Systemy resztowe. Kongruencje. Liczby kongruentne (przystaj ce) modulo w (w moduł przystawania) (N,M ): N M(modw) k : N M=kw M N=kw

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy resztowe. Kongruencje. Liczby kongruentne (przystaj ce) modulo w (w moduł przystawania) (N,M ): N M(modw) k : N M=kw M N=kw"

Transkrypt

1 Kongruencje Lczby ongruentne (przytaj ce) modulo w (w moduł przytawana) (N,M ): N M(modw) : N Mw M Nw Kongruencja relacja równowa no c: zwrotna (reflexve): N N(modw), ymetryczna (ymmetrc): N M(modw) M N(modw), przechodna (trantve): N M(modw)&M P(modw) N P(modw). LEMAT: Kongruencja jet zachowawcza (oboj tna, ndfferent) wobec a dego z dzała : dodawana, odejmowana, mno ena ( ) N M(modw) Q P(modw) N Q M P(modw). DOWÓD: Je l NM+aw oraz QP+bw, to N±Q(M±P)+(a±b)w oraz N Q(M P)+(Μ b+p a+a b)w Iloraz całowty Xdvw (w X : X Xmodww Xdvw Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS

2 Klay ongruencj Klay ongruencj (równowa no c wzgl dem relacj przytawana) w:r{z :Z r(modw); w/ r< w/ }, w: w: w:r r rezta z dzelena (redue) lczby całowtej (naturalnej) przez moduł w najmnej odległa od zera (najmnejza bezwzgl dne) W zborze lczb naturalnych jet r mamy: w:r w:r w:r w:r w 7:5{5,,9,6, } 7: {, 9,,5,,9,6, } 7:{,8,5,, } 7:{,, 6,,8,5,, } DEFINICJE Podzeln p lczby Q p Q Qmodp, p Odwrotno (multyplatywna) x modw lczby x modulo w ax modw ax modw! (je l x w maj wpólny podzeln p, to z xmodw ne ma rozw zana) Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS

3 Algorytm Euldea Najw zy wpólny (po)dzeln NWD (greatet common dvor, GCD) NWD(X,Y)a (a X a Y) b : (b>a) (b X b Y) TWIERDZENIE: Dla dowolnych lczb naturalnych n m, je l m<n oraz pnwd(m,n), to:. lczba p jet te najw zym wpólnym dzelnem m oraz nmodm.. tnej tae lczby całowte u oraz v, e pun+vm (najw zy wpólny dzeln mo na przedtaw jao ombnacj lnow lczb m oraz n). DOWÓD:. Je l pnwd(m,n), to m m p oraz n n p, to n m( n m )p, w c m<n pnwd(m,n)nwd(m,nmodm). Je l pnwd(n,m), to m m p, n n p oraz NWD( n, m ). Mamy zatem vmv m p, unu n p v m +u n. Ponewa NWD( n, m ), w c a da lczba u n dla u,,, m nale y do nnej lay ongruencj modulo m. Itneje w c tae u, e u n m +. Równo jet pełnona gdy v. Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS

4 Wła cwo c rezt Lczby wzgl dne perwze (relatvely prme): NWD(X,Y). LEMAT: Je el rezty z dzelena lczby przez moduły wzgl dne perwze obe równe, to one równe rezce z dzelena przez loczyn tych modułów ( w, w ) & X mod w X mod w q X mod( ww ) q. DOWÓD: Je l Xmodw q Xmodw q, to (X q)modw (X q)modw. Zatem X q w X q w, w c X q w w oraz Xmodw w q LEMAT: Kongruencje mo na dzel obutronne przez wpólny czynn: (ax)mod(aw)a(xmodw) DOWÓD: (ax)mod(aw)ax aw ax/aw a(x w X/w )a(xmodw) Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 4

5 Sto Eratotenea Je l z c gu olejnych lczb naturalnych uunemy podzelne przez (parzyte), nat pne podzelne przez (co trzec ), nat pne podzelne przez 5 (co p t po ród wzytch) etc., to w c gu pozotan tylo lczby perwze. Je l a N oraz a>n/a, to w c gu N olejnych lczb naturalnych ne ma ju lczb podzelnych przez a (zotały wcze nej wyre lone) Wzyte lczby perwze (oprócz ) neparzyte Algorytm:. Utwórz c g olejnych lczb neparzytych <N. Znajd w c gu perwz lczb A ró n od (jet na pozycj A (A+)/). W mejce a dej lczby c gu umezczonej na pozycj A +A wpz 4. Je el A <N, powró do, w przecwnym raze zao cz Najmnejza wpólna welorotno NWW(leat common multply, LCM) [X, X,, X m ]W : X W Z : (Z<W) : X Z Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 5

6 Podzelno lczb () ale xβ mod w ( x mod w)( β mod w) mod w, w c, ponewa x β, mamy β mod( β ± ) m β mod( β ± ) ( m), x β mod ( β ) x mod ( β ) x β mod ( β + ) ( ) x mod ( β + ) reguły podzelno c przez 9 w yteme dze tnym 785 mod 9 (7+8+5) mod 9, 785 mod (7 8+5) mod 4 Je l βa ±, to β mod a ± oraz β mod a ( ± ) reguły podzelno c przez a w yteme o baze βa ± 785 mod (7+8+5) mod mod Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 6

7 Podzelno lczb () n x β n / n / x + β )( β ) X ( β, gdze β x + l X warto cam cyfr po onwerj (β β ). Ale jet β mod( β ± ) β β j m mod( ± ) ( m) j, zatem: n xβ mod ( β ) n / X mod ( β ) n xβ mod ( β + ) n / ( ) X mod ( β + ) 45 mod 45 mod ( +) ( 45) mod ( +) 5 6 mod FF mod ( ) 6 (+5) 6 mod ( ) mod mod ( ) 8 (+56) 8 mod ( ) 8 8 Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 7

8 Oreowo rezt a w a mod w ( ) mod ± ± ore ongruencj β mod w & < : β mod w półore ongruencj β mod w & < : β mod w rezty pot g baz β wzgl dem modułów ± β powtarzaj oreowo β mod( β ± ) β β j m mod( ± ) ( m) j j + j β mod( β ± ) ( m ) β mod( β ± ) rezty pot g baz β wzgl dem modułów ( β ± β + β mod( β ± β + ) β ) powtarzaj oreowo: β mod( β ± β + ) m β β mod( β ± β + ) [ β ( m β )]mod( β ± β + ) ± Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 8

9 Małe twerdzene Fermata TWIERDZENIE Nech p b dze lczb perwz. Je l p ne jet podzelnem lczby a, to wtedy a p (modp) za dla dowolnego a zachodz a p a(modp). DOWÓD. Soro p ne dzel a, to j p : a j amodp, w c a da lczba c gu a, a, a,,(p ) a nale y do nnej lay reztowej p:r, r,,...,p. A zatem [( a)( a)( a) ((p ) a)]modp(p )! modp, czyl a p (p )! (p )!(modp) Ponewa NWD(p,a), w c NWD(p,(a p ) (p )!)p, (bowem (p )! ne dzel przez p). St d wyna, e a p (modp) ponewa p ne dzel a, w c a a p a(modp), a zatem a p a(modp) Je l NWD(p,a)p, to otatna zale no jet trywalna (amodp) Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 9

10 Funcja Eulera ϕ(n) co druga naturalna jet podzelna przez, co trzeca z pozotałych dzel przez, co p ta z nepodzelnych przez lub dzel przez 5, etc. TWIERDZENIE e e m Je l podzelnam lczby N p, p,, p m, czyl N p p... p e m, p, to lczb naturalnych mnejzych od N wzgl dne perwzych z lczb N jet DOWÓD: m ϕ ( N) ( p ) p, p Je l p jet podzelnem N, to w zborze {,,,N} jet N N(p ) lczb nepodzelnych przez p. [N N(p ) ] [N N(p ) ] (p j ) N ( (p ) )( (p j ) ) po ród nch ne jet podzelnych przez p j. (co p j -ta po ród N po ród p ) Je l w c p,,...,m lczbam perwzym, to w zborze {,,,N} jet e e em e e em p p... p ( )( )...( )... ( )( )...( m p p pm p p pm p p pm ) lczb nepodzelnych przez adn z nch. e WNIOSEK: Je l NWD(N,M), to ϕ(mn)ϕ(m)ϕ(n). Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS

11 Twerdzene Eulera TWIERDZENIE Je l ϕ(n) jet lczb lczb mnejzych od N wzgl dne perwzych z N, to DOWÓD. ( ) a ϕ N mod N Je l Np twerdzene jet prawdzwe (ϕ(p)p ) (małe tw. Fermata). Załó my, e twerdzene jet prawdzwe dla Np m p p, czyl a m ( ) mod p St d wyna, e p ( p ) a m mod p p p m a m ( ) + p m+ oraz p p m p a m ( ) ( + p ) + Kpp. Twerdzene jet w c prawdzwe dla Np α, czyl m m., zatem a ϕ ( p m ) mod p m Je l w c a a ϕ ( p ϕ ( p a a b h q... t b h ) q... w ) N... mod q a b h a b h ϕ ( p q... t ) a ϕ ( p ) ϕ ( q... t ) a p q t, to a mod p ( a ) mod p b mod ( p ( a a q b ϕ ( q... w b h ) ) ϕ ( p a... t h ) mod q ( ) ), czyl a ϕ N mod N ϕ ( ) WNIOSEK: a N a (mod N) b a b h oraz td.. St d wyna teza twerdzena: Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS

12 Ch e twerdzene o reztach ytem RNS Nech W{w,w,...,w m : j: NWP(w,w j )} za W m w Reprezentacja X x,x,,x m : x Xmodw, w W a dej lczby X<W jet unatowa. DOWÓD. Załó my, e X,Y<W, Y X: m:y Xmodw. Zatem m:w (Y X), a ponewa WNWW(w,w,,w m ), to W (Y X). Soro jedna Y X, to Y X W, co przeczy zało enu, w c YX Sytem reztowy RNS(w,w,,w m ) (Redue Number Sytem) Reprezentacja X x modw,x modw,,x m modw m : w W w baze W x {,,...,w } dla ongruencj w zborze, x { w /,,,,,..., w / } dla ongruencj w zborze WNIOSEK: W yteme RNS(w,w,,w m ),, m: x,x,,x m x ± w,x ± w,,x m ± m w m modw Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS

13 Ch e twerdzene o reztach onwerja odwrotna CHI SKIE TWIERDZENIE O RESZTACH (CRT) (SUN-TZU, III W., QIN JIUSHAO, 47) Nech W{w,w,...,w n : j: NWP(w,w j )}, W ww... wn. Reprezentacja x,x,,x n : x Xmodw, w W a dej lczby X<W jet unatowa oraz gdze X X n w ˆ Ww, za mod w ( mod w ) x modw odwrotno ŵ wzgl dem modułu DOWÓD (neformalny zc dowodu onwerj odwrotnej). Ze wzgl du na zachowawczo ongruencj wobec dodawana mamy w. x,x,,x n x,,,, +x,,,, + +x n,,,,. W yteme RNS(w,w,,w m ) lczba p o reprezentacj,,,,,, jet podzelna przez a de w oprócz w, jet w c p (lczby p tnej, bo ró nych reprezentacj jet doładne W). Ponewa jej rezta wzgl dem w jet równa, w c mod w jet odwrotno c ŵ oraz p ( mod w ). x,x,,x n jet w c reprezentacj lczby (x p +x p + +x n p n ) modw. Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS

14 Wybór ytemu reztowego Dobór modułów argumenty zare reprezentowanych lczb loczyn wzytch modułów łatwo zybo wyonana dzała modulo łatwo onwerj onwerj odwrotnej moduły β, β, β + dobrze pełnaj wymagana (β, β ), (β, β +) oraz (β, β +) (gdy β parzyte) w yteme dwójowym je l (,m), to (, m ) (lczby Merenne a) przy pezene dodawana ~ proporcjonalne do log z lczby modułów m w cej modułów tym trudnejza onwerja odwrotna opcje W{ +,, } W{ +,,, } W{,,,,, <...<<, (,,,)} Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 4

15 Konwerja z ytemu tałobazowego na ytem RNS(β +, β, β ) A X x { β RNS j : n ( a j j mod w )( β mod w )} mod w reguły podzelno c reguły onwerj z ytemu naturalnego na RNS, dla modułów o potac β, β β +. a + l l n A a β ( a β ) β A β, β l l gdze A warto cam cyfr lczby A w yteme o baze β. Ponewa A β, zatem A mod β A mod β oraz + l l A mod( β ) { A β }mod( β ) { A }mod( β ) A mod( β + ) { A β }mod( β + ) { ( ) A }mod( β + ) Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 5

16 Konwerja z ytemu reztowego na ytem tałobazowy (CRT) p,,,, jedyn reztowe (wag), p mod p mod w w j Warto c lczby X<WΠw o reprezentacj x, x,..., xn jet zatem (CRT) X x p + x p +... x p ) modw, ( + W celu wyznaczena -tej jedyn p wytarczy wyona w oblcze. Mamy,...,,..., w w W, mod w w, Oblczane jedyne reztowych p ( mod w ) : ( w ˆ( mod w ))mod w mod w ))mod w [( mod w )( rozw zane równana, czyl ( ( mod w )] mod w (... je l axmodw, to a xmodwx modw) odwrócony algorytm Euldea zapujemy jao um welorotno c n n x ( x mod n) n x ( x mod n) [ x ndv x + nmod x]... ϕ ( ) twerdzene Eulera: a N a (mod N) Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 6

17 Konwerja z ytemu reztowego na ytem tałobazowy Sytem reztowy RNS(a+,a,a ) (ap mu by parzyte) Mamy W(a+) a (a ). Oblczymy lczby ˆ w ww ( a + ) a, w mod w w ˆ ww ( a + )( a ), w ˆ mod w ( ) w w w a( a ), w mod w ( ) ( ) ˆ ŵ j ˆ ˆ oraz ch odwrotno c multyplatywne ( mod w ) w ˆ mod w mod( a ) mod( a ) a /, w ˆ mod w mod a mod a w ˆ mod w mod( a + ) mod( a + ) a / + St d z ( a + ) a ( / ), z ( a + ) ( a ), z a ( a ) ( a / ), a zatem warto c lczby X o reprezentacj r,r,r jet X (r z + r z + r z ) mod (a+) a (a ). + Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 7

18 Konwerja z ytemu reztowego na ytem tałobazowy przyłady () Sytem reztowy ( +,, ). Mamy W( +) ( ). Oblczymy lczby ˆ ww ( + ), w ˆ mod w ˆ ww ( + )( ) w ˆ mod w ( ) ˆ ww ( ) w ˆ mod w ( ) ( ) w w, w, oraz ch odwrotno c multyplatywne mod w mod( ) mod( w ˆ mod w mod mod w ˆ mod w mod( + ) mod( St d z ) + ) + ŵ j, a ( + ) a, z ( + ) ( ), z ( ) ( ), zatem warto c lczby X o reprezentacj r,r,r jet X (r z + r z + r z ) mod ( ). + Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 8

19 Konwerja z ytemu reztowego na ytem tałobazowy przyłady () W yteme reztowym (7,,) mamy X (7,,),,. Wyznaczmy X. Mamy W 74. Oblczymy lczby ˆ ˆ w W / w 6, w mod w 6mod7 w ˆ W / w 4, w ˆ mod w mod w W / w, w mod w ˆ ŵ j ˆ oraz ch odwrotno c multyplatywne w ˆ mod w mod w mod w, w ˆ mod w mod w mod w w mod w ± mod w mod w ˆ ± St d z 6 6mod4, z 4 8mod4, z mod4, zatem X (( ) 6 +( ) 4 + ) mod 4 5 mod 4 7. Rzeczyw ce X (7,,) 7 mod 7, 7 mod, 7 mod,,. Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS 9

20 Oblczane odwrotno c multyplatywnych () Odwrócony algorytm Euldea x ( x... mod n) n p ( A x x ( x mod n B n) + ( C x Januz Bernat, 5-6-.doc, 7 pa dzerna 6 mod n D n) mod n) [ x ndv x + nmod x]... p + Jedyn w yteme RNS(7,,) mamy W 74. Oblczymy lczby ˆ ˆ w W / w 6, w mod w 6mod7 w ˆ W / w 4, w ˆ mod w mod w W / w, w mod w oraz ch odwrotno c multyplatywne ( ˆ ˆ mod w ) t w 6 7t 6 ( 6 + ) t 6 ( t) t, w ˆ t oraz t, czyl t w 4 t ( 5 ) t (5 t) ˆ, w ˆ oraz t t w t ( + ) t ( t) + ˆ w ˆ oraz t zatem w zatem 5 w zatem ŵ j, RNS

21 Oblczane odwrotno c multyplatywnych () Jedyn w yteme RNS(7,,) twerdzene Eulera ( ) w mod w ( Mamy W 74. Oblczymy lczby ˆ ˆ mod w ) ( ) w W / w 6, w mod w 6mod7 w ˆ W / w 4, w ˆ mod w mod w W / w, w mod w ˆ ŵ j ˆ oraz ch odwrotno c multyplatywne ( 7 w mod w ) ( w ˆ ) mod7 (6 mod7)(6 mod7) 6 mod7, zatem w ˆ 6 mod7 7 mod w ( w ˆ ) mod (4 mod)(4 mod) 4 mod, zatem w ˆ 4 mod ( w ˆ ) mod ( mod )( mod ) mod, zatem w ˆ mod St d z 6 6mod4, z 4 8mod4, z mod4, Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS

22 Wyznaczane reprezentacj reztowych. Z twerdzena Fermata lub Eulera rezty pot g reducja pot g modϕ(p) Ponadto a X a x modn(a ϕ (p) ) [ x dv ϕ (p) ] a x mod ϕ (p) modna x mod ϕ (p) modn x x x x mod p a mod p [( a mod p) ( a mod p) ( a mod p)...]mod p. Ponewa dla lczby naturalnej a> a moda± (±) a moda±[ (±)] w c dla a dej lczby naturalnej danej w reprezentacj pozycyjnej o podtawe β rezty modβ ± mo na oblczy jao umy lub ró nce lczb -cyfrowych, utworzonych przez cyfry na pozycjach j,j+,,j+ (j,,, ) n xβ mod( β ± ) n / ( x j j+ n / ( x j β )( ± ) j j+ β ) β j mod( β mod( β ± ) ± ) Januz Bernat, 5-6-.doc, 7 pa dzerna 6 RNS

Systemy resztowe. Kongruencje. Liczby kongruentne (przystaj ce) modulo w (w moduł przystawania) (N,M ): N M(modw) k : N M=kw M N=kw

Systemy resztowe. Kongruencje. Liczby kongruentne (przystaj ce) modulo w (w moduł przystawania) (N,M ): N M(modw) k : N M=kw M N=kw Kogruecje Lczby ogruete (przytaj ce) modulo w (w moduł przytawaa) (N,M ): N M(modw) : NMw MNw Kogruecja relacja rówowa o c: zwrota (reflexve): N N(modw), ymetrycza (ymmetrc): N M(modw) M N(modw), przechoda

Bardziej szczegółowo

w zbiorze liczb naturalnych N (N,M N): N Mmodw k N: N M=kw M N=kw w zbiorze liczb całkowitych Z (N,M Z): N Mmodw k Z: N M=kw

w zbiorze liczb naturalnych N (N,M N): N Mmodw k N: N M=kw M N=kw w zbiorze liczb całkowitych Z (N,M Z): N Mmodw k Z: N M=kw Kogruece Lczby ogruete (przyta ą ce) modulo w N (w moduł przytawaa) w zborze lczb aturalych N (NM N): N Mmodw N: N Mw M Nw w zborze lczb całowtych Z (NM Z): N Mmodw Z: N Mw Kogrueca relaca rówowaŝ oś c:

Bardziej szczegółowo

Relacje, grupy, ciała

Relacje, grupy, ciała Relace Relace, grupy, cała Relaca w zborze X podzbór produtu artezańego ρ X X ρ y Relaca rówowaŝośc (equvalece) zwrota ρ ymetrycza ρ y y ρ przechoda ρ y & y ρ z ρ z Zaada abtrac Relaca rówowaŝośc dzel

Bardziej szczegółowo

Dzielenie. Dzielenie pozycyjne

Dzielenie. Dzielenie pozycyjne zelene ozycyjne zelene dzelene całkowte: dzelna (dvdend), dzelnk 0 (dvor) Iloraz (uotent) rezta R (remander) z dzelena to lczby take, e R, R rozw zana (,R ) oraz (,R ) take, e R, rzy tym R R, R, R oraz

Bardziej szczegółowo

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6

IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 WYBRANE ZAGADNIENIA Z TEORII LICZB 1. Wybrane zagadnena z teor lczb Do onstruowana systemów ryptografcznych u Ŝ ywa sę czę sto wyrafnowanego aparatu matematycznego,

Bardziej szczegółowo

MADE IN CHINA czyli SYSTEM RESZTOWY

MADE IN CHINA czyli SYSTEM RESZTOWY MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia

Bardziej szczegółowo

Dla dzielnej X (dividend) i dzielnika D 0 (divisor) liczby Q oraz R takie, Ŝe

Dla dzielnej X (dividend) i dzielnika D 0 (divisor) liczby Q oraz R takie, Ŝe zelene ekwencyjne zelene la dzelnej X (dvdend) dzelnka (dvor) lczby Q oraz R take, Ŝe X=Q R, R < nazywa ę lorazem Q (uotent) reztą R (remander) z dzelena X rzez. Równane dzelena moŝe meć rozwązana ełnające

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Wybrane zagadnienia teorii liczb

Wybrane zagadnienia teorii liczb Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera

Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...

Bardziej szczegółowo

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska, Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Jednoznaczność dzielenia. Jednoznaczność dzielenia

Jednoznaczność dzielenia. Jednoznaczność dzielenia Jednoznaczność dzielenia MNiechmincałkowite,n 0 Wtedy istnieje dokładnie jedna para liczb całkowitych k i l taka że m=n k+l oraz 0 l< n Terminologia: m dzielna n dzielnik Sytuacjadlam 0in>0: k k iloraz

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Kongruencje oraz przykłady ich zastosowań

Kongruencje oraz przykłady ich zastosowań Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K) STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Mchał Kolupa Poltechnka Radomska w Radomu Joanna Plebanak Szkoła Główna Handlowa w Warszawe KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Programowanie wielokryterialne

Programowanie wielokryterialne Prgramwane welkryteralne. Pdstawwe defncje znaczena. Matematyczny mdel sytuacj decyzyjnej Załóżmy, że decydent dknując wybru decyzj dpuszczalnej x = [ x,..., xn ] D keruje sę szeregem kryterów f,..., f.

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Rozliczanie kosztów Proces rozliczania kosztów

Rozliczanie kosztów Proces rozliczania kosztów Rozlczane kosztów Proces rozlczana kosztów Koszty dzałalnośc jednostek gospodarczych są złoŝoną kategorą ekonomczną, ujmowaną weloprzekrojowo. W systeme rachunku kosztów odbywa sę transformacja jednych

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Pierwiastki pierwotne, logarytmy dyskretne

Pierwiastki pierwotne, logarytmy dyskretne Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu. ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: aboltuc@.uwb.edu.pl Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00,

Bardziej szczegółowo

Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstrakcyjnej

Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstrakcyjnej Niezbyt formalny i niezbyt intuicyjny wst p do algebry abstracyjnej 1. Nawiasami [[]] oznacza b d omentarze. 2. Denicja 0.1 Grup z [[jaim± abstracyjnym]] dziaªaniem nazywamy zbiór G speªniaj cy waruni

Bardziej szczegółowo

Kongruencje i ich zastosowania

Kongruencje i ich zastosowania Kongruencje i ich zastosowania Andrzej Sładek sladek@ux2.math.us.edu.pl Instytut Matematyki, Uniwersytet Śląski w Katowicach Poznamy nowe fakty matematyczne, które pozwolą nam w łatwy sposób rozwiązać

Bardziej szczegółowo

Daniela Spurtacz, klasa 8W, rok szkolny 2018/2019

Daniela Spurtacz, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 08/09. Tresci rozwiązanych

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Projektowanie bazy danych

Projektowanie bazy danych Projektowanie bazy danych Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeo wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

architektura komputerów w. 3 Arytmetyka komputerów

architektura komputerów w. 3 Arytmetyka komputerów archtektura komputerów w. 3 Arytmetyka komputerów Systemy pozycyjne - dodawane w systeme dwójkowym 100101011001110010101 100111101000001000 0110110011101 1 archtektura komputerów w 3 1 Arytmetyka bnarna.

Bardziej szczegółowo

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)

Bardziej szczegółowo

Analiza Matematyczna I.1

Analiza Matematyczna I.1 Aalza Matematycza I. Sera, Potr Nayar Zadae. Nech a k >, k =,..., b d lczbam rzeczywstym o tym samym zaku. Udowodj,»e prawdzwa jest erówo± + a + a... + a + a + a +... + a. Czy zaªo»ee,»e lczby a k maj

Bardziej szczegółowo

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12.

X i T (X) = i=1. i + 1, X i+1 i + 1. Cov H0. ( X i. k 31 ) 1 Φ(1, 1818) 0, 12. Zadae p (X p (X ( ( π 6 6 e 6 X m ( π 6 6 e 6 ( X C e m 6 X, gdze staªa C e zale»y od statystyk X (X,, X 6, a m jest w ksze od zera Zatem p (X/p (X jest emalej c fukcj statystyk T (X 6 X ªatwo pokaza,»e

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

Sumy kwadratów kolejnych liczb naturalnych

Sumy kwadratów kolejnych liczb naturalnych Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =

Bardziej szczegółowo

Sumy kolejnych bikwadratów

Sumy kolejnych bikwadratów Sumy kolejnych bikwadratów Znane są następujące dwie równości Andrzej Nowicki 18 maja 2015, wersja bi-12 3 2 + 4 2 = 5 2 3 3 + 4 3 + 5 3 = 6 3. Czy istnieją podobnego typu równości dla czwartych potęg?

Bardziej szczegółowo

Info rmatyzacja Przedsiębiorstw

Info rmatyzacja Przedsiębiorstw Info rmatyzacja Przedsiębiorstw Laboratorium 3 Moduł finansowo - księ gowy Plan zaję ć 1 Sporzą dzanie Bilansu... 2 1.1 Zatwierdzanie bilansu otwarcia... 2 1.2 Sporzą dzanie bilansu... 2 2 Sporzą dzanie

Bardziej szczegółowo

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup. Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21

Bardziej szczegółowo

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca. Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której

Bardziej szczegółowo

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka 7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T

δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.

KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności. KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:

Bardziej szczegółowo

Ćwiczenie 18. Anna Jakubowska, Edward Dutkiewicz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA

Ćwiczenie 18. Anna Jakubowska, Edward Dutkiewicz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA Ćwczene 18 Anna Jakubowska, Edward Dutkewcz ADSORPCJA NA GRANICY FAZ CIECZ GAZ. IZOTERMA ADSORPCJI GIBBSA Zagadnena: Zjawsko adsorpcj, pojęce zotermy adsorpcj. Równane zotermy adsorpcj Gbbsa. Defncja nadmaru

Bardziej szczegółowo

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA

Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej

Bardziej szczegółowo

Ćwiczenia z teoria liczb, ciąg dalszy (pt 15 maja) Matematyka Dyskretna

Ćwiczenia z teoria liczb, ciąg dalszy (pt 15 maja) Matematyka Dyskretna Ćwiczenia z teoria licz, ciąg dalszy (pt 15 maja) Matematyka Dyskretna Przypomnienie: Mówimy a (a jest względnie pierwsze z ) jeśli NW D(a, ) = 1. (Zero jest podzielne przez każdą liczę naturalną, więc

Bardziej szczegółowo

Algorytmy w teorii liczb

Algorytmy w teorii liczb Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

W. Guzicki: Liczby pierwsze 1 LICZBY PIERWSZE. Warszawa, 11 kwietnia 2013 r.

W. Guzicki: Liczby pierwsze 1 LICZBY PIERWSZE. Warszawa, 11 kwietnia 2013 r. W. Guzicki: Liczby pierwsze 1 LICZBY PIERWSZE W. Guzicki: Liczby pierwsze 2 Zagadnienie odróżniania liczb pierwszych od złożonych i rozkładanie tych ostatnich na ich czynniki pierwsze uchodzi za najważniejszeiodużympraktycznymznaczeniuwarytmetyce...samapowaga

Bardziej szczegółowo

Odwrotne twierdzenie Fermata. Odwrotne twierdzenie Fermata

Odwrotne twierdzenie Fermata. Odwrotne twierdzenie Fermata Przypomnijmy... a p, a p 1 1 (mod p). Zachodzi naturalne pytanie...... czy z faktu a m 1 1 (mod m) wynika, że m = p? Niekoniecznie. Wprawdzie, jeszcze przed 25 wiekami chińscy matematycy uważali, że podzielność

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach.

Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach. Kongruencje Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej Spis

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 12.10.2002 r.

Matematyka ubezpieczeń majątkowych 12.10.2002 r. Matematya ubezpieczeń majątowych.0.00 r. Zadanie. W pewnym portfelu ryzy ubezpieczycielowi udaje się reompensować sobie jedną trzecią wartości pierwotnie wypłaconych odszodowań w formie regresów. Oczywiście

Bardziej szczegółowo

6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""

6. *21! 4 % rezerwy matematycznej. oraz (ii) $ :;! +!!4 oraz  % & !4!  )$!!4 1 1!4 )$$$  ' Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90

Bardziej szczegółowo

Praca za granicą. Emerytura polska czy zagraniczna?

Praca za granicą. Emerytura polska czy zagraniczna? Dolnośląski Wojewódzki Urząd pracy radzi: Praca za granicą. Emerytura polska czy zagraniczna? Często pojawia się pytanie, jaki wpływ na emeryturę ma praca za granicą. Wiele osób, które pracowały w różnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa Zamawiający: Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej 00-662 Warszawa, ul. Koszykowa 75 Przedmiot zamówienia: Produkcja Interaktywnej gry matematycznej Nr postępowania: WMiNI-39/44/AM/13

Bardziej szczegółowo

X R>0 dzielenie znakowane (signed division) znak reszty = znak dzielnej R>0 dzielenie modularne (modulus division) znak reszty dodatni X D D R

X R>0 dzielenie znakowane (signed division) znak reszty = znak dzielnej R>0 dzielenie modularne (modulus division) znak reszty dodatni X D D R } m ekwecyje dzelee całkowte Iloraz uotet rezta remader z dzelea dzelej dvded rzez dzelk dvor to lczby oraz take e rozw zaa oraz take e rzy tym oraz > dzelee zakowae ged dvo zak rezty zak dzelej > dzelee

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH

OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH OFERTA WYKŁADÓW, WARSZTATÓW I LABORATORIÓW DLA UCZNIÓW KLAS IV- VI SZKÓŁ PODSTAWOWYCH, GIMNAZJALNYCH I ŚREDNICH Strona 1 z 9 SPIS ZAJĘĆ WRAZ Z NAZWISKAMI WYKŁADOWCÓW dr hab. Mieczysław Kula Poznaj swój

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Metrologia cieplna i przepływowa

Metrologia cieplna i przepływowa Metrologia cieplna i przepływowa Systemy, Maszyny i Urządzenia Energetyczne, I rok mgr Pomiar małych ciśnień Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO NA PODSTAWIE REFERATU JUSTYNY KOSAKOWSKIEJ. Moduły prnjektywne posety skończonego typu prnjektywnego Nech I będze skończonym posetem. Przez max

Bardziej szczegółowo

U M OWA DOTACJ I <nr umowy>

U M OWA DOTACJ I <nr umowy> U M OWA DOTACJ I na dofinansowanie zadania pn.: zwanego dalej * zadaniem * zawarta w Olsztynie w dniu pomiędzy Wojewódzkim Funduszem Ochrony Środowiska i Gospodarki Wodnej

Bardziej szczegółowo

Liczby pierwsze na straży tajemnic

Liczby pierwsze na straży tajemnic Liczby pierwsze na straży tajemnic Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby rzadzą światem Ile włosów na głowie? Dowód z wiedzą zerową Reszty kwadratowe Dzielenie sekretu Ile włosów

Bardziej szczegółowo

Wiedza niepewna i wnioskowanie (c.d.)

Wiedza niepewna i wnioskowanie (c.d.) Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb

Bardziej szczegółowo

Kiedy opłaty za program komputerowy nie będą ujęte w definicji należności licencyjnych?

Kiedy opłaty za program komputerowy nie będą ujęte w definicji należności licencyjnych? Kwestia ujęcia w definicji należności licencyjnych opłat za programy komputerowe nie jest tak oczywista, jak w przypadku przychodów za użytkowanie lub prawo do użytkowania urządzenia przemysłowego, handlowego

Bardziej szczegółowo

Kryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym

Kryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym Krótkie vademecum (słabego) szyfranta Podstawowe pojęcia: tekst jawny (otwarty) = tekst zaszyfrowany (kryptogram) alfabet obu tekstów (zwykle różny) jednostki tekstu: na przykład pojedyncza litera, digram,

Bardziej szczegółowo

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Ćwczene nr 1 Statystyczne metody wspomagana decyzj Teora decyzj statystycznych WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Problem decyzyjny decyzja pocągająca za sobą korzyść lub stratę. Proces decyzyjny

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 6a

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 6a Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 6a Spis treści 10 Trochę matematyki (c.d.) 3 10.19 Reszty kwadratowe w Z p.............. 3 10.20

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

Algorytm Euklidesa. Największy wspólny dzielnik dla danych dwóch liczb całkowitych to największa liczba naturalna dzieląca każdą z nich bez reszty.

Algorytm Euklidesa. Największy wspólny dzielnik dla danych dwóch liczb całkowitych to największa liczba naturalna dzieląca każdą z nich bez reszty. Algorytm Euklidesa Algorytm ten, jak wskazuje jego nazwa, został zaprezentowany przez greckiego matematyka - Euklidesa, żyjącego w w latach około 300r. p.n.e., w jego podstawowym dziele pt. Elementy. Algorytm

Bardziej szczegółowo

ż Ą Ź Ą Ż ź ż ć Ą ż ź ć ź Ś ż ź ć ż ĄĄ ż ż ź ż ć ć Ę ć ż ć Ś ć ć ź ż ż ć ż ć Ę ć Ę Ę ż ż Ę ć Ś ż ć ż ć ż Ą ź ż źć ż ż ż ż ź ź ż ć ć ż ć ż ć ć ż Ę ć ź ć ć ż ć ć ż ć ć ć ć ż Źć ź ż ć ć Ę Ą Ę ć ź Ę Ę ż Ę

Bardziej szczegółowo

ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ę Ź ź ń ć ź ń ć ź ń ź ć ń ć ć ć ć Ł Ł ń Ę ć ć ć ń ć ć ć ć Ź ć Ł ć ć Ę ć Ą Ą ć Ę Ą ć ń ź ź ń ć Ę ć ć ć Ś ć ć Ż ć ć Ą ć ć ć ć Ś ć ź Ę ć ć ń ć ć ć ć ć ć Ś ć ć ć ć ń ć ń ź

Bardziej szczegółowo

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T

Bardziej szczegółowo

Tajemnice liczb pierwszych i tych drugich

Tajemnice liczb pierwszych i tych drugich Tajemnice liczb pierwszych i tych drugich Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby całkowite stworzył dobry Bóg, wszystko inne wymyślili ludzie Leopold Kronecker (1823-1891) Liczby

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo