Wybrane zagadnienia teorii liczb
|
|
- Maksymilian Pluta
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA
2 Podzielność liczb Relacja podzielności: Dane są dwie liczby całkowite a i b. Mówimy, że b dzieli a (b jest dzielnikiem a lub a jest wielokrotnością b), gdy istnieje taka liczba całkowita q, że a=b q. Zapis relacji podzielności: b a. Własności relacji podzielności (dla dowolnych całkowitych a, b, i c): Jeśli a c to a b c Jeśli a b i b c to a c Jeśli a b i a c to a (b+c) Przykładowo 3 12 i 12 36, a więc 3 36
3 Dzielenie z resztą Reszta z dzielenia: Dla każdej pary liczb całkowitych a i b istnieją takie q i r (0<=r<b), że a=b q+r. Liczba r to tzw. reszta z dzielenia. dla a=13 i b=5 mamy q=2 i r=3 (13=5 2+3) dla a=-17 i b=4 mamy q=-5 i r=3 Resztę z dzielenia z przez b zapisuje się jako a mod b. Reszta wynosi zero, gdy b a. 25 mod 12=1-20 mod 13=6 100 mod 10=0
4 Największy wspólny dzielnik Największy wspólny dzielnik dwóch liczb całkowitych a i b (inaczej NWD(a,b)) to największa liczba całkowita d, która dzieli zarówno a jak i b. Zakładamy, że przynajmniej jedna z liczb (a lub b) jest różna od zera. NWD(12,8)=4 NWD(20,10)=10 NWD(17,11)=1 NWD dla większej liczby liczb obliczamy z łączności: NWD(a, b, c)=nwd(a, NWD(b,c))=NWD(NWD(a,b), c)
5 Algorytm Euklidesa Dziadek wszystkich algorytmów (IV wiek p.n.e.) Szybki sposób na policzenie NWD NWD(a, b) dopóki b 0 c a mod b a b b c zwróć a Liczba iteracji potrzebna na wyznaczenie NWD rośnie w tempie logarytmicznym od sumy a+b.
6 Algorytm Euklidesa - przykład Policzmy NWD(129, 54) 1) a=129, b=54, c=129 mod 54=21 2) a=54, b=21, c=54 mod 21=12 3) a=21, b=12, c=9 4) a=12, b=9, c=3 5) a=9, b=3, c=0 6) a=3, b=0, czyli wynikiem jest 3
7 Rozszerzony algorytm Euklidesa Umożliwia policzenie takich całkowitych x i y, że a x+b y=nwd(a, b) NWD 2(a,b) x 0 1 y 0 0 x 1 0 y 1 1 n 2 dopóki b 0 c a mod b q a/b a b b c x n =x n 2 q x n 1 y n = y n 2 q y n 1 n n+1 zwróć (x n 2, y n 2 )
8 Przykład a=129, b=54, NWD(a,b)= =3
9 Liczby pierwsze Liczba naturalna p jest pierwsza, gdy posiada dokładnie dwa różne dzielniki: 1 i p. Kolejne liczby pierwsze: 2, 3, 5, 7, 11, 13, 17 Liczba złożona to liczba naturalna posiadająca co najmniej 3 różne dzielniki Liczba liczb pierwszych z przedziału [1,n] rośnie w tempie n/ln n (np. mamy liczb pierwszych do miliona, ponad 50 milionów w przedziale [1, 10 9 ]) Liczby szczególnie istotne w kryptografii
10 Twierdzenie Euklidesa Jest nieskończenie wiele liczb pierwszych Załóżmy, że liczb pierwszych jest skończona liczba np. p 1, p 2,, p n. Wówczas istniałaby liczba x, która nie dzieli się przez żadną z nich: x=p 1 p 2 p n +1 Stąd musi istnieć kolejny dzielnik pierwszy liczby x inny od powyższych, co przeczy założeniu.
11 Generowanie liczb pierwszych z przedziału Algorytm zwany sitem Eratostenesa (III wiek p.n.e.) wyznacza liczby pierwsze z przedzialu [2...n]. Sito(n) dla każdego i [2, n] pierwsza[i] true dla każdego i [2, n] jeżeli pierwsza[i] dla każdego j n i będącego wielokrotnością i pierwsza[ j] false
12 Rozkład liczby na czynniki pierwsze Zasadnicze twierdzenie arytmetyki każdą liczba ma jednoznaczny rozkład na iloczyn liczb pierwszych Przykład rozkładu liczby 840=
13 Rozkład liczby na czynniki cd Niech liczba a ma rozkład: Niech liczba b ma rozkład: Wówczas liczba dzielników liczby a wynosi: Ponadto a=p 1 x 1 p 2 x 2... pn x n b=p 1 y 1 p2 y 2... pn y n σ (a)=(x 1 +1) (x 2 +1)... (x n +1) NWD(a,b)=p 1 min( x 1, y 1 ) p 2 min(x 2, y 2 )... p n min( x n, y n ) NWW (a,b)= p 1 max(x 1, y 1 ) p 2 max (x 2, y 2 )... p n max( x n, y n ) NWW (a, b) to największa wspólna wielkrotność, czyli najmniejsza liczba dodatnia z taka, że a z i b z
14 Przykłady a=48, b=36 a= , b= NWD(a,b)=2 min(4,2) 3 min(1,2) =2 2 3=12 NWW(a,b)=2 max(4,2) 3 max(1,2) = =144 Własność: Liczba dzielników 48 NWW (a,b)= (a b) NWD(a,b) σ (48)=5 2=10
15 Liczby względnie pierwsze Liczby całkowite a i b są względnie pierwsze jeżeli NWD(a, b)=1 NWW(a, b)=a b dla liczb względnie pierwszych Przykłady par liczb względnie pierwszych: 15 i 8, 14 i 9, 13 i 7 Pewne właściwości: Dwie liczby pierwsze są zawsze względnie pierwsze Liczby n i n+1 są zawsze względnie pierwsze.
16 Funkcja φ Eulera φ(n) określa liczbę liczb względnie pierwszych z n i nie większych od niej Przykładowo φ(8)=4 (liczby 1, 3, 5, 7 są względnie pierwsze z 8). Pewne właściwości funkcji φ: φ(p)=p-1 (dla liczby pierwszej p) φ(p k )=p k-1 (p-1) φ(n m)=φ(n) φ(m) (dla względnie pierwszych n i m)
17 Kongruencje Niech dane będą liczby całkowite a, b oraz m. Mówimy, że a przystaje do b modulo m jeżeli m a-b. Zapisujemy to a b(mod m) Ponadto, a b(mod m) wtedy i tylko wtedy, gdy liczby a i b mają taką samą resztę z dzielenia przez m. 75 5(mod 10) ponieważ 5 jest resztą z dzielenia 75 przez 10. Ale również 75 25(mod 10) oraz 75 75(mod 10). Ponadto np (mod 5) ponieważ 5 (12+13))
18 Własności kongruencji Jeżeli a b(mod m) i c d(mod m) to: a+b c+d(mod m) a-b c-d(mod m) a b c d(mod m) a n b n (mod m) Przykład: 16 2(mod 7) i 10 3(mod 7). Z tego wynika, że 160 6(mod 7)
19 Odwrotność modularna Multiplikatywną odwrotnością liczby całkowitej a modulo n jest taka liczba b, że a b 1(mod n) Odwrotność liczby a modulo n zapisuje sięteż jako a -1. Odwrotność modulo istnieje tylko wtedy, gdy a i n są względnie pierwsze (NWD(a, n)=1) Przykładowo odwrotnością liczby 3 modulo 11 jest 4 (ponieważ 3 4=12 1(mod 11) Nie istnieje odwrotność liczby 6 modulo 8
20 Rozszerzony algorytm Euklidesa wyznaczanie odwrotności Aby obliczyć odwrotność a modulo n trzeba wyznaczyć NWD(a,n) rozszerzonym algorytmem Euklidesa. Jeżeli NWD wynosi 1, to wówczas współczynnik x jest odwrotnością. Przykładowo: a=5, n=13, odwrotnością a jest -5 Istotnie 5-5=-25 1(mod 13) W zastosowaniach kryptograficznych odwrotność sprowadza się do liczb dodatnich dodając moduł (-5+13=8)
21 Potęgowanie modularne Celem jest obliczenie a b (mod m) Dla a>n można zastąpić a jej resztą z dzielenia przez n, co może uprościć obliczenia np.: (mod 11)=1 135 (mod 11)=1 7 4 (mod 5)=2 4 (mod 5)=16(mod 5)=1 Naiwny algorytm b-1 krotne mnożenie wyniku przez a (i redukcja modulo m). Niewydajny. Szybszy sposób: wykorzystanie tego, że a b=(a b/2 ) 2 dla b parzystych oraz a b =a(a b/2 ) 2 dla b nieparzystych.
22 Szybkie potęgowanie modularne - przykład Istotne zastosowania w kryptografii Obliczmy 7 20(mod 10) 7 20(mod 10)=(7 10 ) 2 (mod 10) 7 10(mod 10)=(7 5 ) 2 (mod 10) 7 5(mod 10)=7 (7 2 ) 2 (mod 10) 7 2(mod 10)=49=9(mod 10) 7 5(mod 10)=7 (7 2 ) 2 =7 (9 2 )=7 81=7(mod 10) 7 10(mod 10)=(7 5 ) 2 =7 2 =49=9(mod 10) 7 20(mod 10)=(7 10 ) 2 =9 2 =81=1(mod 10)
23 Twierdzenia dotyczące potęg modulo Twierdzenie Eulera: jeżeli liczby a i m są względnie pierwsze to a φ(m) 1(mod m) Małe twierdzenie Fermata: jeżeli p jest liczbą pierwszą i a nie jest wielokrotnością p, to a p-1 1(mod p) Małe twierdzenie Fermata szczególnym przypadkiem twierdzenie Eulera (dla m będących liczbami pierwszymi) Przykład: 2 6 1(mod 9) Sprawdzenie 2 6 =64=9*7+1 1(mod 9) Inny przykład: policzyć (mod 101) Wiemy, że (mod 101) =( ) 10 14= (mod 101)=14(mod 101)
24 Kryptosystem RSA 1) Generowanie liczby n (modułu RSA) będącej iloczynem dwóch dużych liczb pierwszych p i q (są one tajne) 2) Obliczenie funkcji Eulera φ(n)=(p-1) (q-1) 3) Generowanie liczby e (klucza publicznego RSA). Liczba e jest względnie pierwsza z φ(n) 4) Obliczanie liczby d (klucza prywatnego RSA). Liczba d jest odwrotnością e w modulo φ(n). (czyli e d 1(mod φ(n)) 5) Szyfrowanie wiadomości m: s=m e (mod n) 6) Deszyfrowanie szyfru s: m=s d (mod n)
25 Trudność złamania RSA Klucz prywatny to odwrotność modularna klucza publicznego Aby ją obliczyć potrzebna jest wartość φ(n), która nie jest znana (gdyż p i q są tajne i znane tylko właścicielowi klucza prywatnego lub są niszczone) Nieznane szybkie algorytmy faktoryzacji (rozkładu na czynniki) dużych liczb n. Liczby w RSA mają po kilkaset cyfr w zapisie dziesiętnym
26 Przykład szyfrowania RSA p=7, q=11, n=pq=77 φ(n)=(p-1)(q-1)=60 e=7 d=43 (ponieważ e d=7 43=301 1(mod 60) Szyfrujemy wiadomość m=13: s=m e (mod n)=13 7 (mod 77)=62 Deszyfrujemy szyfrogram s=62: m=s d (mod n)=62 43 (mod 77)=13 Zmiana tekstu na liczby: dzielenie pliku na bloki i traktowanie każdego bloku jako liczby przy pewnej podstawie np. 256 lub 27 (liczba liter angielskich)
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych
Teoria liczb Zajmuje się własnościami liczb, przede wszystkim całkowitych Niepraktyczna? - kryptografia Dzielenie liczb całkowitych z resztą Niech b>0, wtedy dla każdej liczby całkowitej a istnieją jednoznacznie
Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Elementy teorii liczb. Matematyka dyskretna
Elementy teorii liczb Matematyka dyskretna Teoria liczb dziedzina matematyki, zajmująca się badaniem własności liczb (początkowo tylko naturalnych). Jej początki sięgają starożytności. Zajmowali się nią
Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.
Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
MADE IN CHINA czyli SYSTEM RESZTOWY
MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia
1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Liczby pierwsze. Jacek Nowicki Wersja 1.0
Liczby pierwsze Jacek Nowicki Wersja 1.0 Wprowadzenie do liczb pierwszych www.liczbypierwsze.com Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją
Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera
Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...
Kongruencje oraz przykłady ich zastosowań
Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona
Liczby pierwsze. Jacek Nowicki Wersja 0.92
Jacek Nowicki Wersja 0.92 Wprowadzenie do liczb pierwszych Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją liczby, które nie mogą być rozłożone w
n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 6a
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 6a Spis treści 10 Trochę matematyki (c.d.) 3 10.19 Reszty kwadratowe w Z p.............. 3 10.20
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Kongruencje i ich zastosowania
Kongruencje i ich zastosowania Andrzej Sładek sladek@ux2.math.us.edu.pl Instytut Matematyki, Uniwersytet Śląski w Katowicach Poznamy nowe fakty matematyczne, które pozwolą nam w łatwy sposób rozwiązać
Liczby całkowite. Zadania do pierwszych dwóch lekcji
Matematyka w klasie IE Zadania do zajęć w Marynce Jesień 2012 Liczby całkowite prof. W. Gajda Zagadka Pomyśl sobie jakąś dużą liczbę całkowitą. Dodaj do niej tę samą liczbę. Do uzyskanej sumy dodaj jeszcze
Matematyka dyskretna
Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 6/14 Podzielność Dowolną liczbę wymierną a można wydzielić przez dowolną niezerową liczbę wymierną b i wynik tego działania jest liczbą
Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny.
W dniu 21 lutego 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie. 1. Dane są liczby naturalne m, n. Wówczas
Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach.
Kongruencje Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej Spis
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 4/15 Podzielność Niech liczba całkowita p>0. Dla każdej liczby całkowitej a mówimy, że a jest podzielne przez p (p jest dzielnikiem
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 6/14 Podzielność Niech liczba całkowita p>0. Dla każdej liczby całkowitej a mówimy, że a jest podzielna przez p (p jest dzielnikiem
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Spis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Luty 2001 Algorytmy (8) 2000/2001
Algorytm Euklidesa Danymi są dwie nieujemne liczby całkowite m i n. Liczba k jest największym wspólnym dzielnikiem m i n, jeśli dzieli m oraz n i jest największą liczbą o tej własności - oznaczamy ją przez
Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),
Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)
Kongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.
Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby
Matematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach
Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) Chińskie twierdzenie o resztach Wybrane zagadnienia algorytmiki i programowania I 27 października 2010 Największy wspólny dzielnik - definicja
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,
Matematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 5. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 5 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Algorytm Euklidesa Liczby pierwsze i złożone Metody
Jarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16
DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy
Algorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można
Pierwiastki pierwotne, logarytmy dyskretne
Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem
Algorytm Euklidesa. Największy wspólny dzielnik dla danych dwóch liczb całkowitych to największa liczba naturalna dzieląca każdą z nich bez reszty.
Algorytm Euklidesa Algorytm ten, jak wskazuje jego nazwa, został zaprezentowany przez greckiego matematyka - Euklidesa, żyjącego w w latach około 300r. p.n.e., w jego podstawowym dziele pt. Elementy. Algorytm
Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 5/15 Liczby pierwsze Ze wstępu do ksiązki E. Gracjana: liczby pierwsze to niesforna zgraja. Pojawiają się tam gdzie chcą, bez ostrzeżenia,
Zadania z arytmetyki i teorii liczb
Zadania z arytmetyki i teorii liczb Andrzej Nowicki 1. Znaleźć największą wartość iloczynu liczb naturalnych, których suma równa się 2010. 2. Z cyfr 1, 2,..., 9 utworzono trzy trzycyfrowe liczby o największym
Podzielność liczb. Podzielność liczb
Euclides i kwestie podzielności liczb Definicja Niech a, b Z. Mówimy, że liczba a > 0 dzieli liczbę b, albo a b, jeżeli istnieje taka całkowita liczba c, że b = ac. Definicja a b a > 0 i b = ac, c całkowite.
Kongruencje. Sławomir Cynk. 24 września Nowy Sącz. Instytut Matematyki Uniwersytetu Jagiellońskiego
Instytut Matematyki Uniwersytetu Jagiellońskiego 24 września 2008 Nowy Sącz Przykłady W. Sierpiński, 250 zadań z elementarnej teorii liczb, Biblioteczka Matematyczna 17. Zadanie 3. Pokazać, że jeżeli 7
0 --> 5, 1 --> 7, 2 --> 9, 3 -->1, 4 --> 3, 5 --> 5, 6 --> 7, 7 --> 9, 8 --> 1, 9 --> 3.
(Aktualizacja z dnia 3 kwietnia 2013) MATEMATYKA DYSKRETNA - informatyka semestr 2 (lato 2012/2013) Zadania do omówienia na zajęciach w dniach 21 i 28 kwietnia 2013 ZESTAW NR 3/7 (przykłady zadań z rozwiązaniami)
Kongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
Sumy kwadratów kolejnych liczb naturalnych
Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =
ALGORYTMY MATEMATYCZNE Ćwiczenie 1 Na podstawie schematu blokowego pewnego algorytmu (rys 1), napisz listę kroków tego algorytmu:
ALGORYTMY MATEMATYCZNE Ćwiczenie 1 Na podstawie schematu blokowego pewnego algorytmu (rys 1), napisz listę kroków tego algorytmu: Rys1 Ćwiczenie 2 Podaj jaki ciąg znaków zostanie wypisany po wykonaniu
Daniela Spurtacz, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 08/09. Tresci rozwiązanych
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki 2007-2013 CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja
Jarosław Wróblewski Matematyka Elementarna, lato 2014/15
Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z
Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne
Podstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku
Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Teoria liczb 1.1 Dzielenie całkowitoliczbowe Zacznijmy od przypomnienia szkolnego algorytmu dzielenia liczb naturalnych. Podzielmy
RSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA
RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.
LICZBY PIERWSZE. Jan Ciurej Radosław Żak
LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna
Zadanie 2: Kryptosystem Rabina
Informatyka, studia dzienne, inż. II st. semestr VI Podstawy kryptografii 2010/2011 Prowadzący: prof. dr hab. inż. Włodzimierz Jemec poniedziałek, 8:30 Data oddania: Ocena: Paweł Tarasiuk 151021 Michał
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Jeśli lubisz matematykę
Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków
Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A
Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/
Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,
KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.
KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:
Kryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)
Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.
Matematyka dyskretna. Andrzej Łachwa, UJ, C/10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 5C/10 Liczby pierwsze Ze wstępu do ksiązki E. Gracjana: liczby pierwsze to niesforna zgraja. Pojawiają się tam gdzie chcą, bez ostrzeżenia,
Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 3 października 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie
Algebra liniowa z geometrią analityczną
WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór
Rozdział 7. Elementy teorii liczb. 7.1 Podstawowe własności liczb
Rozdział 7 Elementy teorii liczb 7.1 Podstawowe własności liczb Zakres teorii liczb to zbiór liczb całkowitych. Tak więc nie będziemy wychodzić poza ten zbiór, a jeśli się pojawi pojęcie,,liczba, oznaczać
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,
Matematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki
Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana
Jarosław Wróblewski Matematyka Elementarna, zima 2015/16
Na ćwiczeniach 6.0.205 omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest liczbą naturalną, tzn. liczby naturalne są to liczby całkowite dodatnie.. Sformułować uogólnione cechy podzielności
Szyfrowanie RSA. Liczba pierwsza jest liczbą naturalną posiadającą dokładnie dwa różne podzielniki - 1 oraz samą siebie.
Szyfrowanie RSA Liczby pierwsze Na początek przypomnijmy sobie parę użytecznych wiadomości o liczbach pierwszych. Są one znane od starożytności a ich znaczenie jest ogromne w matematyce i tym bardziej
Parametry systemów klucza publicznego
Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego
Zarys algorytmów kryptograficznych
Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................
Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z
I) Reszta z dzielenia
Michał Kremzer tekst zawiera 9 stron na moim komputerze Tajemnice liczb I) Reszta z dzielenia 1) Liczby naturalne dodatnie a, b, c dają tę samą resztę przy dzieleniu przez 3. Czy liczba A) a + b + c B)
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka
Kryptologia przykład metody RSA
Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza
0.1 Pierścienie wielomianów
0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn
Jednoznaczność dzielenia. Jednoznaczność dzielenia
Jednoznaczność dzielenia MNiechmincałkowite,n 0 Wtedy istnieje dokładnie jedna para liczb całkowitych k i l taka że m=n k+l oraz 0 l< n Terminologia: m dzielna n dzielnik Sytuacjadlam 0in>0: k k iloraz
Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 25 lutego 2014 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie jest
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 x=6 ODP: Podstawą (bazą), w której spełniona jest ta zależność
Funkcje arytmetyczne. Funkcje arytmetyczne
Definicja 1 Każda arytmetyczna, to funkcja f(n, n N, przyporządkowująca N C, (R. Na przykład: f(n = n. Definicja 2: Funkcję arytmetyczną f : N f(n R nazywamy multyplikatywną, jeżeli m,n N, m n mamy f(mn