Niestabilne orbity okresowe a (niektóre) własności układów chaotycznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Niestabilne orbity okresowe a (niektóre) własności układów chaotycznych"

Transkrypt

1 Niestabilne orbity okresowe a (niektóre) własności układów chaotycznych Justyna Signerska,Jan Pyrzowski Politechnika Gdańska, Akademia Medyczna w Gdańsku

2 Hel 2008 p.1/3 Outline Podstawowe definicje

3 Hel 2008 p.1/3 Outline Podstawowe definicje Odtwarzanie miary naturalnej przy pomocy niestabilnych orbit okresowych

4 Hel 2008 p.1/3 Outline Podstawowe definicje Odtwarzanie miary naturalnej przy pomocy niestabilnych orbit okresowych Escape rates

5 Hel 2008 p.1/3 Outline Podstawowe definicje Odtwarzanie miary naturalnej przy pomocy niestabilnych orbit okresowych Escape rates Inne własności układów dynamicznych a niestabilne orbity okresowe

6 Definicje Hel 2008 p.2/3

7 Hel 2008 p.3/3 Układ dynamiczny X -p. metryczna, T -zbiór indeksów, F : T X X Definicja (F, X, T) nazywamy układem Uwaga Układy ciagłe sa zadawane dynamicznym, gdy F(t, ) = F t, przez autonomiczne równania spełnia warunki: różniczkowe zwyczajne (rzędu pierwszego): (1) F 0 (x) = x, (2) t,s T F t+s (x) = F t (F s (x)). Dla układów ciagłych T = R, dla dyskretnych T = Z, T = N. ẋ = f(x), x(0) = x 0.

8 Hel 2008 p.4/3 Miara naturalna (X, F, µ) - przestrzeń probabilistyczna Definicja Mówimy, że odwzorowanie mierzalne F : X X zachowuje miarȩ, jeśli µ(f 1 (A)) = µ(a) dla każdego A F Definicja Miara generowana przez typowe trajektorie w przestrzeni fazowej nazywana jest miara naturalna i jest ona niezmiennicza względem dynamiki układu F.

9 Hel 2008 p.5/3 Ergodyczność Definicja Odwzorowanie F : X X zachowuja ce miarȩ jest ergodyczne, jeśli spełniony jest warunek: F 1 (A) = A (A F) µ(a) = 0 lub µ(a) = 1. µ nazywamy wówczas miara ergodyczna dla F. Twierdzenie [Birkhoff] Jeśli F jest ergodyczne, µ-miara niezmiennicza oraz f L 1 (µ), to: 1 N N 1 i=0 f(f i (x)) X fdµ dla N (1)

10 Hel 2008 p.6/3 Rozmaitości stabilne i niestabilne Definicja X- zwarta gładka rozmaitość, f : X X - dyffeomorfizm klasy C k, p - punkt stały dla f Rozmaitościa stabilna punktu p nazywamy zbiór: W s (p) := {x X : lim n fn (x) p} Rozmaitościa niestabilna punktu p nazywamy zbiór: W u (p) := {x X : lim n f n (x) p}

11 Hel 2008 p.7/3 Hiperboliczność Definicja w przypadku układów dynamicznych dyskretnych x n+1 = f(x n ), mówimy, że punkt stały p jest hiperboliczny, jeśli wszystkie wartości własne macierzy Jakobiego Df(p) sa co do modułu różne od 1 w przypadku układów dynamicznych ciagłych ẋ = f(x), mówimy, że rozwiazanie stacjonarne x jest hiperboliczne, gdy żadna z wartości własnych macierzy Jakobiego Df( x) nie jest czysto urojona

12 Hel 2008 p.8/3 Hiperboliczność Definicja Odwzorowanie f nazywamy hiperbolicznym, jeśli przecinaja ce siȩ rozmaitości stabilne i niestabilne dowolnych punktów stałych zawsze przecinaja siȩ transwersalnie. Jeśli przecinaja siȩ stycznie, to odwzorowanie jest niehiperboliczne.

13 Hel 2008 p.9/3 Atraktory i repelery Definicja Zbiór zwarty i niezmienniczy A nazywamy atraktorem potoku/odwzorowania F t, jeżeli istnieje otoczenie (basen przyciagania) U A taki, że: t 0 F t (U) U oraz t 0 F t (U) = A. Repeler jest to nieprzyciagaj acy zbiór niezmienniczy; dynamika na nim ma również właściwości chaotyczne.

14 Hel 2008 p.10/3 Chaos Definicja Odwzorowanie f nazywamy tranzytywnym wtedy i tylko wtedy, gdy: =U,V X U,V otw. k>0 f k (U) V Definicja [Devaney, 1989] Odwzorowanie f : X X nazywamy chaotycznym, jeżeli: 1. f jest tranzytywne, 2. zbiór punktów periodycznych f jest gęsty, 3. f posiada wrażliwość na warunki poczatkowe.

15 Miara naturalna Hel 2008 p.11/3

16 Hel 2008 p.12/3 Wyznaczanie miary naturalnej A - atraktor o basenie przyciagania S {C i }-pokrycie atraktora A ρ(x 0, T, ǫ i )-ilość czasu, jaka trajektoria długości T wybranego losowo punktu x 0 S spędza w komórce C i rozmiaru ǫ i Wtedy miara naturalna atraktora zawarta w C i dana jest wzorem: µ i = lim T ρ(x 0, T, ǫ i ) T (2)

17 Hel 2008 p.13/3 M. naturalna a orbity okresowe Uwaga Hiperboliczne atraktory chaotyczne posiadaja nieskończenie wiele niestabilnych orbit okresowych, które tworza zbiór gęsty, ale o zerowej mierze Lebesque a. Stad miary niezmiennicze produkowane przez niestabilne orbity okresowe sa atypowe. Ponieważ jednak typowa trajektoria odwiedza ustalone otoczenie każdej z orbit okresowych z odpowiednia częstotliwościa, orbity te poniekad rozpinaja miarę naturalna.

18 Hel 2008 p.14/3 Wyznaczanie miary naturalnej M : X X - odwzorowanie d-wymiarowe x i,p - i-ty punkt periodyczny o okresie p (niekoniecznie minimalnym) Miara naturalna atraktora zawarta w C i : µ i = lim p µ i(p), (3) gdzie µ i (p) = L 1 (x i,p ) x i,p C i 1 (4) oraz L 1 (x i,p ) jest iloczynem rozszerzajacych wartości własnych macierzy Jakobiego DM p (x i,p ).

19 Hel 2008 p.15/3 Wyznaczanie miary naturalnej Wzór (4) dla układów hiperbolicznych może być wyprowadzony w nastepujacy sposób: Pokrywamy odpowiednio atraktor zbiorami C i

20 Hel 2008 p.16/3 Wyznaczanie miary naturalnej x 0 C i - warunek poczatkowy x p - punkt powrotu do C i trajektorii startujacej z x 0 po p iteracjach (ergodyczność)

21 Hel 2008 p.17/3 Wyznaczanie miary naturalnej M p (ab) = a b M p (c d ) = cd M p (efgh) = e f g h. x i,p - niestabilny punkt stały dla M p

22 Hel 2008 p.18/3 Wyznaczanie miary naturalnej Załóżmy, że odcinek c d ma długość ǫ. Wtedy odcinek cd ma długość ǫ/l 1 (x i,p ). Stad ǫ/l 1 (x i,p ) ǫ = 1 L 1 (x i,p ) jest częścia trajektorii (zwiazanych z x i,p ), które powróca do C i po p iteracjach (ponieważ miara naturalna jest jednostajna w kierunku niestabilnym). Biorac pod uwagę wszystkie niestabilne punkty stałe dla M p w C i oraz przechodzac do granicy p otrzymujemy µ i = lim p 1 L 1 (x i,p ). x i,p C i

23 Hel 2008 p.19/3 Uwagi W wyprowadzeniu wzoru (4) założono, że istnieje dobra partycja {C i } przestrzeni fazowej, tj. taka, dla której nie zachodza przypadki Dla układów hiperbolicznych taki podział przestrzeni fazowej istnieje (tzw. Markov partition). Dla niehiperbolicznych nie możemy go skonstruować, ponieważ istnieje nieskończenie wiele styczności między rozmaitościami stabilnymi i niestabilnymi.

24 Hel 2008 p.20/3 Uwagi ρ(x 0, T, ǫ i ) µ i = lim T T 1 µ i (p) = L 1 (x i,p ) x i,p C i (5) (6) Niech µ p = N [µ i (p) µ i ] 2 /N. i=1 Dla układów hiperbolicznych obserwujemy: µ p exp αp, α - tzw. entropia topologiczna (7)

25 Stałe ucieczki (Escape rates) Hel 2008 p.21/3

26 Orbity periodyczne Hel 2008 p.22/3

27 Hel 2008 p.23/3 Odwzorowania 1D Rozważmy jednowymiarowy repeler: f(x c ) > x max

28 Hel 2008 p.24/3 Odwzorowania 1D Obserwujemy przy pierwszej iteracji ucieka odcinek wokół x c w drugiej iteracji uciekaja jego dwa przeciwobrazy itd., itd.... W n-tym kroku punkty, które ocalały możemy podzielic na 2 n rozłacznych odcinków: i - ty odcinek zakodowany jest ciagiem i = ǫ 1 ǫ 2...ǫ n, gdzie ǫ k = 0, jeśli f k (x) < x c ; 1, jeśli f k (x) > x c.

29 Hel 2008 p.25/3 Odwzorowania 1D l i - szerokość i-tego odcinka Miara zbioru punktów poczatkowych x, które przetrwaja n iteracji wynosi Γ n = (n) i l i. (8) Odzworowanie jest gładkie i ma ograniczona pochodna Λ = df/dx: 1 < Λ min df/dx Λ max Stad każdy odcinek w (8) jest ograniczony: Λ n max l i Λ n min

30 Hel 2008 p.26/3 Odwzorowania 1D W konsekwencji ( ) n 2 Γ n Λ max Γ n jest rzędu wykładniczego: Γ n = e nγ n e nγ ( 2 ) n Λ min Definicja γ = 1/T - stała ucieczki - (ang. escape rate) T - asymptotyczny czas życia (asymptotic lifetime) losowo wybranego punktu poczatkowego x

31 Odwzorowania 1D Każdy odcinek i zawiera punkt periodyczny x i. Jeśli odcinki te sa dostatecznie małe, to ich ekspansja na odcinek [0, 1] w ciagu n-iteracji może być przybliżona przy pomocy stabilności punktu x i : l i = a i Λ i, gdzie Λ i = d dx fn (x i ) = n 1 k=0 f (f k (x i )) (9) Hel 2008 p.27/3

32 Hel 2008 p.28/3 Odwzorowania 1D a i = l i Λ i Uwaga Jeśli układ jest hiperboliczny, to dla dostatecznie dużych n a 1 O(1) moga być zaniedbane z powodu wykładniczego przyrostu Λ i. Stad Γ n = (n) i 1 Λ i.

33 Hel 2008 p.29/3 Odwzorowania 1D Zdefiniujmy Ω(z) = z n Γ n = n=1 n=1 (n) z n i Λ i 1 = z/ Λ 0 + z/ Λ 1 + z 2 / Λ z 2 / Λ 01 + z 2 / Λ 10 + z 2 / Λ z 3 / Λ z 3 / Λ (10) Dla dostatecznie małych z suma ta jest zbieżna. Ponieważ Γ n e nγ, to escape rate γ jest wyznaczony poprzez najmniejsze z = e γ, dla którego szereg Ω(z) jest rozbieżny: Ω(z) (ze γ ) n. (11) n=1

34 Hel 2008 p.30/3 Odwzorowania 1D Definicja Cykle pierwsze (ang. prime cycles) sa to takie orbity periodyczne (x 1 x 2 x n ), które nie moga być przedstawione w krótszej postaci - orbita taka jest zakodowana przy pomocy niepowtarzajacego się ciagu symboli. Uwaga Istnieje dokładnie jeden cykl pierwszy dla każdej cyklicznej permutacji, np. p = 0011 = 0110 = 1100 = 1001 jest cyklem pierwszym, ale nie jest nim p = 0101 = 01. Stad Ω(z) = p n p (z n p Λ 1 p ) r = p r=1 n p z n p Λ 1 p 1 z n p Λ 1 p, (12) gdzie sumujemy po wszystkich cyklach pierwszych p długości n p, a r jest liczba powtórzeń danego cyklu.

35 Hel 2008 p.31/3 Dynamiczna funkcja ζ Zauważmy, że Ω(z) = z d dz p ln(1 zn p Λ p ) Stad Ω(z) jest pochodna logarytmiczna funkcji 1 ζ(z) = p (1 zn p Λ p ) (13) Jest to tzw. dynamiczna funkcja ζ. Uwaga Funkcja ζ-riemanna: ζ(z) = n 1 1 n z = p l. pierwsza 1 1 p z

36 Układy wielowymiarowe V -ograniczone otoczenie d-wymiarowego repelera Stała ucieczki z V dana jest wzorem: (n) i e nγ n = 1 det(1 J (n) (x i )) = = V V δ(y fn (x))dxdy V dx = V (n) i δ(x f n (x))dx = 1 d a=1 (1 (14) Λa i ), gdzie J (n) (x i ) = n 1 j=0 J(f (j) (x i )), J kl = x l f k (x) oraz Λ 1 i, Λ2 i,..., Λd i sa wartościami własnymi J(n). Hel 2008 p.32/3

37 Hel 2008 p.33/3 Układy wielowymiarowe Zakładajac, że Λ a i 1: gdzie Λ i = rozsz a Λ a i e nγ n = (n) i 1 Λ i, (15) jest iloczynem rozszerzajacych wartości własnych. Stad funkcja ζ (13) uogólnia się również dla układów wielowymiarowych.

38 Inne własności układów dynamicznych a niestabilne orbity okresowe Hel 2008 p.34/3

39 Hel 2008 p.35/3 co jeszcze możemy policzyć... miara naturalna

40 Hel 2008 p.35/3 co jeszcze możemy policzyć... miara naturalna escape rates

41 Hel 2008 p.35/3 co jeszcze możemy policzyć... miara naturalna escape rates ciśnienie topologiczne P(β) (escape rate = P(1))

42 Hel 2008 p.35/3 co jeszcze możemy policzyć... miara naturalna escape rates ciśnienie topologiczne P(β) (escape rate = P(1)) wymiary Renyi ego D(β)

43 Hel 2008 p.35/3 co jeszcze możemy policzyć... miara naturalna escape rates ciśnienie topologiczne P(β) (escape rate = P(1)) wymiary Renyi ego D(β) spektrum osobliwości f(α)

44 Hel 2008 p.35/3 co jeszcze możemy policzyć... miara naturalna escape rates ciśnienie topologiczne P(β) (escape rate = P(1)) wymiary Renyi ego D(β) spektrum osobliwości f(α) znajdowanie partycji Markowa

45 Hel 2008 p.35/3 co jeszcze możemy policzyć... miara naturalna escape rates ciśnienie topologiczne P(β) (escape rate = P(1)) wymiary Renyi ego D(β) spektrum osobliwości f(α) znajdowanie partycji Markowa i przypuszczalnie jeszcze więcej...

46 Hel 2008 p.36/3 Bibliografia 1. Lai YC, Nagai Y, Grebogi C. Characterization of the Natural Measure by Unstable Periodic Orbits in Chaotic Attractors. Phys Rev Lett 79(4): (1997) 2. Artuso R, Aurell E, Cvitanovic P. Recycling of strange sets I: Cycle expansions. Nonlinearity 3: (1990) 3. Grebogi C, Ott E, Yorke JA. Unstable periodic orbits and the dimensions of multifractal chaotic attractors. Phys Rev A 37(5):1711:1724 (1988) 4. Beck C, Schlogl F. Thermodynamics of chaotic systems: an introduction. Cambridge University Press (1993)

Podkowa Smale a jako klasyk chaosu

Podkowa Smale a jako klasyk chaosu IV Matematyczne Warsztaty KaeNeMw p. 1/? Podkowa Smale a jako klasyk chaosu Justyna Signerska jussig@wp.pl Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska Konstrukcja odwzorowania

Bardziej szczegółowo

Jan Pyrzowski i Justyna Signerska. Termodynamika multifraktali

Jan Pyrzowski i Justyna Signerska. Termodynamika multifraktali Jan Pyrzowski i Justyna Signerska Termodynamika multifraktali 1 Prawdopodobienstwo w teorii uk ladów dynamicznych Empiryczna definicja prawdopodobieństwa: R - liczba wszystkich roz lacznych zdarzeń, które

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH

ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH Punkty okresowe, zbiory graniczne, sprzężenia Zadanie 1. Pokazać, że trajektoria (w przód) punktu x w przestrzeni metrycznej X pod działaniem ciągłego

Bardziej szczegółowo

czyli o szukaniu miejsc zerowych, których nie ma

czyli o szukaniu miejsc zerowych, których nie ma zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona

Bardziej szczegółowo

Chaotyczne generatory liczb pseudolosowych

Chaotyczne generatory liczb pseudolosowych Chaotyczne generatory liczb pseudolosowych Michał Krzemiński michalkrzeminski@wp.pl Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Chaotyczne generatory liczb pseudolosowych -

Bardziej szczegółowo

ϕ(t k ; p) dla pewnego cigu t k }.

ϕ(t k ; p) dla pewnego cigu t k }. VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,

Bardziej szczegółowo

Wstęp do układów statycznych

Wstęp do układów statycznych Uniwersystet Warszawski 1 maja 2010 Wprowadzenie Standardowe układy dynamiczne - przestrzeń X wraz z przekształceniem f : X X zachowującym strukturę. Typowe przykłady: X - przestrzeń metryczna, f - przekształcenie

Bardziej szczegółowo

Fale biegnące w równaniach reakcji-dyfuzji

Fale biegnące w równaniach reakcji-dyfuzji Fale biegnące w równaniach reakcji-dyfuzji Piotr Bartłomiejczyk Politechnika Gdańska Między teorią a zastosowaniami: Matematyka w działaniu Będlewo, 25 30 maja 2015 P. Bartłomiejczyk Fale biegnące 1 /

Bardziej szczegółowo

Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu.

Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu. II Interdyscyplinarne Warsztaty Matematyczne p. 1/1 Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu. Justyna Signerska jussig@wp.pl Wydział Fizyki Technicznej i Matematyki

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Teoria ergodyczna. seminarium monograficzne dla studentów matematyki. dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik. rok akad.

Teoria ergodyczna. seminarium monograficzne dla studentów matematyki. dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik. rok akad. Teoria ergodyczna seminarium monograficzne dla studentów matematyki dr hab. Krzysztof Barański i prof. dr hab. Anna Zdunik rok akad. 2013/14 Teoria ergodyczna Teoria ergodyczna Teoria ergodyczna zajmuje

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki

Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Stabilność rozwiązań równań różniczkowych w ujęciu lokalnych układów dynamicznych. Adam Kanigowski Toruń 2010 1 Spis treści 1 Wprowadzenie

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie

Bardziej szczegółowo

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Sobolewa Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

Zbiór zadań z Układów Dynamicznych. Krzysztof Barański Michał Krych Anna Zdunik

Zbiór zadań z Układów Dynamicznych. Krzysztof Barański Michał Krych Anna Zdunik Zbiór zadań z Układów Dynamicznych Krzysztof Barański Michał Krych Anna Zdunik 9 października 2017 2 c Krzysztof Barański, Michał Krych i Anna Zdunik 2015 Spis treści 1 Punkty okresowe, zbiory graniczne,

Bardziej szczegółowo

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych) (niekoniecznie ograniczonych) Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza, Poznań Będlewo, 25-30 maja 2015 Funkcje prawie okresowe w sensie Bohra Definicja Zbiór E R nazywamy względnie

Bardziej szczegółowo

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15 Układy dynamiczne proseminarium dla studentów III roku matematyki Michał Krych i Anna Zdunik rok akad. 2014/15 Układy dynamiczne Układy dynamiczne Układy dynamiczne, i związana z nimi Teoria ergodyczna

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

Chaos w układach dynamicznych: miary i kryteria chaosu

Chaos w układach dynamicznych: miary i kryteria chaosu : miary i kryteria chaosu Uniwersytet Śląski w Katowicach, Wydział Matematyki, Fizyki i Chemii 27.08.14 : miary i kryteria chaosu Temat tego referatu jest związany z teorią układów dynamicznych która ma

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Twierdzenie 2: Własności pola wskazujące na istnienie orbit

Twierdzenie 2: Własności pola wskazujące na istnienie orbit Cykle graniczne Dotychczas zajmowaliśmy się głównie znajdowaniem i badaniem stabilności punktów stacjonarnych. Wiele ciekawych procesów ma naturę cykliczną. Umiemy już sobie poradzić z cyklicznością występującą

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X. 1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X

Bardziej szczegółowo

Wykład 21 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej

Wykład 21 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej Wykład 2 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej czȩść II (opracował: Piotr Nayar) Definicja 2.. Niech (E, E) bȩdzie przestrzenia mierzalna i niech λ : E

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Entropia w układach dynamicznych Środowiskowe Studia Doktoranckie z Nauk Matematycznych Uniwersytet Jagielloński, Kraków, marzec-kwiecień 2013

Entropia w układach dynamicznych Środowiskowe Studia Doktoranckie z Nauk Matematycznych Uniwersytet Jagielloński, Kraków, marzec-kwiecień 2013 Entropia w układach dynamicznych Środowiskowe Studia Doktoranckie z Nauk Matematycznych Uniwersytet Jagielloński, Kraków, marzec-kwiecień 2013 Tomasz Downarowicz Instytut Matematyki i Informatyki Politechniki

Bardziej szczegółowo

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P, Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

PRACA MAGISTERSKA DYSKRETNY NIELINIOWY UKŁAD SEMIDYNAMICZNY UNIWERSYTET JAGIELLOŃSKI

PRACA MAGISTERSKA DYSKRETNY NIELINIOWY UKŁAD SEMIDYNAMICZNY UNIWERSYTET JAGIELLOŃSKI UNIWERSYTET JAGIELLOŃSKI Wydział Matematyki i Fizyki Kierunek: Matematyka Sekcja teoretyczna PRACA MAGISTERSKA DYSKRETNY NIELINIOWY UKŁAD SEMIDYNAMICZNY NA PŁASZCZYŹNIE Zbigniew Galias opiekun: doc. Jerzy

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

Rachunek Różniczkowy

Rachunek Różniczkowy Rachunek Różniczkowy Sąsiedztwo punktu Liczby rzeczywiste będziemy teraz nazywać również punktami. Dla ustalonego punktu x 0 i promienia r > 0 zbiór S(x 0, r) = (x 0 r, x 0 ) (x 0, x 0 + r) nazywamy sąsiedztwem

Bardziej szczegółowo

Rachunek różniczkowy funkcji dwóch zmiennych

Rachunek różniczkowy funkcji dwóch zmiennych Rachunek różniczkowy funkcji dwóch zmiennych Definicja Spis treści: Wykres Ciągłość, granica iterowana i podwójna Pochodne cząstkowe Różniczka zupełna Gradient Pochodna kierunkowa Twierdzenie Schwarza

Bardziej szczegółowo

Algorytm Metropolisa-Hastingsa

Algorytm Metropolisa-Hastingsa Seminarium szkoleniowe, 25 kwietnia 2006 Plan prezentacji 1 Problem Metoda MCMC 2 Niezależny algorytm Metropolisa-Hastingsa Bła dzenie losowe Zbieżność procedury Metropolisa-Hastingsa Problem Metoda MCMC

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska

TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy Rachunek Różniczkowy Ciąg liczbowy Link Ciągiem liczbowym nieskończonym nazywamy każdą funkcję a która odwzorowuje zbiór liczb naturalnych N w zbiór liczb rzeczywistych R a : N R. Tradycyjnie wartość a(n)

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość

Bardziej szczegółowo

Granica funkcji. 27 grudnia Granica funkcji

Granica funkcji. 27 grudnia Granica funkcji 27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

Funkcje rzeczywiste jednej. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Funkcje rzeczywiste jednej. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Funkcje rzeczywiste jednej zmiennej rzeczywistej Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Definicje Funkcją (odwzorowaniem) f, odwzorowującą zbiór D w zbiór P nazywamy

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa

Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa Arkadiusz Neubauer IV rok, Fizyka z Informatyką. Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa 1 Problem fizyczny W poniższej pracy przedstawiono numeryczną metodę obliczania widma Lapunowa

Bardziej szczegółowo

Twierdzenie o liczbach pierwszych i hipoteza Riemanna

Twierdzenie o liczbach pierwszych i hipoteza Riemanna o liczbach pierwszych i hipoteza Riemanna Artur Ulikowski Politechnika Gdańska 10 marca 2009 o liczbach pierwszych Legendre, badając rozkład liczb pierwszych, postawił następującą hipotezę: Niech π(x)

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k

Wykład 7: Szeregi liczbowe i potęgowe. S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. a k Wykład 7: Szeregi liczbowe i potęgowe. Definicja 1. Niech (a n ) - ustalony ciąg liczbowy. Określamy nowy ciąg: S 1 = a 1 S 2 = a 1 + a 2 S 3 = a 1 + a 2 + a 3. S n =. Ciąg sum częściowych (S n ) nazywamy

Bardziej szczegółowo

Podstawy analizy matematycznej II

Podstawy analizy matematycznej II Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie. P. F. Góra Komputerowa analiza zagadnień różniczkowych 2. O tym, co można rozwiazać analitycznie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Jeszcze o równaniach liniowych Rozważmy skalarne, jednorodne równanie

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

7. Miara, zbiory mierzalne oraz funkcje mierzalne. 7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących

Bardziej szczegółowo

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński. Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA WRACIBORZU PODSTAWY JEDNOWYMIAROWYCH UKŁADÓW DYNAMICZNYCH

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA WRACIBORZU PODSTAWY JEDNOWYMIAROWYCH UKŁADÓW DYNAMICZNYCH PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA WRACIBORZU INSTYTUT TECHNIKI I MATEMATYKI KIERUNEK: MATEMATYKA SPECJALNOŚĆ: NAUCZYCIELSKA ZE SPECJALIZACJĄ MATEMATYKA W INFORMATYCE PAWEŁ MICHALSKI PODSTAWY JEDNOWYMIAROWYCH

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni

Bardziej szczegółowo

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I

Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar

Bardziej szczegółowo

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................

Bardziej szczegółowo

Układy autonomiczne. Rozdział Stabilność w sensie Lapunowa. Przedmiotem analizy w tym rozdziale będą układy równań autonomicznych

Układy autonomiczne. Rozdział Stabilność w sensie Lapunowa. Przedmiotem analizy w tym rozdziale będą układy równań autonomicznych Rozdział 5 Układy autonomiczne 5.1 Stabilność w sensie Lapunowa Przedmiotem analizy w tym rozdziale będą układy równań autonomicznych ẋ = f(x), (5.1) z funkcją f : Q R m, gdzie Q jest otwartym zbiorem

Bardziej szczegółowo