Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA"

Transkrypt

1 Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń,

2 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby móc je odczytać mimo zakłóceń. szyfrowanie sposoby przesyłania danych tak, aby osoby postronne nie mogły ich odczytać, nawet w przypadku podsłuchania transmisji.

3 Kodowanie (teoria kodowania) nadawca dane odbiorca Cele: zakłócenia możliwość rozpoznania, że wystąpiły zakłócenia, możliwość odczytania błędnie przesłanych danych, bez konieczności ponownej transmisji.

4 Przykłady kodów bit kontroli parzystości PESEL ISBN IBAN kody Reeda Solomona stosowane w dyskach CD

5 Szyfrowanie (kryptografia) nadawca wiadomość odbiorca Cele: wróg podsłuchanie/zmiana wiadomości uniemożliwienie odczytania wiadomości mimo jej podsłuchania uniemożliwienie zmiany treści wiadomości weryfikacja tożsamości nadawcy

6 Konwencje dany jest zbiór P znaków używanych do zapisu tekstu jawnego (np. litery, pary liter,... ) dany jest zbiór C znaków używanych do zapisu tekstu zaszyfrowanego zwykle zakładamy, że dla pewnej liczby N w zbiorze P = {0, 1,..., N 1} = C Z N := {0, 1,..., N 1} mamy określone działania + i (modulo N)

7 Szyfr Cezara Ustalmy liczbę e Z N klucz szyfrujący. Rozważmy funkcję jest to funkcja szyfrująca. Funkcją deszyfrującą jest funkcja Z N k k + e Z N Z N k k e Z N liczba e jest też kluczem deszyfrującym.

8 Szyfr Cezara (c.d.) Szyfr Cezara jest szyfrem symetrycznym znajomość klucza szyfrującego pozwala odszyfrować wiadomość. Pojawia się problem dystrybucji kluczy. Rozwiązanie: szyfry asymetryczne znajmość funkcji szyfrującej nie wystarcza do efektywnego wyliczenia funkcji deszyfrującej.

9 Funkcja i twierdzenie Eulera ϕ(n) := #{k Z n : NWD(k, n) = 1}. Wiadomo, że jeśli p i q są różnymi liczbami pierwszymi, to ϕ(p) = p 1 i ϕ(q) = q 1 oraz ϕ(p q) = (p 1) (q 1). Twierdzenie (Euler) Jeśli n jest liczbą naturalną oraz NWD(a, n) = 1, to a ϕ(n) 1 (mod n).

10 Funkcja i twierdzenie Eulera (c.d) Niech p i q będą różnymi liczbami pierwszymi i n := p q. Znajomość liczb p i q jest równoważna znajomości wartości liczb n i ϕ(n). Istotnie, liczby p i q są rozwiązaniami równania x 2 (n ϕ(n) + 1) x + n = 0. Zatem przy założeniu, że problem faktoryzacji jest trudny znajomość liczby n nie wystarcza, aby łatwo znaleźć wartości ϕ(n).

11 Szyfr RSA klucz szyfrujący RSA = Rivest, Shamir, Adleman Ustalmy (duże i przypadkowe) liczby pierwsze p i q i niech N := p q. Wybierzmy (losowo) liczbę naturalną e taką, że NWD(e, ϕ(n)) = 1 (możemy założyć, że e < ϕ(n)). Parę (N, e) nazywamy kluczem szyfrującym funkcją szyfrującą jest funkcja Z N a a e mod N Z N. Uwaga Istnieją efektywne algorytmy potęgowania w zbiorze Z N.

12 Szyfr RSA klucz deszyfrujący Korzystając z rozszerzonego algorytmu Euklidesa znajdujemy liczbę naturalną d taką, że d e 1 (mod ϕ(n)). Parę (N, d) nazywamy kluczem deszyfrującym funkcją deszyfrującą jest funkcja Z N a a d mod N Z N. Uwaga Do znalezienia liczby d niezbędna jest znajomość liczby ϕ(n).

13 Szyfr RSA poprawność Lemat Jeśli d i e są liczbami całkowitymi takimi, że d e 1 (mod ϕ(n)), to dla każdej liczby całkowitej a. a d e a (mod N)

14 Szyfr RSA poprawność (dowód) Wystarczy pokazać, że a d e a (mod p) i a d e a (mod q). Udowodnimy pierwszą z kongruencji. Dowód drugiej jest analogiczny. Jeśli p a, to teza jest oczywista. Jeśli p a, to NWD(a, p) = 1, zatem na mocy Twierdzenia Eulera. a p 1 1 (mod N)

15 Szyfr RSA poprawność (dowód, c.d.) Ponieważ d e 1 (mod ϕ(n)) i ϕ(n) = (p 1) (q 1), więc liczba jest naturalna. Stąd k := d e 1 p 1 a d e = a a de 1 = a (a p 1 ) k a 1 k = a (mod N), co kończy dowód.

16 Szyfr RSA zalety Szyfr RSA jest szyfrem asymetrycznym znajomość klucza szyfrującego nie jest wystarczająca do łatwego znalezienia klucza deszyfrującego. Klucz szyfrujący może być jawny mówimy, że jest to klucz publiczny. W związku z tym nie ma problemu dystrybucji kluczy. Uwaga Klucz deszyfrujący musi być tajny mówimy, że jest to klucz prywatny.

17 Szyfr RSA weryfikacja autentyczności wiadomości Chcemy wysłać wiadomość m Z N tak, aby odbiorca był pewny, że treść wiadomości nie została zmieniona. Wysyłamy parę (m, m d mod N) liczbę m d nazywamy sygnaturą (podpisem) wiadomości m. Odbiorca otrzymuje parę (m, m ). Jeśli m e m (mod N), to odbiorca może przyjąć, że wiadomość jest autentyczna.

18 Inne pomysły ElGamal Jeśli p jest liczbą pierwszą, to grupa Z p = {1, 2,..., p 1} jest cykliczna, tzn. istnieje liczba α Z p taka, że Z p = {1 = α 0, α = α 1, α 2 mod p,..., α p 2 mod p}. Ustalamy (losowo) taką liczbę α, wybieramy (losowo) liczbę i definiujemy liczbę k {0, 1,..., p 2} β := α k mod p. Trójka (p, α, β) jest jawnym kluczem szyfrującym. Tajnym kluczem deszyfrującym jest czwórka (p, α, β, k).

19 ElGamal szyfrowanie Nadawca chce nam wysłać wiadomość m Z p. W tym celu wybiera (losowo) liczbę liczy l {0, 1,..., p 2}, c 1 := α l mod p oraz c 2 := m β l mod p, i wysyła parę (c 1, c 2 ).

20 ElGamal deszyfrowanie Otrzymujemy parę (c 1, c 2 ) i wyliczamy liczbę Istotnie, c 2 c (p 1) k 1 mod p. c 2 c (p 1) k 1 m β l (α l ) (p 1) k = m α k l+l (p 1) l k = m (α p 1 ) l m (mod p). Bezpieczeństwo systemu ElGamala opiera się na problemie logarytmu dyskretnego.

Zarys algorytmów kryptograficznych

Zarys algorytmów kryptograficznych Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................

Bardziej szczegółowo

Algorytmy asymetryczne

Algorytmy asymetryczne Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne

Bardziej szczegółowo

Copyright by K. Trybicka-Francik 1

Copyright by K. Trybicka-Francik 1 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA) Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)

Bardziej szczegółowo

Spis treści. Przedmowa... 9

Spis treści. Przedmowa... 9 Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.

Bardziej szczegółowo

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA

Zadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972

Bardziej szczegółowo

WSIZ Copernicus we Wrocławiu

WSIZ Copernicus we Wrocławiu Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Kryptologia przykład metody RSA

Kryptologia przykład metody RSA Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza

Bardziej szczegółowo

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym

Kryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym Mieliśmy więc...... system kryptograficzny P = f C = f 1 P, gdzie funkcja f składała się z dwóch elementów: Algorytm (wzór) np. C = f(p) P + b mod N Parametry K E (enciphering key) tutaj: b oraz N. W dotychczasowej

Bardziej szczegółowo

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana

Bardziej szczegółowo

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.

Bezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą

Bardziej szczegółowo

Pierwiastki pierwotne, logarytmy dyskretne

Pierwiastki pierwotne, logarytmy dyskretne Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem

Bardziej szczegółowo

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić?

Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe. kradzieŝy! Jak się przed nią bronić? Bezpieczeństwo Danych Technologia Informacyjna Uwaga na oszustów! Wasze dane takie jak: numery kart kredytowych, identyfikatory sieciowe czy hasła mogą być wykorzystane do kradzieŝy! Jak się przed nią

Bardziej szczegółowo

Bezpieczeństwo danych, zabezpieczanie safety, security

Bezpieczeństwo danych, zabezpieczanie safety, security Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός

Bardziej szczegółowo

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie

BSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Seminarium Ochrony Danych

Seminarium Ochrony Danych Opole, dn. 15 listopada 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Ochrony Danych Temat: Nowoczesne metody kryptograficzne Autor: Prowadzący: Nitner

Bardziej szczegółowo

Grzegorz Bobiński. Matematyka Dyskretna

Grzegorz Bobiński. Matematyka Dyskretna Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2016 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................

Bardziej szczegółowo

Grzegorz Bobiński. Matematyka Dyskretna

Grzegorz Bobiński. Matematyka Dyskretna Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2013 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 9 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie

Bardziej szczegółowo

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym) Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR

INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.

Bardziej szczegółowo

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm

Bardziej szczegółowo

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:

Bardziej szczegółowo

Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski

Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Marcin Pilarski Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje

Bardziej szczegółowo

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej

Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej Obliczenia w systemach resztowych [Song Y. Yan] Przykład: obliczanie z = x + y = 123684 + 413456 na komputerze przyjmującym słowa o długości 100 Obliczamy kongruencje: x 33 (mod 99), y 32 (mod 99), x 8

Bardziej szczegółowo

Kryptografia szyfrowanie i zabezpieczanie danych

Kryptografia szyfrowanie i zabezpieczanie danych Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Kryptografia szyfrowanie i zabezpieczanie danych www.agh.edu.pl

Bardziej szczegółowo

Wprowadzenie ciag dalszy

Wprowadzenie ciag dalszy Wprowadzenie ciag dalszy Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Szyfry asymetryczne Wymyślone w latach 70-tych Używaja dwóch różnych (ale pasujacych do siebie ) kluczy do szyfrowania

Bardziej szczegółowo

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania

urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja

Bardziej szczegółowo

Czym jest kryptografia?

Czym jest kryptografia? Szyfrowanie danych Czym jest kryptografia? Kryptografia to nauka zajmująca się układaniem szyfrów. Nazwa pochodzi z greckiego słowa: kryptos - "ukryty", gráphein "pisać. Wyróżniane są dwa główne nurty

Bardziej szczegółowo

II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI

II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI STEGANOGRAFIA Steganografia jest nauką o komunikacji w taki sposób by obecność komunikatu nie mogła zostać wykryta. W odróżnieniu od kryptografii

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup. Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,

Bardziej szczegółowo

Przewodnik użytkownika

Przewodnik użytkownika STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Laboratorium nr 5 Podpis elektroniczny i certyfikaty

Laboratorium nr 5 Podpis elektroniczny i certyfikaty Laboratorium nr 5 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

Kongruencje oraz przykłady ich zastosowań

Kongruencje oraz przykłady ich zastosowań Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona

Bardziej szczegółowo

KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970)

KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970) 1 [Wybrane materiały do ćwiczeń 3-7 z podstaw klasycznej kryptografii z elementami kryptografii kwantowej dla studentów IV roku (semestr letni 2008)] KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970) (ang.

Bardziej szczegółowo

Szyfry afiniczne. hczue zfuds dlcsr

Szyfry afiniczne. hczue zfuds dlcsr Szyfry afiniczne hczue zfuds dlcsr Litery i ich pozycje Rozważamy alfabet, który ma 26 liter i każdej literze przypisujemy jej pozycję. A B C D E F G H I 0 1 2 3 4 5 6 7 8 J K L M N O P Q R 9 10 11 12

Bardziej szczegółowo

Potencjalne ataki Bezpieczeństwo

Potencjalne ataki Bezpieczeństwo Potencjalne ataki Bezpieczeństwo Przerwanie przesyłania danych informacja nie dociera do odbiorcy Przechwycenie danych informacja dochodzi do odbiorcy, ale odczytuje ją również strona trzecia szyfrowanie

Bardziej szczegółowo

Plan całości wykładu. Ochrona informacji 1

Plan całości wykładu. Ochrona informacji 1 Plan całości wykładu Wprowadzenie Warstwa aplikacji Warstwa transportu Warstwa sieci Warstwa łącza i sieci lokalne Podstawy ochrony informacji (2 wykłady) (2 wykłady) (2 wykłady) (3 wykłady) (3 wykłady)

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Teoria liczb 1.1 Dzielenie całkowitoliczbowe Zacznijmy od przypomnienia szkolnego algorytmu dzielenia liczb naturalnych. Podzielmy

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA

SCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2012 z. VII Mikhail Selianinau, Piotr Kamiński Akademia im. Jana Długosza w Częstochowie SCHEMAT ZABEZPIECZENIA

Bardziej szczegółowo

Kongruencje pierwsze kroki

Kongruencje pierwsze kroki Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod

Bardziej szczegółowo

Kryptografia na procesorach wielordzeniowych

Kryptografia na procesorach wielordzeniowych Kryptografia na procesorach wielordzeniowych Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Kryptografia na procesorach wielordzeniowych p. 1 Plan prezentacji

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 7 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................

Bardziej szczegółowo

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas)

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Hosting WWW Bezpieczeństwo hostingu WWW Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Szyfrowana wersja protokołu HTTP Kiedyś używany do specjalnych zastosowań (np. banki internetowe), obecnie zaczyna

Bardziej szczegółowo

Podpis elektroniczny

Podpis elektroniczny Podpis elektroniczny Powszechne stosowanie dokumentu elektronicznego i systemów elektronicznej wymiany danych oprócz wielu korzyści, niesie równieŝ zagroŝenia. Niebezpieczeństwa korzystania z udogodnień

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 8 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne

Bardziej szczegółowo

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE

KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE W ALGORYTMACH KOMUNIKACJI Krzysztof Bartyzel Wydział Matematyki Fizyki i Informatyki, Uniwersytet Marii Curii-Skłodowskiej w Lublinie Streszczenie: Komunikacja

Bardziej szczegółowo

Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek

Praktyczne aspekty wykorzystania nowoczesnej kryptografii. Wojciech A. Koszek <dunstan@freebsd.czest.pl> Praktyczne aspekty wykorzystania nowoczesnej kryptografii Wojciech A. Koszek Wprowadzenie Kryptologia Nauka dotycząca przekazywania danych w poufny sposób. W jej skład wchodzi

Bardziej szczegółowo

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna

Wprowadzenie do PKI. 1. Wstęp. 2. Kryptografia symetryczna. 3. Kryptografia asymetryczna 1. Wstęp Wprowadzenie do PKI Infrastruktura klucza publicznego (ang. PKI - Public Key Infrastructure) to termin dzisiaj powszechnie spotykany. Pod tym pojęciem kryje się standard X.509 opracowany przez

Bardziej szczegółowo

Marcin Szeliga Dane

Marcin Szeliga Dane Marcin Szeliga marcin@wss.pl Dane Agenda Kryptologia Szyfrowanie symetryczne Tryby szyfrów blokowych Szyfrowanie asymetryczne Systemy hybrydowe Podpis cyfrowy Kontrola dostępu do danych Kryptologia Model

Bardziej szczegółowo

Parametry systemów klucza publicznego

Parametry systemów klucza publicznego Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego

Bardziej szczegółowo

KRYPTOGRAFIA I OCHRONA DANYCH. Krzysztof Kaczmarczyk 150024

KRYPTOGRAFIA I OCHRONA DANYCH. Krzysztof Kaczmarczyk 150024 KRYPTOGRAFIA I OCHRONA DANYCH Krzysztof Kaczmarczyk 150024 Zadanie 1 Szyfrowanie DES Algorytm DES (Data Encryption Standard) to zastosowanie schematu Feistela. Algorytm operuje na 64-bitowych blokach używając

Bardziej szczegółowo

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej

Plan wykładu. Ochrona zasobów w systemach gospodarki elektronicznej. Usługi ochrony. Klasyfikacja zagrożeń. Wykład: Systemy gospodarki elektronicznej Ochrona zasobów w systemach gospodarki mgr inż. K. Trybicka-Francik Plan wykładu Rola kryptografii Klasyfikacja usług kryptograficznych Umieszczenie funkcji szyfrującej Generacja i dystrybucja y Złożone

Bardziej szczegółowo

--- --- --- --- (c) Oba działania mają elementy neutralne (0 dla dodawania i 1 dla mnożenia). (d) (a c b c) ab c ---

--- --- --- --- (c) Oba działania mają elementy neutralne (0 dla dodawania i 1 dla mnożenia). (d) (a c b c) ab c --- (d) 27x 25(mod 256) -I- I Kongruencje II Małe twierdzenie Fermata III Podzielność IV Operacje binarne V Reprezentacje liczb VI Największy wspólny dzielnik VII Faktoryzacja VIIIWłasności działań 2 3 x 16

Bardziej szczegółowo

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 9: Elementy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 32 Do tej pory chcieliśmy komunikować się efektywnie,

Bardziej szczegółowo

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy

Bardziej szczegółowo

Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie

Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy

Bardziej szczegółowo

Szyfrowanie wiadomości

Szyfrowanie wiadomości Szyfrowanie wiadomości I etap edukacyjny / II etap edukacyjny Już w starożytności ludzie używali szyfrów do przesyłania tajnych wiadomości. Początkowo były one proste, jednak z biegiem czasu wprowadzano

Bardziej szczegółowo

Wprowadzenie do technologii VPN

Wprowadzenie do technologii VPN Sieci komputerowe są powszechnie wykorzystywane do realizacji transakcji handlowych i prowadzenia działalności gospodarczej. Ich zaletą jest błyskawiczny dostęp do ludzi, którzy potrzebują informacji.

Bardziej szczegółowo

Laboratorium nr 3 Podpis elektroniczny i certyfikaty

Laboratorium nr 3 Podpis elektroniczny i certyfikaty Laboratorium nr 3 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi

Bardziej szczegółowo

Kryptografia publiczna (asymetryczna) Szyfrowanie publiczne (asym) Problem klucza publicznego. Podpisujemy cyfrowo. Jak zweryfikować klucz publiczny?

Kryptografia publiczna (asymetryczna) Szyfrowanie publiczne (asym) Problem klucza publicznego. Podpisujemy cyfrowo. Jak zweryfikować klucz publiczny? Kryptografia publiczna (asymetryczna) Wykład 7 Systemy kryptograficzne z kluczem publicznym Wiedza o kluczu szyfrującym nie pozwala odgadnąć klucza deszyfrującego Odbiorca informacji generuje parę kluczy

Bardziej szczegółowo

IX. KRYPTOGRAFIA KWANTOWA Janusz Adamowski

IX. KRYPTOGRAFIA KWANTOWA Janusz Adamowski IX. KRYPTOGRAFIA KWANTOWA Janusz Adamowski 1 1 Wstęp Wykład ten stanowi wprowadzenie do kryptografii kwantowej. Kryptografia kwantowa jest bardzo obszerną i szybko rozwijającą się dziedziną obliczeń kwantowych,

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

w Kielcach, 2010 w Kielcach, 2010

w Kielcach, 2010 w Kielcach, 2010 Zeszyty Studenckiego Ruchu Materiały 19 Sesji Studenckich Naukowego Uniwersytetu Kół Naukowych Uniwersytetu Humanistyczno- Przyrodniczego Humanistyczno- Przyrodniczego Jana Kochanowskiego Jana Kochanowskiego

Bardziej szczegółowo

Strategia gospodarki elektronicznej

Strategia gospodarki elektronicznej Strategia gospodarki elektronicznej Andrzej GRZYWAK Poruszane problemy Modele gospodarki elektronicznej Handel elektroniczny - giełda przemysłowa Organizacja funkcjonalna giełdy Problemy techniczne tworzenia

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych

Bardziej szczegółowo

MADE IN CHINA czyli SYSTEM RESZTOWY

MADE IN CHINA czyli SYSTEM RESZTOWY MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia

Bardziej szczegółowo

13.05.2008. Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS. Konferencja SECURE 2008 Warszawa, 2-3.10.2008

13.05.2008. Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS. Konferencja SECURE 2008 Warszawa, 2-3.10.2008 13.05.2008 Gerard Frankowski, Błażej Miga Zespół Bezpieczeństwa PCSS Konferencja SECURE 2008 Warszawa, 2-3.10.2008 1 Agenda Kim jesteśmy i co robimy? Wprowadzenie Szyfrowanie danych PKI, algorytm RSA,

Bardziej szczegółowo

Technologie informacyjne - wykład 5 -

Technologie informacyjne - wykład 5 - Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 5 - Prowadzący: Dmochowski

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci. Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz.

Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci. Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz. Sieci komputerowe Wykład 7. Bezpieczeństwo w sieci Paweł Niewiadomski Katedra Informatyki Stosowanej Wydział Matematyki UŁ niewiap@math.uni.lodz.pl Zagadnienia związane z bezpieczeństwem Poufność (secrecy)

Bardziej szczegółowo

Podpis cyfrowy a bezpieczeñstwo gospodarki elektronicznej

Podpis cyfrowy a bezpieczeñstwo gospodarki elektronicznej STANIS AWA PROÆ Podpis cyfrowy a bezpieczeñstwo gospodarki elektronicznej 1. Wprowadzenie Podstaw¹ gospodarki elektronicznej jest wymiana danych poprzez sieci transmisyjne, w szczególnoœci przez Internet.

Bardziej szczegółowo

Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji

Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji Dlaczego możemy czuć się bezpieczni w sieci czyli o szyfrowaniu informacji Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka + 2 Plan Szyfrowanie (kryptologia):

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003

Bezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003 Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (1) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Algorytmy kryptograficzne Przestawieniowe zmieniają porządek znaków

Bardziej szczegółowo

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję

Bardziej szczegółowo

Technologia Internetowa w organizacji giełdy przemysłowej

Technologia Internetowa w organizacji giełdy przemysłowej Technologia Internetowa w organizacji giełdy przemysłowej Poruszane problemy Handel elektroniczny - giełda przemysłowa Organizacja funkcjonalna giełdy Problemy techniczne tworzenia giełdy internetowej

Bardziej szczegółowo

Bezpieczeństwo danych i systemów informatycznych. Wykład 5

Bezpieczeństwo danych i systemów informatycznych. Wykład 5 Bezpieczeństwo danych i systemów informatycznych Wykład 5 Kryptoanaliza Atak na tekst zaszyfrowany dostępny tylko szyfrogram Atak poprzez tekst częściowo znany istnieją słowa, których prawdopodobnie użyto

Bardziej szczegółowo

Kryptologia(nie)stosowana

Kryptologia(nie)stosowana Jest to zapis odczytu wygłoszonego na XLI Szkole Matematyki Poglądowej, Konkret i abstrakcja, sierpień 2008; za ten odczyt Autor otrzymał Medal Filca. Kryptologia(nie)stosowana Andrzej GRZESIK, Kraków

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

(b) (d) 3,3,2,3,3,0,0,

(b) (d) 3,3,2,3,3,0,0, -KOLO A -- 441 [1] Wykonaj poniższe operacje w arytmetyce (mod m). Podaj rozwiązanie w zbiorze {0 1... m-1}. [9] Wyznacz wartość symbolu Jacobiego. Zapisz numery własności z których kolejno korzystałeś.

Bardziej szczegółowo

Liczby całkowite. Zadania do pierwszych dwóch lekcji

Liczby całkowite. Zadania do pierwszych dwóch lekcji Matematyka w klasie IE Zadania do zajęć w Marynce Jesień 2012 Liczby całkowite prof. W. Gajda Zagadka Pomyśl sobie jakąś dużą liczbę całkowitą. Dodaj do niej tę samą liczbę. Do uzyskanej sumy dodaj jeszcze

Bardziej szczegółowo

Bezpieczna poczta i PGP

Bezpieczna poczta i PGP Bezpieczna poczta i PGP Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2010/11 Poczta elektroniczna zagrożenia Niechciana poczta (spam) Niebezpieczna zawartość poczty Nieuprawniony dostęp (podsłuch)

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb

Bardziej szczegółowo

INSTRUKCJA INSTALACJI I OBSŁUGI GPG4Win

INSTRUKCJA INSTALACJI I OBSŁUGI GPG4Win INSTRUKCJA INSTALACJI I OBSŁUGI GPG4Win Łukasz Awsiukiewicz Solid Security wew 1211 l.awsiukiewicz@solidsecurity.pl wersja 1.0 Pobieramy program gpg4win ze strony http://www.gpg4win.org/download.html.

Bardziej szczegółowo

Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński

Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński Wykład 4 Protokoły SSL i TLS główne slajdy 26 października 2011 Instytut Informatyki Uniwersytet Jagielloński 4.1 Secure Sockets Layer i Transport Layer Security SSL zaproponowany przez Netscape w 1994

Bardziej szczegółowo

Liczby pierwsze. Jacek Nowicki Wersja 0.92

Liczby pierwsze. Jacek Nowicki Wersja 0.92 Jacek Nowicki Wersja 0.92 Wprowadzenie do liczb pierwszych Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją liczby, które nie mogą być rozłożone w

Bardziej szczegółowo

Wstęp do systemów wielozadaniowych laboratorium 21 Szyfrowanie

Wstęp do systemów wielozadaniowych laboratorium 21 Szyfrowanie Wstęp do systemów wielozadaniowych laboratorium 21 Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-01-23 Cel Cel Cel zajęć szyfrowanie danych wymiana zaszyfrowanych

Bardziej szczegółowo