rdeń rekru (rs..). Ssó. Srwdm wr () d stc... Krk. Wncm wsółrędne wercłków rsu rekru (rstkąt). Z uwg n smetrę rekru wstrc t ucnć tlk w rdku wercłków (rs..) Krk. lcm wsółrędne unktów recęc rstc recdącc re k rden rekru sm głównm. Z uwg n smetrę rekru wstrc t ucnć tlk w rdku rstc

6 Z smetr rekru wnk że rste są wercdlnm dcem rstc. rs.. Krk 5. Nnsm wncne rste n rsunek trmuąc sukwn rdeń rekru któreg wercłk nduą sę w unktc recęc tc rstc (rs..). newż unkt te leżą n sc głównc rekru t k łtw srwdć c wsółrędne są dentcne k wncne ssem. rkłd. W rdku rekru k n rs.. nleż wncć eg rdeń. Rs.. Dne: Sukne: Wsółrędne wercłków rden rekru Rwąne Krk. lcm crkterstk gemetrcne rekru ( ) ( ) ( )

7 Krk. rswuem rekró welkem wukłm któr w nlwnm rdku est trókątem ędącm rsem dneg rekru (rs..). Ssó Srwdm wr () d stc Krk. Wncm wsółrędne unktów recęc s ętnc recdącc re k rsu rekru (trókąt) sm głównm. Z uwg n smetrę rekru wstrc t ucnć tlk w rdku s (rs..) Rs.. Krk. lcm wsółrędne. wercłków wstrc t ucnć tlk w rdku wercłków W 0.5 W rden rekru. Z uwg n smetrę rekru W 0.5 W 5 Z smetr rekru wnk że W ( ) 0 W ;. ( 0 ) ( 0.5; 0. ) Krk 5. Łącm wncne wercłk trmuąc sukwn rdeń rekru (rs..). Ssó. Srwdm wr () d stc 7

8 8... Krk. Wncm wsółrędne wercłków rsu rekru (rstkąt). Z uwg n smetrę rekru wstrc t ucnć tlk w rdku wercłków (rs..) 0 Rs.. Krk. lcm wsółrędne unktów recęc rstc recdącc re k rden rekru sm głównm. Z uwg n smetrę rekru wstrc t ucnć tlk w rdku rstc Z smetr rekru wnk że rst est wercdlnm dcem rste. Krk 5. Nnsm wncne rste n rsunek trmuąc sukwn rdeń rekru któreg wercłk nduą sę w unktc recęc tc rstc (rs..). newż unkt recęc sę rstc ne leż n żdne s głównc t d wncen eg wsółrędnc wkrstm leżnśc (7) którc wnk że rkłd. W rdku rekru k n rs.. nleż wncć eg rdeń. Dne:

9 9 Sukne: Wsółrędne wercłków rden rekru Rwąne Krk. lcm crkterstk gemetrcne rekru ( ) ( ) Rs.. Krk. rswuem rekró welkem wukłm któr w nlwnm rdku est seśckem (rs..) Ssó Srwdm wr () d stc... Krk. Wncm wsółrędne unktów recęc s ętnc recdącc re k rsu rekru (seśckąt) sm głównm. Z uwg n smetrę rekru wstrc t ucnć tlk w rdku s d (rs..) 8 Uwg. Wsółrędną lcn leżnśc (5) rmuąc że k

10 Z 0 gde wkrstn wsółrędne unktów ( ) ( 0) ; mżn ą też wncć wrunku 8 Krk. lcm wsółrędne Rs.. wercłków wstrc t ucnć tlk w rdku wercłków W d W rden rekru. Z uwg n smetrę rekru W 0 0. W ( 0; 0. ) W 5 8 ( 0.; 0. ) W ( 0.;0 ) W 7 ( ) Z smetr rekru wnk że W ( 0. 0) W ( ) 5. ( 0;0. ) Krk 5. Łącm wncne wercłk (wsstke leżą n sc głównc) trmuąc sukwn rdeń rekru (rs..). Ssó. Srwdm wr () d stc... 0

11 Krk. Wncm wsółrędne wercłków rsu rekru (seśckąt). Z uwg n smetrę rekru wstrc t ucnć tlk w rdku wercłków d (rs..) 0 Rs.. Krk. lcm wsółrędne unktów recęc rstc recdącc re k rden rekru sm głównm. Z uwg n smetrę rekru wstrc t ucnć tlk w rdku rstc d ( ) 7 Z smetr rekru wnk że rste 5 są wercdlnm dcem rstc. Krk 5. Nnsm wncne rste n rsunek trmuąc sukwn rdeń rekru któreg wercłk nduą sę w unktc recęc tc rstc (rs..). newż unkt recęc sę rstc ne leż n żdne s głównc t d wncen eg wsółrędnc wkrstm leżnśc (7 ) którc wnk że

12 rkłd. W rdku rekru k n rs.. nleż wncć eg rdeń. Dne dtcące crkterstk gemetrcnc rekru cdą rkłdu wkłdu Crkterstk gemetrcne rekru. Dne: ϕ G..5 7 Wsółrędne śrdk cężkśc rekru ( 5.;. ) C 79 Wsółrędne eg wercłków w ukłde s głównc C g g (.9; 5.5) (.87;. ) ( 0.9; 5.) ( ) Sukne: Wsółrędne wercłków rden rekru Rwąne Rs.. Krk. Wncm crkterstk gemetrcne rekru. W rwżnm rkłde są t rmene ewłdnśc Krk. rswuem rekró welkem wukłm któr w nlwnm rdku est cwrkem (rs..) Ssó Srwdm wr () d stc Krk. Wncm wsółrędne unktów recęc s ętnc recdącc re k rsu rekru (cwrkąt) sm głównm (rs..). Wkrstuem w tm celu leżnśc (5) k

13 k ( 5.). ( 0.9) (.95). k (.85) ( 5. ) 9. k (.87) (.9) ( 8.). Krk. lcm wsółrędne Rs.. wercłków W rden rekru W ( 0.. ) W ( 0.9. ) W ( 0.. ) W węc W( 0.. 9) W ( ) W ( 0.. ) W ( ). ( )

14 Krk 5. Łącm wncne wercłk trmuąc sukwn rdeń rekru (rs..). Ssó Srwdm wr () d stc Krk. Wncm wsółrędne wercłków rsu rekru (cwrkąt rs..). W rwżnm rkłde wsółrędne te są dne Rs.. Krk. lcm wsółrędne unktów recęc rstc recdącc re k rden rekru sm głównm

15 Krk 5. Nnsm wncne rste n rsunek trmuąc sukwn rdeń rekru któreg wercłk nduą sę w unktc recęc tc rstc (rs..). newż unkt recęc sę wncnc rstc ne leż n żdne s głównc t d wncen c wsółrędnc wkrstm leżnśc (7) którc wnk że ( 0.) ( 0.9) węc W( 0.. 9) W ( 0.9. ) W ( 0.. ) W ( ) Zgdnen n egmn. Zdefnwć rdeń rekru mówć ssó eg wncen n rkłde rekru rstkątneg. D. Wncene wsółrędnc Równne s ętne Ddtk unktu recęc s ętne sm ukłdu dnesen recdące re unkt k m stć (rs. D) Rs. D 5

16 k k gde k k nne wsółrędne unktów k leżącc n s ętne sukwne wsółrędne unktów recęc s ętne sm demuąc wżse równn strnm trmuem Z wżseg wnk że k ( ) k k k Ztem k k rekstłcąc wżse wrżene dstem sttecne k k k k ( ) ( ) k k k k k k k k k D. Wncene wsółrędnc unktu recęc rstc Srwdm równne () d stc kerunkwe którą w rdku dwóc rstc równn (rs. D) kreślą

17 7 Rs. D l gde wsółrędne recęc rste sm kłdu wsółrędne recęc rste sm kłdu dstwąc d wżsc równń wsółrędne unktu recęc tc rstc cl rmuąc że r dstem l Rwąuąc wżs ukłd równń trmuem l

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE .. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm

Bardziej szczegółowo

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w

Bardziej szczegółowo

2.2. ZGINANIE UKOŚNE

2.2. ZGINANIE UKOŚNE .. ZGINNIE UKŚNE Zginnie ukśne (dwukierunkwe) wstępuje wówcs, gd bciążenie ewnętrne redukuje się d wektr mmentu ginjąceg, leżąceg w płscźnie prekrju, któreg kierunek nie pkrw się żdną głównch, centrlnch

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

(y N, z N ) Rys. 14.1

(y N, z N ) Rys. 14.1 dm Bodnr: Wtrmłość Mterłów. Mmośrodowe rocągne ścskne. MIMOŚRODOWE ROCIĄGIE I ŚCISKIE.. prężen odkstłcen Mmośrodowe rocągne pręt prmtcnego wstępuje wówcs gd ukłd sł ewnętrnch po jednej strone jego prekroju

Bardziej szczegółowo

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)

Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3) ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol

Bardziej szczegółowo

ź ć Ń Ę Ś Ę ź Ś Ę ć ŚĆ Ó ÓŁ Ł ć ź ź ź ź Ń ć Ę Ę ź ć ć ź ć ć Ł ć Ę Ń ć Ę Ę ć Ł ć ź ź ć ź ć ć ć ź ć ź ź Ó Ń Ó Ż ź ć Ó ź ź ć ź ź Ś ć ć ź ć ć Ę Ł ź ź Ę Ę Ę Ę Ń Ę Ł Ę Ń Ń Ń ź Ń Ń ź ź Ń Ł ź ź ź Ę ź ź Ę Ń Ń

Bardziej szczegółowo

z b leżącą na płaszczyźnie xz, otrzymujemy równanie elipsoidy obrotowej, która w myśl równania (3) będzie miała następujące równanie: z b x y z

z b leżącą na płaszczyźnie xz, otrzymujemy równanie elipsoidy obrotowej, która w myśl równania (3) będzie miała następujące równanie: z b x y z Mtrił ddktcn Godj gomtrcn Mrcin Ligs, Ktdr Gomtki, Wdił Godji Górnicj i Inżnirii Środowisk, AGH LIPSOIDA OBROTOWA, LIPSA POŁUDNIKOWA, SZROKOŚĆ GODZYJNA, SZROKOŚĆ ZRDUKOWANA, SZROKOŚĆ GOCNTRYCZNA, WSPÓŁRZĘDN

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b = St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne

Bardziej szczegółowo

1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty)

1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty) 1. Alger wetorów Welość wetorową chrterue wrtość, cl moduł, erune, wrot. Możn ą predstwć w sposó grfcn o odcne serown o długośc proporconlne do modułu lu te w sposó nltcn. Sposó nltcn poleg n podnu rutów,,

Bardziej szczegółowo

www.anilrana13014.weebly.com www.k8449.weebly.com t t t t t t t t t t t t t t t t t ç iv P P P P P P P P P P P q r s t r 1 r 1 2 r 34 5 I 2 6 r 34 5 I 78 910 ❶ r s ❷ ❸ 78 910 P P P P P s r r r r r r r

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

14. Krzywe stożkowe i formy kwadratowe

14. Krzywe stożkowe i formy kwadratowe . Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie Mtemtk I /9 WYKŁD 8. UKŁDY RÓWNŃ LINIOWYCH II Mcierow ostć limincji Guss B gdie nn n n n B n Metod elimincji: () Odejmownie od pewnego równni wielokrotności (nieerowej) wrnego innego równni, nie mienijąc

Bardziej szczegółowo

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn

Bardziej szczegółowo

Przykład 2.1. Wyznaczanie prędkości i przyśpieszenia w ruchu bryły

Przykład 2.1. Wyznaczanie prędkości i przyśpieszenia w ruchu bryły Przykłd 1 Wyzncznie prędkści i przyśpieszeni w ruchu bryły Stżek kącie rzwrci twrzących i pdstwie, której prmień wynsi tczy się bez pślizgu p płszczyźnie Wektr prędkści śrdk pdstwy m stłą długść równą

Bardziej szczegółowo

Z e s p ó ł d s. H A L i Z

Z e s p ó ł d s. H A L i Z C h o r ą g i e w D o l n o l ą s k a Z H P P L A N P R A C Y K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j I 2 0 1 5- V I 2 0 1 6 1. C h a r a k t e r y s t y k a C h o r ą g w i C h o r ą g

Bardziej szczegółowo

TEORIA WAGNERA UTLENIANIA METALI

TEORIA WAGNERA UTLENIANIA METALI TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar 2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.

Bardziej szczegółowo

Ź Ź ź Ś Ą Ź ć Ś

Ź Ź ź Ś Ą Ź ć Ś ć ź ć ć ć ć Ć ć Ę ć ć ć Ś ć Ć ć ć ć Ź Ź ź Ś Ą Ź ć Ś ć Ź Ę Ź ć ć Ą Ą Ą ć Ć Ą ć Ź Ś ź ć Ź ć Ź Ś Ź Ź Ą ć Ą Ź ć Ć Ź Ę Ą Ą Ś ć Ć ć ć Ś Ń Ą Ń Ś Ś Ę Ź Ą Ą Ą Ś ć Ź Ź Ś Ś ź ŚŚ Ć Ś Ś Ą Ą ć ć Ź ź Ź ć Ź Ź ź Ź ć Ć

Bardziej szczegółowo

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0

Bardziej szczegółowo

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia.

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia. Przkłd 6.. Płski stn nprężeni. Płski stn odksztłeni. ZADANIE. Dl dnego płskiego stnu nprężeni [MP] znleźć skłdowe stnu nprężeni w ukłdzie osi oróonh względem osi o kąt α0 orz nprężeni i kierunki główne.

Bardziej szczegółowo

3. 4 n a k r ę t k i M k o r p u s m i s a n a w o d ę m i s a n a w ę g i e l 6. 4 n o g i

3. 4 n a k r ę t k i M k o r p u s m i s a n a w o d ę m i s a n a w ę g i e l 6. 4 n o g i M G 5 0 4 W Ę D Z A R K A M G 5 0 4 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y z a z a k u p p r o d u k t u M a s t e r G r i l l

Bardziej szczegółowo

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe

Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe Leu. D. Hlld, R. Resnc, J. Wle, Podsw f, om -5, PWN, 7. D. Hlld, R. Resnc F om,, PWN, 974. 3. J. Blnows, J. Tls F dl nddów n wŝse ucelne PWN 986 4. P. W. Ans Chem fcn, PWN, 3. Pln włdu ) Podswowe wdomośc

Bardziej szczegółowo

10. PROSTE ZGINANIE Stan naprężenia i odkształcenia przy prostym zginaniu

10. PROSTE ZGINANIE Stan naprężenia i odkształcenia przy prostym zginaniu . Wrwł Wkłd mechniki mteriłów 0. ROT ZGINNI 0.. tn nprężeni i odkstłceni pr prostm ginniu Zginnie proste (jednokierunkowe) wstępuje wówcs gd obciążenie ewnętrne redukuje się do wektor momentu ginjącego

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

S.A RAPORT ROCZNY Za 2013 rok

S.A RAPORT ROCZNY Za 2013 rok O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c

Bardziej szczegółowo

WZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) z wykonania zadania publicznego.... (tytuł zadania publicznego) w okresie od... do...

WZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) z wykonania zadania publicznego.... (tytuł zadania publicznego) w okresie od... do... Złąn nr 3 WZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) wnn dn publneg... (uł dn publneg) w rese d... d... reślneg w umwe nr... wrej w dnu pmęd... (nw Zleendw)... (nw Zleenbr/(-ów), sedb, nr Krjweg Rejesru

Bardziej szczegółowo

Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia

Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia Dś: l l ń C D O 0 Ol : Z l N 40 X C R : D l ś 0 R 3 ń 6 93 Oź l ę l ę -H O D ę ź R l ś l R C - O ś ę B l () N H śl ź ę - H l ę ć " Bl : () f l N l l ś 9! l B l R Dl ę R l f G ęś l ś ę ę Y ń (l ) ę f ęś

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

MOMENTY BEZWŁADNOŚCI FIGUR PŁASKICH

MOMENTY BEZWŁADNOŚCI FIGUR PŁASKICH MOMENT BEZWŁNOŚC FGU PŁSKCH Przekrje pprzeczne prętów włów i elek figur płskie crkterzujące się nstępującmi prmetrmi: plem pwierzcni przekrju [mm cm m ] płżeniem śrdk ciężkści przekrju mmentmi sttcznmi

Bardziej szczegółowo

=I π xy. +I π xz. +I π yz. + I π yz

=I π xy. +I π xz. +I π yz. + I π yz GEMETRIA MAS moment ewłdności i dewicji Zsd ogólne: 1) Moment ewłdności wględem osi ówn jest sumie momentów ewłdności wględem dwóc postopdłc płscn wiejącc tę oś: I =I π + I π I =I π + I π I = I π +I π

Bardziej szczegółowo

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI Włd 2: Wetor DR INŻ. ZIGNIEW SZKLRSKI SZKL@GH.EDU.PL HTTP://LYER.UCI.GH.EDU.PL/Z.SZKLRSKI/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, ntężene prądu eletrcnego, nprężene, ntężene

Bardziej szczegółowo

Hufce 2.3. Podanie do wiadomości wyników wyborów

Hufce 2.3. Podanie do wiadomości wyników wyborów C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 1 g r u d z i e 2 0 1 5 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e j Z

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

l. Anyżᐧ剷 wᐧ剷 ᐧ剷 ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷 ᐧ剷ᐧ剷e ᐧ剷ᐧ剷w ᐧ剷 g tel.ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷 ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷 ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷 ᐧ剷ᐧ剷ᐧ剷ᐧ剷 ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷 nwe tycyjnych eᐧ剷ᐧ剷ᐧ剷 lᐧ剷 ᐧ剷 ᐧ剷ᐧ剷. net.ᐧ剷l ᐧ剷ᐧ剷ᐧ剷ᐧ剷 ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷ᐧ剷

Bardziej szczegółowo

ś ó ś ń ś ś ś ó ś ś ś ś ś ś ś ś ó ń ś ś Ł ń ć ś ś ó ó ś ń ó ń ś ó Ń ś ó ś ć ó ó Ą ń ó Ń ś ó ś ś ś ś ś ś ś ś Ą ń ó ó ś śó ś ń ó ś ś Ł Ą Ć ó ś ś ś Ą śó ś ś ś ó Ń śó ś śó Ś ń ó ś ń ó ś ś ć ś ś ó ó śó ś ś

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A

Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy

Bardziej szczegółowo

Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż

Bardziej szczegółowo

Ą ś ź ś ć ś ź ź ś ź

Ą ś ź ś ć ś ź ź ś ź ź ź Ź ś Ź ś ś Ą ś ź ś ć ś ź ź ś ź ś ś śćś ś ś ś ś ś Ę ś ź ś ś ś Ą ś Ę ś ś ś ź śćś ś ś ś ś ś ś Ź Ś Ń ć ś ś ść ś ś ś Ź ś ść ś ś ś Ź ś ś śćś Ś śćś ść ś ś śćś śćś ś ść ś śś śćś ś śćś śćś ść ść ź Ń ść ś Ę ś

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

ELEMENTY RACHUNKU WEKTOROWEGO

ELEMENTY RACHUNKU WEKTOROWEGO Unwestet Wmńso- Mus w Ostne Złd Mehn onstu udownh ELEMENTY RCHUNU WETOROWEGO Włd d nż. Roet Smt Zen tetu 1. wtows J.: Stt ogón. Wsw : Wdw. Potehn Wswse, 1971. 2. wtows J.: Mehn tehnn. Wsw: Wdw.. Potehn

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

Ś ś ś ś ś ż Ł ń ń ń Ł ś ń Ś ś ć ś

Ś ś ś ś ś ż Ł ń ń ń Ł ś ń Ś ś ć ś ń ń ś Ł ś Ą Ś ń ś ś ś ś ś ś Ś ś ś ś ś ż Ł ń ń ń Ł ś ń Ś ś ć ś ż ń ś ż ż Ś ś ś ś ś ż Ś ś ś Ś ś Ł Ł Ł ś ś ń ń Ś ś ń ś ń ś Ą ś ź Ń ń ń Ł ś ż Ł Ł ń ś Ś Ś ń ś ś ś ś ś ś ś ś ż ś ś Ń Ł ś ś ś Ł ść Ł ć ś ć ś ć

Bardziej szczegółowo

2 p. d p. ( r y s. 4 ). dv dt

2 p. d p. ( r y s. 4 ). dv dt M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X N U M E R Y C Z N Y O P I W Y S T R Z E L E N I A S I A T K I S P R O C E S U W A S P E K C I E I N T E R A K C J I D Y N A

Bardziej szczegółowo

Metoda odpowiadających stanów naprężeń

Metoda odpowiadających stanów naprężeń Metd dwidjąyh stnów nrężeń Prblem: Jk nleźć rwiąnie dl grnineg stnu nrężeni Culmb-Mhr w grunie sistym, jeśli nne jest rwiąnie teg smeg gdnieni dl gruntu niesisteg? Teg smeg gdnieni n, że wsystkie rmetry

Bardziej szczegółowo

Działania wewnętrzne i zewnętrzne

Działania wewnętrzne i zewnętrzne Autmtyk i Rtyk Alger -Wykłd - dr Adm Ćmiel miel@gedupl Dziłi wewętrze i zewętrze Nie X ędzie ustlym iepustym zirem Def Dwurgumetwym dziłiem wewętrzym w zirze X zywmy fukję Jeśli X i y X t y X zywmy wyikiem

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł

Bardziej szczegółowo

A. Zaborski, Rozciąganie proste. Rozciąganie

A. Zaborski, Rozciąganie proste. Rozciąganie . Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin

Bardziej szczegółowo

Zastosowanie teorii grup w chemii kwantowej

Zastosowanie teorii grup w chemii kwantowej Zstosowne teor gru w cem kwntowej Jcek Korcowec, Zkłd em Teoretcnej m. K. Gumńskego, Wdł em UJ Nnejse orcowne m n ceu wrowdene odstwowc wekośc jest deke od wcerującego omówen teor gru jej stosowń w cem

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o

Bardziej szczegółowo

Macierze hamiltonianu kp

Macierze hamiltonianu kp Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej

Bardziej szczegółowo

Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł

Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł ś Ą ś Ż Ż Ł ź Ś Ż ż Ż ż ż Ó Ż Ę ś Ę Ę Ę ś ś Ł Ą Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł ż Ą ś ś ś ś ś ś ć ść Ę ś ś Ą Ę Ą ż Ę ś śś Ę ś ś ś ś ż Ę ć ś ć ż ć Óź Ę Ę Ę Ą ś ś ś Ś ś Ż Ż Ż żć ś ś ź Ę Ę ś ś

Bardziej szczegółowo

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H

Bardziej szczegółowo

Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia

Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe Rozwiązanie równań stanu dla układów liniowch - pola wektorowe Przgotowanie: Dariusz Pazderski Wprowadzenie Rozważm liniowe równanie stanu układu niesingularnego stacjonarnego o m wejściach: ẋ = A+ Bu,

Bardziej szczegółowo

Wspomaganie obliczeń za pomocą programu MathCad

Wspomaganie obliczeń za pomocą programu MathCad Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f

Bardziej szczegółowo

Ś Ś Ł ć Ś ć Ś ć Ż Ż Ż Ę ć Ż Ś Ś Ś Ś Ś ć Ę Ł Ń ć ć Ź ć Ś Ż Ż Ą Ż Ż Ę Ś ć Ł Ż Ż Ż Ę Ś Ś Ś Ś Ż Ż Ę Ż Ż Ś Ż ŚĘ Ż ć Ż ć Ł Ę Ż Ń Ń ć ć Ż Ż Ż Ń Ę Ę Ź Ż Ż Ż ź Ż Ż Ę ź Ż Ń Ę Ż Ł Ż Ż Ł Ż ź Ś Ś ź Ę ź Ś Ę ź Ż ć Ż

Bardziej szczegółowo

D r. r r r D. Wykład VII. Podstawowe własnow. Źródła a fal elektromagnetycznych. r r. Luminescencja. Natęż. Równania Maxwella. ężenie i indukcja pola

D r. r r r D. Wykład VII. Podstawowe własnow. Źródła a fal elektromagnetycznych. r r. Luminescencja. Natęż. Równania Maxwella. ężenie i indukcja pola Wyłd VII Fl lomgnyzn włśwoś źódł ównn pw Mxwll ównn flow wypowdzn ozwązn lomgnyzn fl płs wo flowy wo Poynng wdmo fl lomgnyznyh Podswow włsnow snoś fl popzzn popgj w póżn w ośodh mlnyh oślon pędość w póżn

Bardziej szczegółowo

Liturgia eucharystyczna. Modlitwa nad darami œ

Liturgia eucharystyczna. Modlitwa nad darami œ Msza święta Liturgia eucharystyczna # Modlitwa nad darami " # # K. Pa - nie, nasz Bo - że, niech ta O - fia - ra, któ - rą skła - da - my...... Przez Chry - stu - sa, Pa - na na - sze - go. lub... Któ

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

Pojęcia Działania na macierzach Wyznacznik macierzy

Pojęcia Działania na macierzach Wyznacznik macierzy Temt: Mcierze Pojęci Dziłni n mcierzch Wyzncznik mcierzy Symbolem gwizdki (*) oznczono zgdnieni przeznczone dl studentów wybitnie zinteresownych prezentowną temtyką. Ann Rjfur Pojęcie mcierzy Mcierz to

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA Z a m a w i a j» c y G D Y S K I O R O D E K S P O R T U I R E K R E A C J I J E D N O S T K A B U D E T O W A 8 1 5 3 8 G d y n i a, u l O l i m p i j s k a 5k 9 Z n a k s p r a w y G O S I R D Z P I

Bardziej szczegółowo

ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń

ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń Ą Ł Ę Ó ń Ó ć Ś ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń ź ń Ń Ą Ó ĄŁ Ł Ś Ą Ś Ó Ń Ó Ś Ń ń ć ć Ó Ę Ó Ą Ą ź ź ń Ł Ś Ę ć ć ń ć ź ć ć ź ć ć Ó Ą Ń Ż ń ć ć ń Ń ć ć ź ć ć ć ć ć ń ń ć Ą Ń Ę ń ń Ń ź ź ń Ń ń Ń ć ń ń ć ć

Bardziej szczegółowo

Liturgia eucharystyczna. Modlitwa nad darami œ

Liturgia eucharystyczna. Modlitwa nad darami œ Msza święta Liturgia eucharystyczna K. Pa - nie, nasz Bo - że, niech ta O - fia - ra, któ - rą skła - da - my...... Przez Chry - stu - sa, Pa - na na - sze - go. Modlitwa nad darami... Któ - ry ży - e

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

S x. 2. Momenty statyczne JeŜeli zadanej figurze płaskiej o polu A przyporządkuje się prostokątny

S x. 2. Momenty statyczne JeŜeli zadanej figurze płaskiej o polu A przyporządkuje się prostokątny Wprowadzene nr do ćwzeń z przedmotu Wtrzmałość materałów dla studentów II roku studów dzennh I stopna w kerunku Energetka Wdz. Energetk Palw semestr zmow 0/0. Zakres wprowadzena nr Nnejsze wprowadzene

Bardziej szczegółowo

ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś

ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś ę ę Ą Ą ń Ó ś ś ś ń ń Ż ń Ą Ż śó ŚĆ ś ę ę ś ś ś Ż ś ść ń Ż Ś ń ń ś ń ę ę Ś ę Ż ę ę ś ń ę ż ń ęś ę ż ń ń Ą Ę ś ś ś ż Ż ś Ś ś ę ś Ś ę ę ś ń Ż Ż Ż ę ś ć Ą Ż Ż ś Ś Ą Ż ś Ś Ą Ż ś ś ś Ę Ą ę ń ś ę ż Ż ć Ś ń ę

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania =

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania = Vdemecum GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* Mtemtyk - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Prón Mtur z OPERONEM Operon 00% MATURA 07 VA D EMECUM

Bardziej szczegółowo