Wzbudzenia sieci fonony

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wzbudzenia sieci fonony"

Transkrypt

1 Wzbudzenia sieci fonony pzybliżenie adiabatyczne elastomechaniczny model kyształu, pojęcie fononu, Dynamiczna Funkcja Dielektyczna w opisie wzbudzeń sieci wzbudzenia podłużne i popzeczne w ównaniach Maxwella odbicie światła w obszaze eststalen

2 Dgania sieci i wzbudzenie elektonowe Dlaczego ozważając stuktuę pasmową półpzewodników zakłada się, że sieć kystaliczna jest nieuchoma? Kiedy można założyć, że nawet jeśli coś się będzie działo z siecią to nie zmieni to elektonowych funkcji falowych? Pzybliżenie adiabatyczne (Bona Oppenheimea: Sieć dga powoli w stosunku do częstości własnych elektonowych (wynika to pzede wszystkim z óżnicy mas elektonu i atomów twozących sieć. L << e L - chaakteystyczna częstotliwość dgań sieci (zwykle opowiada ~ 1-1 mev e - chaakteystyczna częstotliwość pzejść międzypasmowych ~ ev h g Można pzyjąć że elektony natychmiast pzechodzą do stanów kwantowych odpowiadających potencjałowi zadanemu pzez aktualną konfiguację jonów w sieci.

3 Hamiltonian kyształu j j j j i j j j i j j j i i e Z Z e Z e M P m p H ', ',, ' 1 1 j' j j i j i R R R (, ( 1, ' R R j i G V e M P m p H j i j j j i i Co można zapisać w postaci: gdzie:,...,, ( 3 1,...,, ( 3 1 R R R R - położenia elektonów - położenia jonów m - masa elektonu M j - masa jonu enegia kinetyczna elektonów i jąde enegia oddziaływania pomiędzy elektonami V(, R -enegia oddziaływania elekton-sieć (elekton-fonon G(R -enegia oddziaływania pomiędzy jonami w sieci

4 (Φ(R ψ,r Ψ( R Szukamy funkcji falowej w postaci iloczynu części elektonowej ψ R ( (zależnej od położenia jonów R oaz części opisującej sieć Φ(R: ( ( (, ( 1 ' R R R R j i ψ ψ e j i V e m p Zakładamy, że funkcja wieloelektonowa ψ R spełnia ównanie Schödingea dla elektonów w nieuchomej sieci: Po podstawieniu funkcji falowej Ψ i pominięciu członów nieistotnych (patz np. Ziman Wstęp do teoii ciała stałego otzymujemy ównanie na funkcje falowe jonów: ( ( ( ( R R R R Φ Φ G M P e j j j e (R adiabatyczny wkład elektonów w enegię sieci.

5 Pzybliżenie hamoniczne Zastosujmy do powyższego ównania pzybliżenie klasyczne. negię jonów możemy pzybliżyć opisując ich uch względem położenia ównowagi: H ion H ( R H ' ( dr gdzie H enegia jonów gdy wszystkie znajdują się w położeniu ównowagi, H zmiana enegii wskutek zmiany położeń jonów o dr Rozwijamy H względem dr. Człon liniowy znika gdyż mamy do czynienia z minium. Jeśli wszystkie jony pzesuniemy o ten sam wekto dr i to otzymamy pzesunięcie całego kyształu. W pzybliżeniu hamonicznym zmiana enegii kyształu zależy od kwadatu względnego pzesunięcia jonów d(ri-rj.

6 Dgania jednowymiaowej sieci monoatomowej. Fonony akustyczne Stan ównowagi n-1 n n1 n m m m m α α α α α x n-1 (n-1a x n na x n1 (n1a x n (na Ogólna konfiguacja Równanie uchu dla n-tej masy ξ n-1 ξ n ξ n1 ξ n d ξn m dt α( ξn 1 ξn α( ξn ξ 1 n (4.1 Otzymujemy nieskończony układ ównań óżniczkowych. Szukamy ozwiązania w postaci fali biegnącej i( qna t ξ q wekto falowy n Ae - częstość

7 Po podstawieniu do ównania (4.1 dostajemy: α( iqa iqa e e α m m α ( cosqa 1 Związek dyspesyjny: 4α qa ( q sin m α m Widzimy, że (q(-q funkcja jest peiodyczną z okesem π/a π a π a Podobnie jak w pzypadku elektonów można wpowadzić stefę Billouina

8 Oganiczenie na maksymalną watość q q max λ min a π a π a Sens fizyczny mają tylko q π a a Peiodyczność (q jest czysto fomalna. Powyższe nie dotyczy dyskusji właściwości stefy Billouin'a dla elektonów - funkcja falowa jest ozciągła, natomiast dla dgań sieci funkcja falowa opisuje położenia dysketnych jonów. Z jaką pędkością ozchodzą się fale podłużne w łańcuchu? Rozważmy pzypadek q Zatem pędkość fazowa dla małych q: α qa α qa m m u α α a a q m m / a ρ Pędkość dźwięku w ciałach stałych!

9 Dgania podłużne i popzeczne w ciele stałym Spężyste fale podłużne w pęcie: u l ρ moduł Younga Spężyste fale popzeczne w pęcie: u t G ρ G moduł sztywności Ponieważ G < to pędkość fal podłużnych będzie większa niż fal popzecznych Jeśli więc będziemy ozważać dgania w tzech wymiaach, to możemy dostać tzy óżne gałęzie fononów akustycznych: fonony LA (longitudinal acoustic dwie gałęzie (czasami zdegeneowane fononów popzecznych akustycznych TA (tansvese acoustic

10 Dyspesja dla fononów w złocie Dgania sieci fonony (dgania własne, czy też fale popagujące się w kyształach J. W. Lynn, H. G. Smith, and R. M. Nicklow Phys. Rev. B 8, 3493 (1973 Posty model nieźle pacuje Czewone kzywa: ka sin(

11 . negia układu oscylatoów kwantowych: Pojęcie fononu Dowolne dganie można pzedstawić jako supepozycję dgań nomalnych układu (supepozycji dgań hamonicznych o enegii i pędzie p. Stąd jeden kok do kwantowania takiego układu. W opisie z wykozystaniem fomalizmu mechaniki kwantowej: wzbudzenia kyształu fonony o enegii h q ( n 1 q h q q q n q - liczba całkowita, liczba fononów o wektoze falowym q - enegia zeowa układu (dla T. Fonony o wektoze falowym q niosą pęd p fon hq n q h q

12 Analogia pomiędzy fotonami i fononami Fomalizm opisujący fonony jest analogiczny do kwantowania pola elektomagnetycznego. fotony - stany wzbudzenia póżni fonony - stany wzbudzenia kyształu Zamiast ozpatywać ogomne liczby oddziałujących ze sobą atomów wpowadzamy nieoddziałujące kwazicząstki fonony. Często spotyka się opis wzbudzeń fononowych w języku dugiej kwantyzacji. Wykozystuje się wtedy opeatoy keacji i anihilacji (a, a fononu o okeślonym pędzie i enegii. Fonony są bozonami - czyli podobnie jak fotony podlegają statystyce opisanej pzez ozkład Bosego-insteina

13 Dgania sieci jednowymiaowej z bazą Dwa atomy w bazie o masach m i m, a - stała sieci b - odległość w bazie Stałe siłowe: - w bazie β - poza bazą α Wychylenia atomów z położenia ównowagi ξ 1n, ξ n ξ 1,n-1 ξ, n-1 ξ 1,n ξ, n m 1 m m 1 m α β α β α b m & 1ξ 1n β ( ξ n ξ1 n α( ξ1 n ξ ( n 1 m && ξ α ξ ξ β ( ξ ξ n ( 1( n 1 n n 1n Szukamy ozwiązań w postaci: i( q n a t i( q n a t ξ1 n Ae ; ξn Be A, B - amplitudy (w ogólności zespolone óżnica fazy pomiędzy ξ 1 oaz ξ a q wekto falowy - częstość

14 Po podstawieniu do powyższego układu ównań: iqa m A β ( B A α( A Be 1 iqa mb α( Ae B β ( B A Można to pzepisać jako ównania na amplitudy A i B. m 1 β αe iqa ( α β ( β αe iqa m ( α β A B Ma ono nietywialne ozwiązania jeśli znika wyznacznik: [ ( ] m α β m ( α β [ ] ( β α αβ cosqa 1 Oznaczmy δ β α δ - ma chaakte quasi stałej siłowej αβ cosqa β α δ α β [ m1 ( α β ][ m ( α β ] δ Równanie jest dwukwadatowe i dla każdego q ma dwa ozwiązania po dwie gałęzie dyspesyjne (q

15 Pzykład - stuktua diamentu Baza dwuatomowa z takich samych atomów m 1 m Równanie pzyjmuje postać [ m ( α β ] δ Jego ozwiązania mają postać: 1, ( α β m ± δ

16 Zbadajmy ozwiązania dla ganicznych watości q q δ α β αβ ( α β δ ( α β q π ± a ( α β 1, m δ α β αβ cos( ± π ( α β δ ± α β α α β α β m β α β m ; 1 (dugie ozwiązanie wygląda znajomo α m β m Na ganicy stefy Billouin a ( pojawia się pzewa enegetyczna h α β m

17 π a h h q ( α β m h h π a α m β m q Mamy dwie gałęzie fononów: akustyczna - niżej enegetyczna optyczna - wyżej enegetyczna Podstawiamy częstości i 1 do ównania: Dla gałęzi akustycznej ( dla q AB - sąsiednie atomy bazy dgają zgodnie w fazie. Dla gałęzi optycznej ( 1 dla q A-B - sąsiednie atomy bazy wychylają się w pzeciwnych kieunkach. Gałąź optyczna: pzy takim modzie dgań w kyształach jonowych pojawia moment dipolowy - oddziaływanie z falą elektomagnetyczną! WAŻN!!! Dwie gałęzie: wynik nie jest związany z óżnicą mas m 1 i m ale z istnieniem bazy! Dla kyształów jonowych pojawia się silna absopcja pomieniowania elektomagnetycznego dla częstości odpowiadającym fononom optycznym popzecznym

18 Fonony w sieci tójwymiaowej Tzeba wpowadzić waunki bzegowe Bona -Kamana Łańcuch jednowymiaowy: N komóek N komóek z bazą atomową N dgań własnych (jedna gałąź akustyczna i jedna optyczna Sieć tójwymiaowa: N komóek, kyształ jednoatomowy - 3N stopni swobody 3 gałęzie fononów (wszystkie akustyczne N stopni swobody (1 gałąź akustyczna 1 gałąź fononów akustycznych podłużnych LA. gałęzie fononów akustycznych popzecznych TA (czasami zdegeneowane Różne nachylenia kzywej dyspesji dla q (pędkość dźwięku. Sieć tójwymiaowa z bazą, np. baza dwuatomowa - 6N stopni swobody - 3 gałęzie akustyczne (LAxTA i 3 optyczne (LOxTO W ogólnym pzypadku dla s atomów w bazie: 3 gałęzie akustyczne i 3(s-1 gałęzi optycznych. (3s33(s-1 TO - mają moment dipolowy - spzęgają się z pomieniowaniem M LO - wnoszą istotny wkład do polayzacji ośodka (stała dielektyczna

19 GaAs atomy w bazie 6 gałęzi fononowych - 3 akustyczne - 3 optyczne J. S. Blakemoe, J. Appl. Phys. 53, R13 (198

20 Fonony w SiC Blenda cynkowa Wucyt 3C - SiC H - SiC 6H - SiC

21 Fonony w SiC S. Nakashima and H. Haima phys. stat. sol. (a 16, 39 (1997

22 S. Nakashima and H. Haima phys. stat. sol. (a 16, 39 (1997

23 S. Nakashima and H. Haima phys. stat. sol. (a 16, 39 (1997

24 Jak dgania sieci wpływają na własności optyczne półpzewodników? Jak popzednio, postaamy się wykozystać metodę Dynamicznej Funkcji Dielektycznej - DFD (Dynamic Dielectic Function - DDF Fonony optyczne dają wkład do makoskopowej polayzacji dielektycznej ośodka Rozważmy kyształ o wiązaniu częściowo jonowym (półpzewodniki gup III-V lub II-VI bez swobodnych nośników (na początek. Stuktua kubiczna, kyształ z bazą dwuatomową. Fonony akustyczne długofalowe nie dają wkładu do polayzacji ośodka. Rozpatujemy fonony optyczne długofalowe ka<<1. W ganicy długofalowej można kyształ ozpatywać jako jednoodny ośodek.

25 Zdefiniujmy ξ, ξ _ - odpowiednio wychylenia jonu dodatniego i ujemnego z położenia ównowagi ξ ξ ξ Wpowadźmy znomalizowany wekto pzesunięcia: Masa zedukowana w komóce elementanej Gęstość masy zedukowanej: m m m m ρ m /V gdzie V - objętość komóki elementanej. ( ξ ξ ρ ξ ρ η m Gęstość enegii kinetycznej: Siła spężystości: negia potencjalna: U ξ Gęstość enegii potencjalnej ośodka spężystego (enegia elastyczna K f 1 d ρ k U elast ( ξ ξ 1 dt & η ( ξ ξ mξ 1 m ρ f U η V η V U 1 1 η

26 Obok sił spężystych (lokalnych, istnieją siły wynikające z polayzacji ośodka siły dalekozasięgowe. Pojawia się oddziaływanie wymagające samouzgodnienia: pzesunięcie jonów Wpływ pola na jony powstanie polayzacji Polayzacja wewnątz jonów (powłok elektonowych względem jąda. To jest badzo szybki poces. pole elektyczne (elektony nieskończenie szybko dostosowują się do położenia jonów

27 Polayzacja ośodka: (polayzacja związana z pzesunięciem jonów wewnętzna polayzacja jonu P η Wewnętzna polayzacja jonów daje polayzację dla dużych częstości (w poównaniu z częstością fononów: γ 1 γ P γ Wpowadzamy - paamet chaakteyzujący polayzację ośodka dla częstości dużo większych niż częstotliwość dgań sieci, a mniejszych niż polayzacja wewnątz jonów (poniżej pzejść międzypasmowych. Wato zauważyć: To co dla pocesów zachodzących pzy wysokich częstościach odpowiada st odpowiada (stanowi tło dla pocesów o niższej częstości!!! D P P ( 1 P ( γ 1 ( γ 1 η 1

28 Zajmijmy się teaz członem związanym bezpośednio z uchem jonów Gęstość enegii potencjalnej (elektostatyczna: Całkowita gęstość enegii potencjalnej (mechaniczna elektostatyczna: η γ F 1 1 Pd γ 1η γ 1 η γ 1η γ U P U ( Znajomość U pozwala nam napisać ównanie uchu jonów w polu elektycznym: Dla pola stałego w czasie Wpowadzamy: st du & η& η γ 1 dη P - statyczna stała dielektyczna: D st P ( st 1 P γ 1 γ 1η γ 1 Stąd mamy paamet γ ( ( 1 ( st 1 1 γ 1 ( st

29 Szukamy Dynamicznej Funkcji Dielektycznej (DDF uwzględniającej wpływ fononów D ( P ( ( P 1 Szukamy ozwiązania w postaci fali płaskiej: e i( k t η η P γ 1η γ && η η γ 1 i( k t i( k t η ηe P Pe γ 1 Mamy układ ównań: γ 1 1 η P γ Pamiętamy że: γ ( γ ( 1 1 st ( γ Stąd: P ( ( ( st ( 1 1 Dynamiczna Funkcja Dielektyczna ( ( ( s

30 Fale podłużne i popzeczne w ośodku dielektycznym

31 Wóćmy do ównań Maxwella i znajdźmy waunki dla ozchodzenia się w ośodku fal popzecznych i podłużnych ρ D B j t D H t B σ µ j H B D Dla niemagnetycznego izolatoa mamy t t µ σ µ ( t c t c w 1 1 ( σ ( t k i e Szukamy ozwiązania w postaci: ( σ c i c k k k w ( ( c k k k ( σ i w gdzie 1 µ c w µ µ, w - pzenikalność względna (bez nośników ( (

32 k Nie tacąc ogólności ozważmy dwa pzypadki: Fale popzeczne: ( ( c k k k ( ( c k k k κ i n n n ~ ( ~ ( c n c k ~ ( To już znamy popagacja fal elektomagnetycznych! Pokazaliśmy, że fale elektomagnetyczne są absobowane dla częstości. Zatem odpowiada częstości fononu optycznego TO (w pobliżu k. Wzbudzenia popzeczne spełniają związek:

33 k k ( k k ( c Fale podłużne: ( c Wzbudzenia podłużne pojawiają się dla częstości, dla któych spełnione jest waunek: ( ( L L ( s s lub L L s TO TO Relacja Lyddena, Sachsa,Tellea

34 Dlaczego częstość dgań podłużnych L jest większa od częstości fononu TO? Waunkiem wzbudzenia dgania podłużnego jest: ( Nie oznacza to, że pole elektyczne wewnątz ośodka wynosi zeo! k Zauważmy bowiem, że ( ( L L P 1 P L - gdy D Pojawia się makoskopowe pole elektyczne, wynikające z makoskopowej polayzacji śodka! To pole ma pzeciwny kieunek niż polayzacja, dlatego daje dodatkową siłę zwotną dla oscylacji podłużnych (w poównaniu z popzecznymi! Dlatego enegia fononu LO jest zawsze większa od enegii fononu TO!

35 Widma fononowe w podczewieni

36 Oddziaływanie podczewieni z fononami h foton gałąź optyczna Tzeba dopasować enegię i wektoy falowe światła i fononu! gałąź akustyczna Absopcja światła pojawia się w kyształach (pzynajmniej częściowo jonowych! (Oscylujący dipol spzęgający się ze światłem pojawi się tylko gdy w sieci mamy naładowane atomy! π a π a q

37 Kozystając z elacji LST możemy dynamiczną funkcję dielektyczną pzedstawić w postaci: TO ( L ( ( TO ( s 1 TO Dla częstości spełniających waunek: < < ( < TO L R( 1 ( ( L Wzbudzenia popzeczne ( L ( Wzbudzenia podłużne ( / TO

38 ( ( L L ( 1. LO TO Reststahlen (pomieniowanie esztkowe - bak penetacji póbki w obszaze częstości pomiędzy TO i L - współczynnik odbicia bliski 1.8 R( / TO

39 Żeby lepiej opisać dane ekspeymentalne (tak jak w popzednim wykładzie założymy że mamy do czynienia z oscylatoem tłumionym. Wtedy: ( ( s TO iγ ( ( s 1 TO i γ TO Możemy teaz znaleźć, zeczywistą i uojoną część funkcji dielektycznej: 1 ( n κ ( nκ n(, κ ( α n~ R n ~ κ c 1 1

40 Funkcja dielektyczna (GaAs 1, 15 GaAs TO 33. mev 1 n -κ nκ γ/ T. ( / T

41 Odbicie GaAs (symulacja 1..8 GaAs 15 1 γ/ T.4 γ/ T. γ/ T.5 R(.6.4 LO 15/1 TO / T

42 Różne półpzewodniki M. Hass: Lattice eflections, Optical popeties of III-V Compounds, Semiconductos and Semimetals, Vol. 3 (Academic, New Yok 1967, pp.3-16

43 Widma odbicia w kyształach jonowych M. Lax and. Bustein Phys. Rev. B 97, 39 (1995

44 Polaiton fononowy układ spzężony foton-fonon

45 Polaiton fononowy Dotychczas ozpatując oddziaływanie pomiędzy falami elektomagnetycznymi a oscylatoami zaniedbywaliśmy pomieniowanie wywołane oscylacjami makoskopowej polayzacji. mamy wzbudzenia popzeczne i podłużne k dla częstości TO, LO Ale pzecież dla k óżnica pomiędzy częstościami powinna zniknąć. Jak je bowiem odóżnić? Wóćmy do związku jaki uzyskaliśmy z ównań Maxwella dla fal popzecznych oddziałujących z ośodkiem: k ( c ( ( s 1 TO Relacja dyspesyjna k c ( s 1 TO Szukamy ozwiązań (k spełniających ten związek

46 / TO Polaiton fononowy kc kc/( 1/ Mamy dwa ozwiązania: - dolna gałąź polaitonowa k ck << LO - góna gałąź polaitonowa k >> LO s LO ck 1 kc/( s 1/ TO kc/ LO TO Rzeczywiście: dla k częstość dgań popzecznych staje się zdegeneowana z częstością dgań podłużnych! fekt symetii (kubicznej!

47 Idea nieelastycznego ozpaszania światła ( k, Medium ( 1 k 1, 1 θ k k 1 k ( k, Można badać ozposzenie k 1 k Rozpaszanie do pzodu: można badać fonony o badzo małym k k pod óżnymi kątami: dyspesja (k

48 Polaiton fononowy w GaP LO fonon TO C.H. Heny and J.J. Hopfield, Phys. Rev. Lettes 15, 964 (1965

49 Występowanie efektu polaitonowego wynika z silnego spzężenia dwóch wzbudzeń fononu TO oaz fotonu. oddziaływanie emisja oddziaływanie foton fonon TO foton W wyniku oddziaływania pojawiają się nowe nowe mody własne systemu: - góna gałąź polaitonaowa - dolna gałąź polaitonowa W ośodku popagują się więc polaitony (ani fonon TO, ani foton! Pzekonamy się, że podobną sytuacją będziemy mieli też np. w pzypadku oddziaływania ekscytonu ze światłem. Wtedy będziemy mówić o polaitonie ekscytonowym

50 Inne metody badania wzbudzeń fononowych

51 Wzbudzenia wielofononowe w absopcji LOTA TOTA LOTA TOLO R. J. Collins and H. Y. Fan Phys. Rev. B (1954

52 Repliki fononowe w luminescencji GaN T 4. K LO D X A PL intensity (ab. units D X A - L TS - LO Si O D X A - TS (O D X A -A 1 (TO GaN:Si TS (Si GaN (FS X A X A D X B X B X B D X n A X n A negy (ev A. Wysmolek et al., Phys. Rev. B 74, 1955 (6

53 Badania synchotonowe T. Ruf et al. Phys. Rev. Lett. 86, 96 (1

54 Spzężenie fononów podłużnych optycznych z nośnikami mody spzężone plazmon-fonon

55 Mody spzężone plazmon-fonon LO pl η LO LO pl B.B. Vaga,, Phys. Rev. 137,, A1896 (1965 s α A. Mooadian and B. Wight, PRL 16,, 999 (1966

56 Mody spzężone plazmon-fonon ( p TO LO Wzbudzenia podłużne ( ( 4 1 TO p LO p LO p ± ± dwa ozwiązania (dwa nowe mody nomalne systemu ( ( TO p LO ( 4 TO p p LO * m ne p

57 n(cm p << LO negia wzbudzenia (mev LO TO p p GaAs LO p plasmono-podobny LO fonono-podobny p >> LO TO fonono-podobny p plasmono-podobny n 1/ 1 8 (cm -3/ ne st p p m st st

58 Rozpaszanie na wzbudzeniach podłużnych o dużych wektoach falowych ( k, Medium ( 1 k 1, 1 θ ( k, k k 1 k Typowo badamy ozpaszanie do tyłu, wtedy pzekaz pędu jest największy k k sin( θ / >> pędu jest największy k k c

59 wolucja od izolatoa, do metalicznego półpzewodnika

60 Intensity (ab. units Mody spzężone plazmon-fonon w GaAs SP n-gaas T 77K exc.@1.45ev TO cm cm cm cm cm cm -3 LO Raman shift (mev Raman shift (mev LO TO n(cm p p n-gaas T 77K n 1/ 1 8 (cm -3/ p LO LO Można wyznaczyć koncentację elektonów swobodnych! A. Wysmolek et al. PRB 74, 1656 (6

Wzbudzenia sieci fonony

Wzbudzenia sieci fonony Wzbudzenia sieci fonony pzybliżenie adiabatyczne elastomechaniczny model kyształu, poęcie fononu, Dynamiczna Funkca Dielektyczna w opisie wzbudzeń sieci wzbudzenia podłużne i popzeczne w ównaniach Maxwella

Bardziej szczegółowo

Nośniki swobodne w półprzewodnikach

Nośniki swobodne w półprzewodnikach Nośniki swobodne w półpzewodnikach Półpzewodniki Masa elektonu Masa efektywna swobodnego * m m Opócz wkładu swobodnych nośników musimy uwzględnić inne mechanizmy np. wkład do polayzaci od elektonów związanych

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Si, Ge, GaP, SiC, Podstawowa krawędź absorpcji dla przejść skośnych

Si, Ge, GaP, SiC, Podstawowa krawędź absorpcji dla przejść skośnych Podstawowa kawędź absopcji dla pzejść skośnych Si, Ge, GaP, SiC, L c (k) k k np. z udziałem fononów - fonony pzenoszą pęd i enegię (niewiele enegii w poównaniu z g ) - poces tójcząstkowy: elekton + foton

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

podsumowanie (E) E l Eds 0 V jds

podsumowanie (E) E l Eds 0 V jds e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε

Bardziej szczegółowo

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste

29 Rozpraszanie na potencjale sferycznie symetrycznym - fale kuliste 9 Rozpaszanie na potencjae sfeycznie symetycznym - fae kuiste W ozdziae tym zajmiemy się ozpaszaniem na potencjae sfeycznie symettycznym V ). Da uchu o dodatniej enegii E = k /m adiane ównanie Schödingea

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E Równania Mawella a fale świetlne Wykład 3 Fale wyaŝone pzez zespolone amplitudy wektoowe Pola zespolone, a więc i ich amplitudy są teaz wektoami: % % Równania Mawella Wypowadzenie ównania falowego z ównań

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

Opis kwantowy cząsteczki jest bardziej skomplikowany niż atomu. Hamiltonian przy zaniedbaniu oddziaływań związanych ze spinem ma następującą postać:

Opis kwantowy cząsteczki jest bardziej skomplikowany niż atomu. Hamiltonian przy zaniedbaniu oddziaływań związanych ze spinem ma następującą postać: Cząsteczki. Kwantowy opis stanów enegetycznych cząsteczki. Funkcje falowe i enegia ektonów 3. Ruchy jąde oscylacje i otacje 4. Wzbudzenia cząsteczek Opis kwantowy cząsteczki jest badziej skomplikowany

Bardziej szczegółowo

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu

Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej

Atom wodoru w mechanice kwantowej Fizyka II, lato 016 Tójwymiaowa studnia potencjału atomu wodou jest badziej złożona niż studnie dyskutowane wcześniej np. postokątna studnia. Enegia potencjalna U() jest wynikiem oddziaływania kulombowskiego

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość. WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Mody sprzężone plazmon-fonon w silnych polach magnetycznych

Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Modulatory światłowodowe

Modulatory światłowodowe Modulatoy światłowodowe Pezentacja zawiea kopie folii omawianych na wykładzie. Niniejsze opacowanie chonione jest pawem autoskim. Wykozystanie niekomecyjne dozwolone pod waunkiem podania źódła. Segiusz

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.

Bardziej szczegółowo

Energia kulombowska jądra atomowego

Energia kulombowska jądra atomowego 744 einhad Kulessa 6. Enegia kulombowska jąda atomowego V Enegię tą otzymamy w opaciu o wzó (6.6) wstawiając do niego wyażenie na potencjał (6.4) pochodzący od jednoodnie naładowanej kuli. Obliczenie wykonamy

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

METODA CIASNEGO (silnego) WIĄZANIA (TB)

METODA CIASNEGO (silnego) WIĄZANIA (TB) MEODA CIASEGO silnego WIĄZAIA B W FE elektony taktujemy jak swobone, tylko zabuzone słabym peioycznym potencjałem; latego FE jest obym moelem metalu w B uważamy, że elektony są silnie związane z maciezystymi

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony Fonony Drgania płaszczyzn sieciowych podłużne poprzeczne źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 4, rys. 2, 3, str. 118 Drgania płaszczyzn sieciowych Do opisu drgań sieci krystalicznej wystarczą

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana

Bardziej szczegółowo

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana

Bardziej szczegółowo

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku. Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda

II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda . akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie

Bardziej szczegółowo

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera.

Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: prawo Biot Savarta i prawo Ampera. Elektyczność i magnetyzm. Równania Maxwella Wyznaczenie pola magnetycznego Jak policzyć pole magnetyczne? Istnieją dwie metody wyznaczenia pola magnetycznego: pawo iot Savata i pawo mpea. Pawo iota Savata

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia

Bardziej szczegółowo

Oddziaływanie atomu z kwantowym polem E-M: C.D.

Oddziaływanie atomu z kwantowym polem E-M: C.D. Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski ykład 5: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Enegia a paca Enegia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1.

Wykład Pojemność elektryczna. 7.1 Pole nieskończonej naładowanej warstwy. σ-ładunek powierzchniowy. S 2 E 2 E 1 y. ds 1. Wykład 9 7. Pojemność elektyczna 7. Pole nieskończonej naładowanej wastwy z σ σładunek powiezchniowy S y ds x S ds 8 maca 3 Reinhad Kulessa Natężenie pola elektycznego pochodzące od nieskończonej naładowanej

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Elementy fizyki wspó czesnej

Elementy fizyki wspó czesnej Elementy fizyki wspó czesnej d inż. Janusz Tomaszewski Budowa mateii Oddziaływania Zupełne zespoły paw fizycznych Równania Maxwella Fala elektomagnetyczna Światło Pomieniowanie ciała doskonale czanego

Bardziej szczegółowo

Ramowy plan wykładu studia dzienne

Ramowy plan wykładu studia dzienne Fizyka Michał Wilczyński Infomacje związane z wykładem http://www.if.pw.edu.pl/~wilczyns Konsultacje: śody godz. 5-6 pokój 3 Gmach Fizyki piątki godz. 5-6 pokój 3 Gmach Fizyki E-mail: wilczyns@if.pw.edu.pl

Bardziej szczegółowo

Wzmacniacze tranzystorowe prądu stałego

Wzmacniacze tranzystorowe prądu stałego Wzmacniacze tanzystoo pądu stałego Wocław 03 kład Dalingtona (układ supe-β) C kład stosowany gdy potzebne duże wzmocnienie pądo (np. do W). C C C B T C B B T C C + β ' B B C β + ( ) C B C β β β B B β '

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu

Bardziej szczegółowo

F8 Badanie efektu Faraday a w kryształach CdTe i Cd 1-x

F8 Badanie efektu Faraday a w kryształach CdTe i Cd 1-x F8 Badanie efektu Faaday a w kyształach CdTe i Cd 1-x Te. Celem ćwiczenia jest pomia widma absopcji oaz efektu Faaday a w czystym CdTe i w kyształach mieszanych Cd 1-x Te o óżnych koncentacjach manganu

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Równanie Schrödingera dla elektronu w atomie wodoru

Równanie Schrödingera dla elektronu w atomie wodoru Równanie Schödingea dla elektonu w atomie wodou m 1 d dp l( l + ) P = P sinθ Równanie funkcji kąta biegunowego P(θ) 1 sin θ sinθ dθ ma ozwiązania w postaci stowazyszonych funkcji Legende a P lm ( θ ) =

Bardziej szczegółowo

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E = 3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B

Zadanie 1. Zadanie 2. Sprawdzam dla objętości, że z obwarzanków mogę posklejać całą kulę o promieniu R: r = {x, y, z}; A = * Cross r, B Zadanie In[]:= = {x, y, z}; In[]:= B = B, B, B3 ; (* Bi to wielkości stałe *) In[3]:= A = - * Coss, B Out[3]= -B3 y + B z, B3 x - B z, -B x + B y In[4]:= {x,y,z} -B3 y + B z, B3 x - B z, -B x + B y Out[4]=

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

(U.17) Zastosowania stacjonarnego rachunku zaburzeń

(U.17) Zastosowania stacjonarnego rachunku zaburzeń 3.0.004 38. U.7 Zastosowania stacjonanego achunku zabuzeń 66 Rozdział 38 U.7 Zastosowania stacjonanego achunku zabuzeń 38. Stuktua subtelna w atomie wodoopodobnym 38.. Hamiltonian i jego dyskusja Popzednio

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

REZONATORY DIELEKTRYCZNE

REZONATORY DIELEKTRYCZNE REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady zachowania: enegia mechaniczna E E const. k p E p ()+E k (v) = 0 W układzie zachowawczym odosobnionym całkowita enegia mechaniczna, czyli suma enegii potencjalnej, E p, zaówno

Bardziej szczegółowo

Prawo Gaussa. Potencjał elektryczny.

Prawo Gaussa. Potencjał elektryczny. Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Domieszki w półprzewodnikach

Domieszki w półprzewodnikach Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

magnetyzm ver

magnetyzm ver e-8.6.7 agnetyz pądy poste pądy elektyczne oddziałują ze soą. doświadczenie Apèe a (18): Ι Ι 1 F ~ siła na jednostkę długości pzewodów pądy poste w póżni jednostki w elektyczności A ape - natężenie pądu

Bardziej szczegółowo

Podstawy fizyki subatomowej

Podstawy fizyki subatomowej Podstawy fizyki subatomowej Wykład 6 Zenon Janas 11 kwietnia 018. Współzędne sfeyczne położenie punktu: (, θ, ϕ) Z sin θ ( 0, ) θ ( 0, π ) ϕ ( 0, π ) cosθθ X ϕ θ Y (, θ, ϕ) ( x, y, z) x sinθcosϕ y sinθsinϕ

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy: Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,

Bardziej szczegółowo

ELEKTROMAGNETYCZNE DRGANIA WYMUSZONE W OBWODZIE RLC. 1. Podstawy fizyczne

ELEKTROMAGNETYCZNE DRGANIA WYMUSZONE W OBWODZIE RLC. 1. Podstawy fizyczne Politechnika Waszawska Wydział Fizyki Laboatoium Fizyki I Płd. Maek Kowalski ELEKTROMAGNETYZNE RGANIA WYMUSZONE W OBWOZIE RL. Podstawy fizyczne gania są zjawiskiem powszechnie występującym w pzyodzie i

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Model oscylatorów tłumionych

Model oscylatorów tłumionych Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo