Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova"

Transkrypt

1 Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa

2 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3

3 Łańcuch Markova Definicja Własności Losowanie z rozkładu dyskretnego wydział klub dom stołówka

4 Łańcuch Markova Definicja Własności Losowanie z rozkładu dyskretnego wydział klub P dom wydział stołówka klub dom wydział stołówka klub dom stołówka

5 Łańcuch Markova Definicja Własności Losowanie z rozkładu dyskretnego wydział klub P dom wydział stołówka klub dom wydział stołówka klub dom stołówka X 0 = dom, X 1 = w, X 2 = s, X 3 = w, X 4 = d, X 5 = s,...

6 Definicja (nieformalna) Definicja Własności Losowanie z rozkładu dyskretnego Dane mamy: przestrzeń stanów Σ, macierz przejścia P, P i,j oznacza prawdopodobieństwo przejścia ze stanu i-tego do j-tego w jednym kroku, ma to być prawdopodobieństwo więc j P i,j = 1, ponadto mamy zadany pewien stan początkowy p 0 (lub rozkład P 0, z którego ma pochodzić stan początkowy),

7 Definicja (nieformalna) Definicja Własności Losowanie z rozkładu dyskretnego Dynamika: jako stan w kroku t = 0 wybieramy stan początkowy p 0 (lub losujemy go z rozkładu początkowego),

8 Definicja (nieformalna) Definicja Własności Losowanie z rozkładu dyskretnego Dynamika: jako stan w kroku t = 0 wybieramy stan początkowy p 0 (lub losujemy go z rozkładu początkowego), jeżeli w kroku t > 0 jesteśmy w stanie i to jako stan dla kroku t + 1 wybieramy losowy, ale zgodnie z tablicą przejść, tj. stan 1-szy z prawdopodobieństwem P i,1, stan 2-gi z prawdopodobieństwem P i,2, stan i-ty z prawdopodobieństwem P i,i, itd.

9 Definicja (nieformalna) Definicja Własności Losowanie z rozkładu dyskretnego Dynamika: jako stan w kroku t = 0 wybieramy stan początkowy p 0 (lub losujemy go z rozkładu początkowego), jeżeli w kroku t > 0 jesteśmy w stanie i to jako stan dla kroku t + 1 wybieramy losowy, ale zgodnie z tablicą przejść, tj. stan 1-szy z prawdopodobieństwem P i,1, stan 2-gi z prawdopodobieństwem P i,2, stan i-ty z prawdopodobieństwem P i,i, itd. Jeżeli znamy stan w chwili t, to przejście do roku t + 1 nie zależy od stanu w krokach t 1, t 2...

10 Interpretacja Definicja Własności Losowanie z rozkładu dyskretnego Łańcuch Markowa można wygodnie reprezentować jako graf skierowany wierzchołkami są wszystkie stany Σ, jeżeli prawdopodobieństwo bezpośredniego przejścia z i do j jest dodatnie P ij > 0, to dodajemy krawędź (i, j) do grafu (z wagą P ij ), krawędzie nie muszą być symetryczne,

11 Interpretacja Definicja Własności Losowanie z rozkładu dyskretnego Łańcuch Markowa można wygodnie reprezentować jako graf skierowany wierzchołkami są wszystkie stany Σ, jeżeli prawdopodobieństwo bezpośredniego przejścia z i do j jest dodatnie P ij > 0, to dodajemy krawędź (i, j) do grafu (z wagą P ij ), krawędzie nie muszą być symetryczne, wagi krawędzi wychodzących z danego wierzchołka sumują się do jedynki, ta własność nie musi zachodzić dla krawędzi wchodzących.

12 Interpretacja Definicja Własności Losowanie z rozkładu dyskretnego wydział klub P dom wydział stołówka klub dom wydział stołówka klub dom stołówka

13 Stan przechodni Definicja Własności Losowanie z rozkładu dyskretnego stan a jest przechodni, jeżeli istnieje ścieżka wychodząca z a bez powrotu

14 Stan przechodni Definicja Własności Losowanie z rozkładu dyskretnego a stan a jest przechodni, jeżeli istnieje ścieżka wychodząca z a bez powrotu b c

15 Stan porwacający Definicja Własności Losowanie z rozkładu dyskretnego stan a jest powracający (rekurencyjny), jeżeli każda ścieżka wychodząca z a kiedyś może powrócić z powrotem do a

16 Stan porwacający Definicja Własności Losowanie z rozkładu dyskretnego a stan a jest powracający (rekurencyjny), jeżeli każda ścieżka wychodząca z a kiedyś może powrócić z powrotem do a b c

17 Klasa rekursji Definicja Własności Losowanie z rozkładu dyskretnego klasa rekursji maksymalny zbiór stanów powracających, pomiędzy którymi można swobodnie przechodzić, może być więcej niż jedna klasa rekursji, klasy rekursji można znaleźć algorytmami BFS lub DFS wyszukując silnie spójne składowe w grafie skierowanym,

18 Klasa rekursji Definicja Własności Losowanie z rozkładu dyskretnego klasa rekursji maksymalny zbiór stanów powracających, pomiędzy którymi można swobodnie przechodzić, może być więcej niż jedna klasa rekursji, klasy rekursji można znaleźć algorytmami BFS lub DFS wyszukując silnie spójne składowe w grafie skierowanym,

19 Łańcuch nieprzywiedlny Definicja Własności Losowanie z rozkładu dyskretnego jeżeli z wszystkich stanów da się dojść do wszystkich innych (jest tylko jedna klasa rekursji która obejmuje wszystkie stany), to łańcuch nazywamy nieprzywiedlnym b a c

20 Stan okresowy / nieokresowy Definicja Własności Losowanie z rozkładu dyskretnego Stan a jest nieokresowy, jeżeli z każdego stanu da się dojść do wszystkich innych oraz gcd{i : P(a w i krokach a)} = 1

21 Stan okresowy / nieokresowy Definicja Własności Losowanie z rozkładu dyskretnego Stan a jest nieokresowy, jeżeli z każdego stanu da się dojść do wszystkich innych oraz gcd{i : P(a w i krokach a)} = 1 d a b c a b c

22 Stan okresowy / nieokresowy Definicja Własności Losowanie z rozkładu dyskretnego Stan a jest nieokresowy, jeżeli z każdego stanu da się dojść do wszystkich innych oraz gcd{i : P(a w i krokach a)} = 1 d a b c a b c okresowy nieokresowy

23 Losowanie z rozkładu dyskretnego Definicja Własności Losowanie z rozkładu dyskretnego dane niech będzie n kategorii prawdopodobieństwa p 1,.., p n. chcemy wylosować jedną z kategorii, ale z odpowiadającym jej prawdopodobieństwem P(X = i) = p i

24 Losowanie z rozkładu dyskretnego Definicja Własności Losowanie z rozkładu dyskretnego dane niech będzie n kategorii prawdopodobieństwa p 1,.., p n. x 2 p=0.09 x 1 p=0.04 x 8 p=0.11 chcemy wylosować jedną z kategorii, ale z odpowiadającym jej prawdopodobieństwem x 3 p=0.25 x 7 p=0.26 P(X = i) = p i x 4 p=0.01 x 5 p=0.09 x 6 p=0.15

25 Algorytm naiwny Definicja Własności Losowanie z rozkładu dyskretnego P(X = i) = p i oblicz s i := i j=1 p j dla i = 1..n wylosuj u U (0,1) I := 1 while (s i < u) I + + return I

26 Algorytm naiwny Definicja Własności Losowanie z rozkładu dyskretnego P(X = i) = p i oblicz s i := i j=1 p j dla i = 1..n wylosuj u U (0,1) I := 1 while (s i < u) I + + return I Wartości s 1 do s n można liczyć na bieżąco w trakcie pętli. Jeżeli losowanie będzie wielokrotnie powtarzane, to lepiej będzie je zapamiętać w tablicy.

27 Algorytm podziału odcinka Definicja Własności Losowanie z rozkładu dyskretnego wygeneruj u U (0,1) l := 0 r := n do c := (l + r)/2 if (u > s c ) l := c else r := c while (l < r 1) return r

28 Algorytm generowania Definicja Własności Losowanie z rozkładu dyskretnego wylosuj u 1 Ex(p 1 ), u 2 Ex(p 2 )..., u n Ex(p n ) np. algorytmem odwracania dystrybuanty, Ex(λ) wylosuj T U (0,1) zwróć 1 λ ln(t ) znajdź indeks i, taki że u i = min(u 1,..., u n ) zwróć i

29 Twierdzenie Niech P (n) ij = (P n ) ij = prawdopodobieństwo przejścia z i do j w dokładnie n krokach. Ponadto niech łańcuch Markowa opisywany przez P będzie nieprzywiedlny i nieokresowy.

30 Twierdzenie Niech P (n) ij = (P n ) ij = prawdopodobieństwo przejścia z i do j w dokładnie n krokach. Ponadto niech łańcuch Markowa opisywany przez P będzie nieprzywiedlny i nieokresowy. Wtedy istnieje wektor probabilistyczny π i, i π i = 1, i π i > 0, taki że lim n + P(n) ij = π j.

31 Szkic dowodu Rozważmy stany początkowe i, i. Z obu wypuszczamy dwa łańcuchy, które ewoluują zgodnie z macierzą P, ale gdy się spotkają z pewnym stanie j w tej samej chwili, sklejają się i dalej ewoluują wspólnie. Mamy: Pij n Pi n j P(agenci jeszcze się nie skleili) A to zanika wraz z n do zera (por. rzucanie dwiema kośćmi do gry do czasu uzyskania pary tych samych wyników). To prawdopodobieństwo nie zależy od wyboru i, możemy zatem je oznaczyć P n µj prawdopodobieństwo dojścia do j po n kokach startując z losowego stanu.

32 Szkic dowodu 1 jest wartością własną P, więc istnieje wektor π taki, że πp = 1 π. π nie ma wartości ujemnych. Przypuśćmy przeciwnie. Niech π + = max(0, π) po współrzędnych. Elementy P są nieujemne (z założenia) więc mamy (rachunki po współrzędnych): π + P π + oraz πp > π Z drugiej strony P zachowuje prawdopodobieństwo j π j = j (πp) j, więc mamy sprzeczność. π nie może mieć współrzędnych ujemnych.

33 Szkic dowodu Zatem π możemy przyjąć, że π jest rozkładem probabilistycznym. lim n + (Pn i j Pn ij ) = 0 lim n + (Pn µj Pij n ) = 0 lim n + Pn ij = π j

34 Rozkład stacjonarny Rozkład π nazywany jest rozkładem stacjonarnym łańcucha Markowa. Odpowiednio długo symulowany MC (Markov Chain) zbiega do swojego rozkładu stacjonarnego.

35 Rozkład stacjonarny Interpretacja po dłuższym czasie obserwator może stwierdzić, że łańcuch podadł w rutynę, lokalnie nadal zachowuje się zgodnie z zadaną tablicą przejść, w szerszym oknie czasowym, ilość czasu spędzona w poszczególnych stanach zaczyna się stabilizować,

36 Jak znalźć rozkład stacjonarny Dane: łańcuch Markowa opisany przez macierz przejścia P.

37 Jak znalźć rozkład stacjonarny Dane: łańcuch Markowa opisany przez macierz przejścia P. Cel: chcemy znaleźć rozkład stacjonarny π.

38 Obserwacja przyp. P ij = prawdopodobieństwo przejścia z i do j w jednym kroku

39 Obserwacja przyp. P ij = prawdopodobieństwo przejścia z i do j w jednym kroku prawdopodobieństwo przejścia z i do j w dwóch krokach, przechodząc przez k wynosi zatem P(i k j) = P ik P kj

40 Obserwacja przyp. P ij = prawdopodobieństwo przejścia z i do j w jednym kroku prawdopodobieństwo przejścia z i do j w dwóch krokach, przechodząc przez k wynosi zatem P(i k j) = P ik P kj prawdopodobieństwo przejścia z i do j w dokładnie dwóch krokach, ale przez dowolny wierzchołek pośredni P(i k j) = P ik P kj

41 Obserwacja przyp. P ij = prawdopodobieństwo przejścia z i do j w jednym kroku prawdopodobieństwo przejścia z i do j w dwóch krokach, przechodząc przez k wynosi zatem P(i k j) = P ik P kj prawdopodobieństwo przejścia z i do j w dokładnie dwóch krokach, ale przez dowolny wierzchołek pośredni P(i j) = k P ik P kj

42 Obserwacja cd. prawdopodobieństwo przejścia z i do j w dokładnie dwóch krokach przez dowolny wierzchołek pośredni P(i 2kroki j) = k P ik P kj

43 Obserwacja cd. prawdopodobieństwo przejścia z i do j w dokładnie dwóch krokach przez dowolny wierzchołek pośredni P(i 2kroki j) = k P ik P kj zatem jest opisywane przez macierz P P = P 2,

44 Obserwacja cd. prawdopodobieństwo przejścia z i do j w dokładnie dwóch krokach przez dowolny wierzchołek pośredni P(i 2kroki j) = k P ik P kj zatem jest opisywane przez macierz P P = P 2, przez indukcję prawdopodobieństwo przejścia w krokach ze stanu i do j w k krokach jest opisywane przez macierz P k.

45 Sposób 1 oblicz macierz P i, gdzie i jest wysoką potęgą,

46 Sposób 1 oblicz macierz P i, gdzie i jest wysoką potęgą, zwróć jeden z wierszy otrzymanej macierzy,

47 Sposób 1 oblicz macierz P i, gdzie i jest wysoką potęgą, zwróć jeden z wierszy otrzymanej macierzy, UWAGA: algorytmu nie należy stosować z wyjątkiem sytuacji gdy P jest mała

48 Sposób 1 P = P 2 =

49 Sposób 1 P = P 2 = P 4 = P 8 =

50 Sposób 2 Algorytm: symulujemy wstępnie dużą ilość kroków łańcucha, tak by zbiegł do rozkładu stacjonarnego,

51 Sposób 2 Algorytm: symulujemy wstępnie dużą ilość kroków łańcucha, tak by zbiegł do rozkładu stacjonarnego, od określonego punktu przez N kolejnych iteracji zliczamy ilości stanów jakie przyjął łańcuch,

52 Sposób 2 Algorytm: symulujemy wstępnie dużą ilość kroków łańcucha, tak by zbiegł do rozkładu stacjonarnego, od określonego punktu przez N kolejnych iteracji zliczamy ilości stanów jakie przyjął łańcuch, za prawdopodobieństwo przyjęcia stanu i przyjmujemy ilość kroków w których łańcuch był w stanie i-tym π i := N

53 Sposób 2 Algorytm: symulujemy wstępnie dużą ilość kroków łańcucha, tak by zbiegł do rozkładu stacjonarnego, od określonego punktu przez N kolejnych iteracji zliczamy ilości stanów jakie przyjął łańcuch, za prawdopodobieństwo przyjęcia stanu i przyjmujemy ilość kroków w których łańcuch był w stanie i-tym π i := N Czasem się go określa jako MCMC = Markov Chain Monte Carlo.

54 Sposób 2 P =

55 Sposób 2 P = T = [ ]

56 Sposób P = T = [ ]

57 Sposób 2 Problem: Kiedy zakończyć wstępną symulację?

58 Sposób 2 Algorytm: oznaczmy T wstępną ilość kroków,

59 Sposób 2 Algorytm: oznaczmy T wstępną ilość kroków, w kroku 0 z każdego ze stanów wypuszczamy osobną ewoluującą po sieci kopię łańcucha,

60 Sposób 2 Algorytm: oznaczmy T wstępną ilość kroków, w kroku 0 z każdego ze stanów wypuszczamy osobną ewoluującą po sieci kopię łańcucha, jeżeli w pewnym kroku dwie kopie spotkają się w jednym stanie skejają się i dalej ewoluują razem (równoważnie usuwamy jedną z kopii),

61 Sposób 2 Algorytm: oznaczmy T wstępną ilość kroków, w kroku 0 z każdego ze stanów wypuszczamy osobną ewoluującą po sieci kopię łańcucha, jeżeli w pewnym kroku dwie kopie spotkają się w jednym stanie skejają się i dalej ewoluują razem (równoważnie usuwamy jedną z kopii), jeżeli w kroku T wszystkie łańcuchy zostały sklejone do jednego, to kończymy etap, jeżeli nie to przyjmujemy T :=2T i kontynuujemy.

62 Sposób 2 Uwaga! istnieją łańcuchy Markova, dla których ten algorytm się zapętli (ale dla takich nie istnieje rozkład stacjonarny nie spełniają założeń twierdzenia!).

63 Sposób 2 Uwaga! istnieją łańcuchy Markova, dla których ten algorytm się zapętli (ale dla takich nie istnieje rozkład stacjonarny nie spełniają założeń twierdzenia!). a b c a b c a b c 0 1 0

64 Błądzenie losowe

65 błądzenie losowe, modelowanie procesów biologicznych, fizycznych, społecznych etc. narzędzia statystyczne, symulowanie rynków finansowych, rozumowanie przy niepewnej wiedzy, np. w sieciach bayesowskich, algorytm generowania z dowolnego rozkładu (alg. Metropolisa-Hastlingsa) algorytmy typu symulowanego wyżarzania (następy wykład)

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Algorytm Metropolisa-Hastingsa

Algorytm Metropolisa-Hastingsa Seminarium szkoleniowe, 25 kwietnia 2006 Plan prezentacji 1 Problem Metoda MCMC 2 Niezależny algorytm Metropolisa-Hastingsa Bła dzenie losowe Zbieżność procedury Metropolisa-Hastingsa Problem Metoda MCMC

Bardziej szczegółowo

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =

Bardziej szczegółowo

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,

Bardziej szczegółowo

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Analiza Algorytmów 2018/2019 (zadania na laboratorium)

Analiza Algorytmów 2018/2019 (zadania na laboratorium) Analiza Algorytmów 2018/2019 (zadania na laboratorium) Wybór lidera (do 9 III) Zadanie 1 W dowolnym języku programowania zaimplementuj symulator umożliwiający przetestowanie algorytmu wyboru lidera ELECT

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 3 1 Łańcuchy Markowa Oznaczenia

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna do sieci neuronowych, wykład 14 Maszyna Boltzmanna M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2014-01-21 Problemy z siecią Hopfilda

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Geometryczna zbieżność algorytmu Gibbsa

Geometryczna zbieżność algorytmu Gibbsa Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności

Bardziej szczegółowo

Zagadnienie najkrótszej drogi w sieci

Zagadnienie najkrótszej drogi w sieci L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy

Bardziej szczegółowo

Grafy Alberta-Barabasiego

Grafy Alberta-Barabasiego Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest

Bardziej szczegółowo

Modelowanie motywów łańcuchami Markowa wyższego rzędu

Modelowanie motywów łańcuchami Markowa wyższego rzędu Modelowanie motywów łańcuchami Markowa wyższego rzędu Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki 23 października 2008 roku Plan prezentacji 1 Źródła 2 Motywy i ich znaczenie Łańcuchy

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Dowód probabilistyczny Uwagi do dowodu Bibliografia. Prawo Haczykowe. Łukasz Bieniasz-Krzywiec

Dowód probabilistyczny Uwagi do dowodu Bibliografia. Prawo Haczykowe. Łukasz Bieniasz-Krzywiec 09.10.2008 Plan prezentacji 1 Wstęp Diagram Ferrersa Tableau Young a Haczyk (Hook) Twierdzenie Haczykowe 2 3 4 Diagram Ferrersa Wstęp Diagram Ferrersa Tableau Young a Haczyk (Hook) Twierdzenie Haczykowe

Bardziej szczegółowo

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 1 1 Co to jest MCMC? 2

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA. Biomatematyka Dr Wioleta Drobik-Czwarno

MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA. Biomatematyka Dr Wioleta Drobik-Czwarno MODELOWANIE STOCHASTYCZNE CZĘŚĆ II - ŁAŃCUCHY MARKOWA Biomatematyka Dr Wioleta Drobik-Czwarno Polecane Łańcuchy Markowa wizualnie: http://setosa.io/ev/markov-chains/ Procesy stochastyczne Procesem stochastycznym

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Wielowymiarowy próbnik Gibbsa

Wielowymiarowy próbnik Gibbsa 29.05.2006 Seminarium szkoleniowe 30 maja 2006 Plan prezentacji Slgorytm MH i PG przypomnienie wiadomości Wielowymiarowy PG Algorytm PG z dopełnieniem Odwracalny PG Modele hierarchiczne Modele hybrydowe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 26 marzec, 212 Łańcuchy z czasem ciągłym S = {, 1,..., }, B S = 2 S, ale T = [, ) lub T = (, ). Gdy S skończone,

Bardziej szczegółowo

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład

Bardziej szczegółowo

ALHE. prof. Jarosław Arabas semestr 15Z

ALHE. prof. Jarosław Arabas semestr 15Z ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Dane w postaci grafów Przykład: social network 3 Przykład: media network 4 Przykład: information network

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 8: Wyszukiwarki internetowe Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 8 1 / 37 czyli jak znaleźć igłę w sieci Sieci komputerowe

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.2. Niezależność zdarzeń Katarzyna Rybarczyk-Krzywdzińska Niezależność dwóch zdarzeń Intuicja Zdarzenia losowe

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 2 1 Podstawowe idee symulacji

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

Seria 1. Zbieżność rozkładów

Seria 1. Zbieżność rozkładów Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Strategie ewolucyjne (ang. evolu4on strategies)

Strategie ewolucyjne (ang. evolu4on strategies) Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje

Bardziej szczegółowo

Wokół wyszukiwarek internetowych

Wokół wyszukiwarek internetowych Wokół wyszukiwarek internetowych Bartosz Makuracki 23 stycznia 2014 Przypomnienie Wzór x 1 = 1 d N x 2 = 1 d N + d N i=1 p 1,i x i + d N i=1 p 2,i x i. x N = 1 d N + d N i=1 p N,i x i Oznaczenia Gdzie:

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20

Bardziej szczegółowo

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

1 Wartości własne oraz wektory własne macierzy

1 Wartości własne oraz wektory własne macierzy Rozwiązania zadania umieszczonego na końcu poniższych notatek proszę przynieść na kartkach Proszę o staranne i formalne uzasadnienie odpowiedzi Za zadanie można uzyskać do 6 punktów (jeżeli przyniesione

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 2

Rachunek prawdopodobieństwa- wykład 2 Rachunek prawdopodobieństwa- wykład 2 Pojęcie dyskretnej przestrzeni probabilistycznej i określenie prawdopodobieństwa w tej przestrzeni dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo