Klasyfikacja stanów elektronowych (termów) molekuł dwuatomowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Klasyfikacja stanów elektronowych (termów) molekuł dwuatomowych"

Transkrypt

1 Klasfaca stanów eletronowch termów moleuł dwuatomowch na mśl mam neruchomą cąstecę formalne prechodm do uładu rotuąceo wra rotacą moleuł smetre moleuł AB to: - nemenncość wl. obrotów woół os wąana - odbce w płascźne aweraące oś wąana - nwersa dla cąstece homoądrowch AA nemennc est też hamltonan H => stneą operator wąane tm prestrennm operacam smetr o tm będe sceółowo późne tóre omutuą H atem maą H wspólne funce własne - nace stan własne H będą snowane numerowane wartoścam własnm tch operatorów; a nemenncość wl. obrotów woół os wąana odpowedaln est rut całowteo momentu pędu na oś Z L 2 ne est uż stałą ruchu L L ψ e = ħ φ ψ e = Λħψ e podobne a w atomach deeneraca e wl. na na Λ ±1 ±2 ±3 smbol a odbca operator a nwersę σ vψ e = ±ψ e ψ e = ±ψ e na wartośc własne σ v : Λ ± dla Λ stan są podwóne deenerowane - opusca sę na wart. własne σ v stan odpowadaące wartośc własne nwers +1 onacam smbolem erade parst a te do wartośc -1 u unerade neparst : Λ /u H omutue taże operatorem wadratu całowteo spnu rutu S 2

2 stan onacam rotnoścą 2S+1 : neamnętch powło 2S+1 Λ spn dotc eletronów prład stan podstawow cąstec H 2 Σ stan wbudon cąstec H 2 Σ u - stan podstawow cąstec He Σ u + - stan podstawow cąstec OH 2 Π pamętam że enere tch stanów są funcam R odlełośc męd ądram parabolcnm w poblżu odlełośc równowaowe dłuośc wąana Smetra w mechance wantowe element teor rup def. rup Zbór sońcon lub nesońcon elementów {} twor rupę d: - defnowana operaca mnożena łożena 1 2 = 3 G = stnee tlo eden element tożsamoścow e e = e = - ażd posada element odwrotn -1-1 = e lość elementów m = rąd rup rup abelowe premenne: 1 2 = 2 1 lub nace [ 1 2 ] = podbór G będąc rupą nawa sę podrupą prład podstawowe - bór elementów [1] dodawanem defnowanm ao +-> +1->1 1+1-> tu e = - element tożsamoścow 1 est odwrotnoścą dla sebe

3 - macere wadratowe A o elementach recwstch rędu n o det A e włm mnożenem macer nesońcona - rupa lcb espolonch {1-1 - } dałanem ao włm mnożenem - rupa nesońcona wetorów w 3 2 n dodawanem - rupa nesońcona wetorów dsretnch będącch ombnacam lnowm ne współlnowch wetorów baowch R = m 1 a 1 + m 2 a 2 + m 3 a 3 m całowte podrupa popredne Własnośc rup n =... - n ra dla rup sońconch tworąc cą e n... d perwsm powtaraącm sę elementem rup będe e = m to rupę nawam rupą clcną defnca defnca 1 2 nawaą sę sprężonm równoważnm d stnee ta G że 1-1 = 2 sprężene relaca równoważnośc est: a wrotne b prechodne ważne be dowodu relaca równoważnośc del rupę G na rołącne bor tw. las wsste element waemne sprężone należą do edne las - element tożsamoścow stanow awse lasę ednoelementową dż e est defnc premenne ażdm elementem rup - w rupach abelowch wsste las są ednoelementowe dż: 1-1 = 2 => -1 1 = 2 => e 1 = 2 => 1 = 2 Iomorfm we rup G H ednaoweo rędu są omorfcne eśl pomęd elementam tch rup stnee waemne ednonacne prporądowane tae że Jeśl 1 h 1 2 h 2 to 1 2 h 1 h 2 elementow e odpowada e -1 odpowada h -1

4 Homomorfm Grupa G est homomorfcna do rup H d ażdemu elementow G prporądowan est ednonacne element rup H ale ednemu elementow H może odpowadać węce nż eden element G homomorfm ne est wrotn Prestałcena smetr w 3 prestałcena elementarne a obrot b odbca w płascźne c translace prestałcena te tworą rup: rup smetr danch obetów atomów moleuł brł cał rstałów... lub po prostu operac smetr prestałcaącch prestreń prestałcena smetr element rup smetr preprowadaą obet w sebe punt obetów w punt równoważne lub w te same punt obrot odbca moą posadać punt neruchome rup puntowe ale ch łożena locn ne musą tach puntów posadać cała o sońconch romarach maą awse eden punt neruchom - ch rup smetr ne moą awerać translac; translace dotcą obetów nesońconch perodcnch; prład 1. rupa łożona obrotów o welorotnośc ątów 2π/4 9 o sońcona clcna posada 4 element C 4 = { e C 4 C 4 2 C 4 3 } 2. rupa łożona obrotów o welorotnośc ątów 2π/n sońcona clcna posada n-elementów 3. rupa smetr tróąta równobocneo C 3v = {e C 3 C } albo moleuł BH 3

5 4. rupa nesońcona łożona wsstch obrotów uładu współrędnch w arteańse prestren euldesowe 3 SO3 odbca w płascźne aweraące oś smetr onacam odbca w płascźne prostopadłe do os smetr onacam v h prestałcena w prestren płascźne można repreentować pre macere np. obrót wetora v = v v o ąt woół os prostopadłe do płascn XY v = v cos α v sn α v = v sn α + v cos α można repreentować cos α sn α Rα = [ sn α cos α ] a obrót uładu współrędnch o ąt - eden możlwch elementów rup SO3 - odpowadać będe obrotow wetora o ąt - odpowedna macer R 1 cos α sn α α = [ sn α cos α ] a obrót woół os Z w 3 [element rup SO3 ] cos α sn α [ sn α cos α ] 1 natomast prestałcene będące łożenem w 3 obrotu o ąt woół os odbca w płascźne prostopadłe do os : = h c 2 to po prostu nwersa ; 1 [ 1 ] 1 - dała na wetor w 3 a R na funce będące współrędnm tch wetorów f 1 = f 2 = f 3 = oólne: prestałcene współrędnch w prestren ma onsewence na postać func tch współrędnch funce uleną mane ta ab dałał na ne aeś operator

6 prład translaca - presunęce pocątu uładu współrędnch np. w ednm wmare o -a sutu tm że punt ma tera współrędne =+a tn. ta abśm presunęl o operacą t a o wetor a natomast funca f ma tera postać = f-a tn. ta abśm podałal na f pewnm operatorem Af = = f-a = ft -1 w mechance wantowe: prestrennm operacom smetr na ułade fcnm odpowadaą operator dałaące na funce własne np. hamltonanu teo uładu fcneo w oólnośc operac smetr prestrenne R odpowada mana func fr = f fr = fr 1 r eśl doonuem obrotu w 3 cl operac R r rup SO3 to operac te odpowada macer [33] ortoonalna waranca achowana locnu salarneo obrotom o dowoln ąt woół pewne os odpowada pewen operator wąan operatorem momentu pędu Roważm obrót o nesońcene mał ąt obrót o dowoln ąt - to cą obrotów o dowolne małe ąt obrót o ąt woół os można defnować popre wetor leżąc na os tóreo dłuość odpowada ątow obrotu w radanach; obrót prestałca płascnę prostopadłą do os; wetor r leżąc w te płascźne prechod w r' r r de można łożć 3 obrotów o ąt woół os odpowedno

7 obacm a mena sę funca różncowalna pr nesońcene małm obroce o [obacm a wląda operator menaąc funcę] r' roładaąc w sere Talora achowuąc tlo wra lnowe 1.. L de r L est doładnoścą do stałe Planca operatorem momentu pędu tu nawa sę operatorem nesońcene małeo obrotu pełne rownęce dae 2...! L L L L n e n / L e de L operator momentu pędu; welość fcna a tm samm repreentuąc ą operator eśl ne ależ awne od casu ne mena sę w case eśl [H ] = nawa sę stałą ruchu to sę wąże twerdenem Noether ażda cąła smetra enerue pewne prawo achowana w tm prpadu: asada achowana momentu pędu odwercedla nemenncość uładu wlędem obrotów o dowolne ąt woół dowolnch os

8 Elementarna weda aresu teor repreentac operace smetr repreentowalśm uż a pomocą macer ortoonalnch untarnch R eśl operace smetr tworą rupę G to pre omorfm macere R repreentuące też tworą rupę; możem edna pomśleć o funcach tóre są transformowane popre operator R odpowadaące operacom smetr. Weźm dowolną funcę = r po wonanu operac na r funca r stae sę nną funcą [tch samch współrędnch-arumentów] tn. s r φr = φ 1 r = φ s r tę nową funcę s można tratować ao otrmaną po dałanu na pewnm operatorem ależnm od UWAGA: 1 r r' r s s s r stosuąc oleno wsste operace rup G do func otrmam h rąd G func h tórch n nech będe lnowo neależnch tworą one prestreń funcną n-wmarową wbraną baą r dałane na r dae r r c r otrmuem macerowe repreentace a tm samm macerowe repreentace operac smetr postać macer ch wmar n ależ od wboru func [omentar może dałać też na funce wetorowe 3 funce prmuące wartośc współrędnch puntu r 1r = 2r = 3r = ; pr tam wbore = R ]

9 dla macer repreentac achod p q p s s - odne prawem mnożena macer pamętaąc że s = p q defnca Jeśl ażdemu elementow rup G prporądowana est macer wadratowa rędu n wże defnowanm locnem to bór macer twor n-wmarową repreentacę rup G. Onacam ą. bór operatorów twor repreentacę operatorową bór lnowo neależnch func twor baę repreentac dale prmuem że awse mówm o bae ortonormalne element macer repreentac są: dr transformaca untarna ortoonalna dla recwstch S S T S 1 powala preść ba do ba... prpomnm że dla macer untarne achod: S S A ortoonalność e wlędu na olumn werse dż S S SS I

10 Twerdene dla ba ortonormalne macere są untarne dowód: pamętam że achowue dłuośc wetorów a atem te element ob. l r r dr 1 l l r 1 r dr r l / r l / dr r dr / l bo to est warune A. sorstałem fatu że aoban transformac =1 bo obętość [dłuośc achowane] ddd ne ulea mane; łatwo poaać co est ocwste że pr preścu ba do ba B S 1 S ' tae repreentace nawaą sę równoważnm. Ponadto: ślad macer ora wnacn ne uleaą mane pr prestałcenach untarnch B eśl wsste macere repreentac są różne to repreentaca est werna eśl ne to mam homomorfm rup G rup macer Repreentace prwedlne reduowalne eśl transformaca untarna mana ba preprowad wsste macere repreentac do postac 1 2 ustalonm wmaram to repreentaca est reduowalna prwedlna;

11 eśl ne można uż doonać dalse reduc a pomocą transformac untarne to - nawaą sę repreentacam neprwedlnm nereduowalnm reduowalność repreentac onaca że można ta pretransformować e baę że podba transformuą sę tlo w sebe pod wpłwem operac rup G w oólnośc netóre moą bć waemne równoważne Podstawowe twerdena teor repreentac Twerdene Burnsde a dla rup sońconch n a wmar nereduowalne repreentac rup N - lcba wsstch nereduowalnch repreentac rup h - rąd wmar rup N a1 2 n a h lcba repreentac neprwedlnch N równa est lcbe las N r N N r wmar nereduowalnch repreentac są delnam rędu rup awse stnee edna repreentaca ednostowa - funca stała ne mena sę pod wpłwem żadne operac rup; twerdena te powalaą ednonacne wnacć wmar wsstch nereduowalnch repreentac dane rup poa tm: wsste nereduowalne repreentace rup abelowch są ednowmarowe dla sońconch rup puntowch repreentace moą bć co nawże 3- wmarowe e wl. na omorfm maceram prestałceń R eśl [H]= operator smetr należą do aeś rup G to funce należące do deenerowane wartośc własne H stanową baę aeś neprwedlne repreentac rup G będące rupą smetr H a tm samm rupą smetr daneo uładu fcneo

12 est ta dlateo poneważ: nemenncość H wlędem operac G rup smetr hamltonanu uładu fcneo onaca [] : albo nace H 1 r H r H r r H 1 r 1 r H r r a to onaca: H H H r 1 1 ale [] r E r ; wdać że funcom r 1 r odpowada ta sama wartość własna E; dałaąc operacam na dowolną funcą poostaem w bore func odpowadaącch E atem: funce własne H odpowadaące deenerowane wartośc własne H tworą baę repreentac rup smetr G hamltonanu; ażde repreentac neprwedlne pownna odpowadać nna wartość własna ener a w. deenerac tw. prpadowe; dana neprwedlna repreentaca rup G est na oół prwedlna reduowalna w podrupe G te rup [dż mnesa sę lcba las wmar] ma to podstawowe nacene w oreślanu roscepena deenerowanch poomów eneretcnch uładu fcneo pod wpłwem aburena tóre obnża smetrę teo uładu.

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

Reprezentacje grup symetrii. g s

Reprezentacje grup symetrii. g s erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrą 22/2 Egamn psemn, 24 VI 2 r. Instrukcje: Każde adane jest a punktów. Praca nad rowąanam mus bć absolutne samodelna. Jakakolwek forma komunkacj kmkolwek poa plnującm egamn jest całkowce

Bardziej szczegółowo

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty)

1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty) 1. Alger wetorów Welość wetorową chrterue wrtość, cl moduł, erune, wrot. Możn ą predstwć w sposó grfcn o odcne serown o długośc proporconlne do modułu lu te w sposó nltcn. Sposó nltcn poleg n podnu rutów,,

Bardziej szczegółowo

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

Algebra WYKŁAD 1 ALGEBRA 1

Algebra WYKŁAD 1 ALGEBRA 1 Algebra WYKŁAD ALGEBRA Realacja predmotu Wykład 30 god. Ćwcena 5 god. Regulamn alceń: www.mn.pw.edu.pl/~fgurny ALGEBRA Program ajęć Lcby espolone Algebra macery Układy równań lnowych Geometra analtycna

Bardziej szczegółowo

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody

Opis układu we współrzędnych uogólnionych, więzy i ich reakcje, stopnie swobody Os układu we wsółrędnch uogólnonch wę ch reakce stone swobod Roatruem układ o welu stonach swobod n. układ łożon unktów materalnch. Na układ mogą bć nałożone wę. P r unkt materaln o mase m O Układ swobodn

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic Zadane rograowana lnowego PL dla ogranczeń neszoścowch rz ogranczenach: a f c A b d =n, d c=n, d A =[ n], d b =, Postać anonczna zadana PL a c X : A b, Postać anonczna acerzowa zadana PL a Lczba zennch

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

7.5.1. Ruch bryły swobodnej

7.5.1. Ruch bryły swobodnej 751 Ruch brł swobone Swobona brła stwna ma w prestren seść stopn swobo o oreślena e ruchu potreba seścu równań ruchu Ruch brł możem robć na ruch śroa mas wwołan pre ałane wetora głównego sł ewnętrnch obrót

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Algebra WYKŁAD 2 ALGEBRA 1

Algebra WYKŁAD 2 ALGEBRA 1 Algebra WYKŁAD ALGEBRA Lcbę espoloną możemy predstawć w postac gde a b ab ( ) rcos sn r moduł lcby espolonej, argument lcby espolonej. Defncja Predstawene Lcby espolone r cos sn naywamy postacą trygonometrycną

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b = St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

Bogdan Żółtowski, doc. dr inż. Instytut Fizyki PŁ, Wólczańska 219, pokój 3.12 B14, III p.

Bogdan Żółtowski, doc. dr inż. Instytut Fizyki PŁ, Wólczańska 219, pokój 3.12 B14, III p. Fa I ogdan Żółtows doc. dr nż. Insttut F PŁ Wólcańsa 9 poó 3. 4 III p. tel. 3664 http://www.f.p.lod.pl/bogdan.oltows/ Konsultace: pąte 4-6 Zares predmotu: Knemata Dnama puntu materalnego Dnama brł stwne

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

Macierze hamiltonianu kp

Macierze hamiltonianu kp Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

Elementy symetrii makroskopowej w ujęciu macierzowym.

Elementy symetrii makroskopowej w ujęciu macierzowym. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI

Wykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI Włd 2: Wetor DR INŻ. ZIGNIEW SZKLRSKI SZKL@GH.EDU.PL HTTP://LYER.UCI.GH.EDU.PL/Z.SZKLRSKI/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, ntężene prądu eletrcnego, nprężene, ntężene

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) MARIAŁY POMOCNICZ O WYKŁAU Z POAW ZAOOWAŃ ULRAŹWIĘKÓW W MYCYNI (włącne do celów ddatcnch aa ropowsechnana) b. Materał eletromechancne atwne, pretworn peoeletrcne peomagnetcne, anala prac pretworna peoeletrcnego.

Bardziej szczegółowo

~ stopni swobody

~ stopni swobody Mrostan roład mroanoncn ~ 10 3 stopn swobod Uład cąste (lascn bądź wantow) Uład (roważan wantowomechancne) wonuje nesłchane sbe, chaotcne prejśca pomęd swom stanam wantowm; Jeśl patrm na uład lascne, możem

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

Przekształcenia afiniczne

Przekształcenia afiniczne Laboratorum Graf Komputerowe Pretałcena afncne Wprowaene Tranformaca afncna et pretałcenem waemne enonacnm prote w protą płacn w płacnę pretren w pretreń. Pretałcene to achowue równoległość ln ne achowue

Bardziej szczegółowo

Zadania z AlgebryIIr

Zadania z AlgebryIIr Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:

Bardziej szczegółowo

BUDOWA ATOMU cd. MECHANIKA KWANTOWA

BUDOWA ATOMU cd. MECHANIKA KWANTOWA BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością

Bardziej szczegółowo

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

4. Podzielnica uniwersalna 4.1. Budowa podzielnicy

4. Podzielnica uniwersalna 4.1. Budowa podzielnicy 4. Podelnca unwersalna 4.. Budowa podelncy Podelnca jest pryrądem podałowym, który stanow specjalne wyposażene frearek unwersalnych. Podstawowym astosowanem podelncy jest dokonywane podału kątowego. Jest

Bardziej szczegółowo

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A Rowiaania adań Zadanie A = ( i) = 4 8i 4 = 8i Badam licbȩ espolon a 8i Jej moduł 8i jest równ 8 Jej postać espolona jest równa 8(cosα + isinα) α = /π St ad cosα = i sinα = Mam pierwiastki które oblicam

Bardziej szczegółowo

ELEMENTY MECHANIKI ANALITYCZNEJ

ELEMENTY MECHANIKI ANALITYCZNEJ ELEMENTY MECHANIKI ANALITYCZNEJ Roatuem układ o welu tonach wobod, n. układ łożon unktów matealnch. Na układ mogą bć nałożone wę. P unkt matealn o mae m Układ wobodn kładaąc ę unktów matealnch Wółędne

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa

Bardziej szczegółowo

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Elementy teorii grup zastosowania w chemii

Elementy teorii grup zastosowania w chemii emen eor grup aoowana w cem L. Pea Idee cem kwanowe PWN Warawa.. Gołębewk emen mecank cem kwanowe PWN Warawa 98 wdana późnee.. oon Zaoowane eor grup w cem PWN Warawa 97.. D. H. om Group Teoreca Tecnque

Bardziej szczegółowo

EPR. W -1/2 =-1/2 gµ B B

EPR. W -1/2 =-1/2 gµ B B Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s

Bardziej szczegółowo

= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać:

= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać: Rokład Boltmaa Roważm odosobo układ cąstek (cost Ucost Załóżm że cąstk układu mogą meć tlko ścśle okeśloe eege (eega cąstek est skwatowaa ech ( oaca lcbę cąstek maącch eegę Możem wted apsać: (* U cost

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

ż Ę ń Ś ó ź ó ń Ę ó ó ź ó Ń ó ó ż ż ó ż ń ó ć ń ź ó ó ó Ę Ę ó ź ó ó Ł Ł Ą Ś ó ń ó ń ó Ł Ł ó ó ó ń Ś Ń ń ń ó ó Ś ó ć ó Ą Ą ń ć ć ó ż ó ć Ł ó ń ó ó ż ó ó ć ż ż Ą ż ń ó Śó ó ó ó ć ć ć ń ó ć Ś ć ó ó ż ó ó

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam

Bardziej szczegółowo

OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Magdalena Dynus Katedra Fnansów Bankowośc Wyżsa Skoła Bankowa w Torunu OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Wprowadene Okres wrotu należy do podstawowych metod

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

Coba, Mexico, August 2015

Coba, Mexico, August 2015 Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych WYKŁAD 4 dla zanteresowanych -Macerz gęstośc: stany czyste meszane (przykłady) -równane ruchu dla macerzy gęstośc -granca klasyczna rozkładów kwantowych Macerz gęstośc (przypomnene z poprzednch wykładów)

Bardziej szczegółowo

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Mechaniki Płynów wybrane równania

Mechaniki Płynów wybrane równania Mechan Płnów wbrane równana amescone materał ne est werfowane pod wględem mertorcnm tego wględu ne należ nego orstać do celów nnch a naua możlwośc paet MS Word W nawasach {} podano nformace dotcące astosowanch

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład

Bardziej szczegółowo

SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ

SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ W stronę bolog: dnama oulacj Martn. owa Evolutonar Dnamcs elna Press 6 SELEKCJ: JK JED POPULCJ (STRTEGI) WYPIER IĄ Model determnstczn ( a ) ( b ) : Dodając stronam mam a b czl średne dostosowane (ftness).

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

r r r m dt d r r r r 2 dt r m dt dt

r r r m dt d r r r r 2 dt r m dt dt Twedee o wale: Roważm cąstę P o mase m a tóą dała sła : W ecalm ułade odesea: dv m / dv m ( Moża auważć że: d d dv dv m ( v m v m mv m dv d m m ( v mv gde v est modułem pędośc Podstawaąc to do ówaa ( mam:

Bardziej szczegółowo

Geometria analityczna przestrzeni

Geometria analityczna przestrzeni ALGEBRA LINIOWA 1 Wydział Mechaniczny / AIR, MTR Semestr zimowy 2009/2010 Prowadzący: dr Teresa Jurlewicz Wetory, długość wetora Geometria analityczna przestrzeni Zadanie 1 [5.1] Obliczyć długości podanych

Bardziej szczegółowo

BUDOWA ATOMU cd. MECHANIKA KWANTOWA

BUDOWA ATOMU cd. MECHANIKA KWANTOWA BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością

Bardziej szczegółowo

Tomasz Grbski. Liczby zespolone

Tomasz Grbski. Liczby zespolone Tomas Grbsk Lcby espolone Krank 00 Sps Trec: Wstp. Podstawowe wadomoc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprone.. 5 Posta trygonometrycna lcby espolonej..

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

Jeśli m = const. to 0 P 1 P 2

Jeśli m = const. to 0 P 1 P 2 1 PRAWA NEWTONA Prawo perwse. Każde cało trwa w spocnku lub ruchu jednostajn prostolnow, dopók sł nań dałające tego stanu ne eną. Prawo druge. Zana lośc ruchu (pędu) jest proporcjonalna wględe sł dałającej

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

M A N I P U L A T O R Y Przestrzenne Analiza kinematyczna

M A N I P U L A T O R Y Przestrzenne Analiza kinematyczna N I P U L O Y Prstrnn nalia inmatcna Wsółrędn absolutn (artańsi) aniulator łasi r r r r r r acir rotaci Wrsor r r r r Prstałcni dnorodn q wtor wsółrędnch absolutnch KINEYK NIPULOÓW PZESZENNYCH 5 Wsółrędn

Bardziej szczegółowo

elektrostatyka ver

elektrostatyka ver elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE

Bardziej szczegółowo

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy: Matematya dysretna - wyład 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produtu artezjańsiego X Y, tórego elementami są pary uporządowane (x, y), taie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

Zmienna losowa. M. Przybycień Rachunek prawdopodobieństwa i statystyka

Zmienna losowa. M. Przybycień Rachunek prawdopodobieństwa i statystyka Zmienna losowa ozszerzenie znaczenia funcji zmiennej rzeczwistej na przpadi, ied zmienna niezależna nie jest liczbą rzeczwistą: odległość to funcja par puntów, obwód trójąta, to funcja oreślona na zbiorze

Bardziej szczegółowo

Małe drgania wokół położenia równowagi.

Małe drgania wokół położenia równowagi. ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta.

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta. Atom wodou -3.6eV Seia Lmana n 2, 3,... od 9 nm to 22 nm Seia Paschena n 4, 5,... Seia Backetta n 5, 6,... Ogólnie: n 2, 2, 3; n (n 2 + ), (n 2 + 2),... Atom wodou We współędnch sfecnch: metoda odielania

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo