Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 6a
|
|
- Łucja Krzemińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś Wykład 6a
2 Spis treści 10 Trochę matematyki (c.d.) Reszty kwadratowe w Z p Symbol Legendre a Własności symbolu Legendre a: Prawo wzajemności Pierwiastki kwadratowe modulo p Reszty kwadratowe w Z n Symbol Jacobiego Pierwiastki kwadratowe modulo n Logarytm dyskretny PARI/GP teoria liczb na komputerze
3 10 Trochę matematyki (c.d.) Reszty kwadratowe w Z p Oznaczmy przez Z p = {0, 1, 2,..., p 1} zbiór reszt modulo p, gdzie p > 2 jest nieparzystą liczbą pierwszą; np. Z 11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Przez Z p będziemy oznaczali zbiór niezerowych elementów zbioru Z p, a więc np. Z 11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} W zbiorze Z p szukamy takich elementów, które są kwadratami innych elementów, tzn. spełniona jest kongruencja x 2 a (mod p), dla {x, a} Z p. Liczby a, które są kwadratami nazywamy resztami kwadratowymi modulo p, zaś pozostałe elementy nazywamy nieresztami.
4 10 Trochę matematyki (c.d.) Reszty kwadratowe w Z p Oznaczmy przez Z p = {0, 1, 2,..., p 1} zbiór reszt modulo p, gdzie p > 2 jest nieparzystą liczbą pierwszą; np. Z 11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Przez Z p będziemy oznaczali zbiór niezerowych elementów zbioru Z p, a więc np. Z 11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} W zbiorze Z p szukamy takich elementów, które są kwadratami innych elementów, tzn. spełniona jest kongruencja x 2 a (mod p), dla {x, a} Z p. Liczby a, które są kwadratami nazywamy resztami kwadratowymi modulo p, zaś pozostałe elementy nazywamy nieresztami.
5 10 Trochę matematyki (c.d.) Reszty kwadratowe w Z p Oznaczmy przez Z p = {0, 1, 2,..., p 1} zbiór reszt modulo p, gdzie p > 2 jest nieparzystą liczbą pierwszą; np. Z 11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Przez Z p będziemy oznaczali zbiór niezerowych elementów zbioru Z p, a więc np. Z 11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} W zbiorze Z p szukamy takich elementów, które są kwadratami innych elementów, tzn. spełniona jest kongruencja x 2 a (mod p), dla {x, a} Z p. Liczby a, które są kwadratami nazywamy resztami kwadratowymi modulo p, zaś pozostałe elementy nazywamy nieresztami.
6 10 Trochę matematyki (c.d.) Reszty kwadratowe w Z p Oznaczmy przez Z p = {0, 1, 2,..., p 1} zbiór reszt modulo p, gdzie p > 2 jest nieparzystą liczbą pierwszą; np. Z 11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Przez Z p będziemy oznaczali zbiór niezerowych elementów zbioru Z p, a więc np. Z 11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} W zbiorze Z p szukamy takich elementów, które są kwadratami innych elementów, tzn. spełniona jest kongruencja x 2 a (mod p), dla {x, a} Z p. Liczby a, które są kwadratami nazywamy resztami kwadratowymi modulo p, zaś pozostałe elementy nazywamy nieresztami.
7 Przykład: Weźmy Z 11 i policzmy x2 (mod 11) dla wszystkich x, mamy wtedy x a = x 2 (mod 11)
8 Przykład: Weźmy Z 11 i policzmy x2 (mod 11) dla wszystkich x, mamy wtedy x a = x 2 (mod 11) Resztami kwadratowymi w Z 11 są więc liczby {1, 3, 4, 5, 9}, a pozostale liczby {2, 6, 7, 8, 10} są nieresztami
9 10.20 Symbol Legendre a Niech a będzie liczbą całkowitą zaś p > 2 liczbą pierwszą; symbol Legendre a definiujemy ( ) a 0, jeśli p a = 1, jeśli a jest resztą kwadratową modulo p p 1, jeśli a jest nieresztą modulo p
10 10.20 Symbol Legendre a Niech a będzie liczbą całkowitą zaś p > 2 liczbą pierwszą; symbol Legendre a definiujemy ( ) a 0, jeśli p a = 1, jeśli a jest resztą kwadratową modulo p p 1, jeśli a jest nieresztą modulo p Twierdzenie: ( ) a p = a p 1 2 (mod p)
11 10.21 Własności symbolu Legendre a: ( ) a (1) zależy tylko od a modulo p p
12 10.21 Własności symbolu Legendre a: ( ) a (1) zależy tylko od a modulo p p ( ) ( ) ( ) ab a b (2) = p p p
13 10.21 Własności symbolu Legendre a: (1) ( ) a p zależy tylko od a modulo p (2) ( ) ( ) ( ) ab a b = p p p (3) ( ) ab 2 ( ) a =, jeśli NW D(b, p) = 1 p p
14 10.21 Własności symbolu Legendre a: (1) (2) (3) (4) ( ) a zależy tylko od a modulo p p ( ) ( ) ( ) ab a b = p p p ( ) ab 2 ( ) a =, jeśli NW D(b, p) = 1 p p ( ) 1 p = 1 oraz ( ) 1 p = ( 1) p 1 2
15 Twierdzenie: ( ) 2 p = ( 1) p2 1 8 = 1, jeśli p ±1 (mod 8) 1, jeśli p ±3 (mod 8)
16 Twierdzenie: ( ) 2 p = ( 1) p2 1 8 = 1, jeśli p ±1 (mod 8) 1, jeśli p ±3 (mod 8) Prawo wzajemności Niech p i q będą dwiema nieparzystymi liczbami pierwszymi. Wtedy ( ) q p = ( 1) p 1 2 = ( p q ( p q q 1 2 ( ) p q ), ) jeśli p q 3 (mod 4), w przeciwnym przypadku
17 Przykład: ( ) = ( ) = ( 1) = ( ( ) 167 ) ( ) ( 1) ( ) ( ) ( ) ( ) = = ( ) ( ) ( ) ( ) ( ) = = ( ) ( ) ( 1) ( 1) = ( ) ( ) 3 = 1 ( 1) = 1 11 ( )
18 10.23 Pierwiastki kwadratowe modulo p Prawo wzajemności pozwala szybko stwierdzić czy a jest resztą kwadratową modulo p, a więc mówi, że istnieje rozwiązanie kongruencji x 2 a (mod p), chociaż nie daje wskazówek jak takie rozwiązanie znaleźć. Nie jest znany efektywny deterministyczny algorytm obliczania pierwiastków kwadratowych w Z p. Istnieje natomiast efektywny algorytm probabilistyczny dla obliczania takich pierwiastków jeśli p jest liczbą pierwszą.
19 10.23 Pierwiastki kwadratowe modulo p Prawo wzajemności pozwala szybko stwierdzić czy a jest resztą kwadratową modulo p, a więc mówi, że istnieje rozwiązanie kongruencji x 2 a (mod p), chociaż nie daje wskazówek jak takie rozwiązanie znaleźć. Nie jest znany efektywny deterministyczny algorytm obliczania pierwiastków kwadratowych w Z p. Istnieje natomiast efektywny algorytm probabilistyczny dla obliczania takich pierwiastków jeśli p jest liczbą pierwszą.
20 10.23 Pierwiastki kwadratowe modulo p Prawo wzajemności pozwala szybko stwierdzić czy a jest resztą kwadratową modulo p, a więc mówi, że istnieje rozwiązanie kongruencji x 2 a (mod p), chociaż nie daje wskazówek jak takie rozwiązanie znaleźć. Nie jest znany efektywny deterministyczny algorytm obliczania pierwiastków kwadratowych w Z p. Istnieje natomiast efektywny algorytm probabilistyczny dla obliczania takich pierwiastków jeśli p jest liczbą pierwszą.
21 10.24 Reszty kwadratowe w Z n Oznaczmy przez Z n = {0, 1, 2,..., n 1} zbiór reszt modulo n, gdzie n jest dodatnią liczbą całkowitą; np. Z 15 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} Przez Z n będziemy oznaczali podzbiór tych elementów zbioru Z n, które są względnie pierwsze z n, a więc np. Z 15 = {1, 2, 4, 7, 8, 11, 13, 14}. Liczba elementów zbioru Z n jest równa wartości funkcji Eulera φ(n). W zbiorze Z n szukamy takich elementów, które są kwadratami innych elementów, tzn. spełniona jest kongruencja x 2 a (mod n), dla {x, a} Z n.
22 10.24 Reszty kwadratowe w Z n Oznaczmy przez Z n = {0, 1, 2,..., n 1} zbiór reszt modulo n, gdzie n jest dodatnią liczbą całkowitą; np. Z 15 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} Przez Z n będziemy oznaczali podzbiór tych elementów zbioru Z n, które są względnie pierwsze z n, a więc np. Z 15 = {1, 2, 4, 7, 8, 11, 13, 14}. Liczba elementów zbioru Z n jest równa wartości funkcji Eulera φ(n). W zbiorze Z n szukamy takich elementów, które są kwadratami innych elementów, tzn. spełniona jest kongruencja x 2 a (mod n), dla {x, a} Z n.
23 10.24 Reszty kwadratowe w Z n Oznaczmy przez Z n = {0, 1, 2,..., n 1} zbiór reszt modulo n, gdzie n jest dodatnią liczbą całkowitą; np. Z 15 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} Przez Z n będziemy oznaczali podzbiór tych elementów zbioru Z n, które są względnie pierwsze z n, a więc np. Z 15 = {1, 2, 4, 7, 8, 11, 13, 14}. Liczba elementów zbioru Z n jest równa wartości funkcji Eulera φ(n). W zbiorze Z n szukamy takich elementów, które są kwadratami innych elementów, tzn. spełniona jest kongruencja x 2 a (mod n), dla {x, a} Z n.
24 10.24 Reszty kwadratowe w Z n Oznaczmy przez Z n = {0, 1, 2,..., n 1} zbiór reszt modulo n, gdzie n jest dodatnią liczbą całkowitą; np. Z 15 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} Przez Z n będziemy oznaczali podzbiór tych elementów zbioru Z n, które są względnie pierwsze z n, a więc np. Z 15 = {1, 2, 4, 7, 8, 11, 13, 14}. Liczba elementów zbioru Z n jest równa wartości funkcji Eulera φ(n). W zbiorze Z n szukamy takich elementów, które są kwadratami innych elementów, tzn. spełniona jest kongruencja x 2 a (mod n), dla {x, a} Z n.
25 10.25 Symbol Jacobiego Niech a będzie liczbą całkowitą i niech n będzie dowolną dodatnią liczbą nieparzystą. Niech n = p α p α r r będzie rozkładem liczby n na czynniki pierwsze. Wtedy definiujemy symbol Jacobiego (uogólnienie symbolu Legendre a) jako iloczyn symboli Legendre a dla dzielników pierwszych n ( ) a n = ( a p 1 ) α1... ( a p r ) αr
26 10.25 Symbol Jacobiego Niech a będzie liczbą całkowitą i niech n będzie dowolną dodatnią liczbą nieparzystą. Niech n = p α p α r r będzie rozkładem liczby n na czynniki pierwsze. Wtedy definiujemy symbol Jacobiego (uogólnienie symbolu Legendre a) jako iloczyn symboli Legendre a dla dzielników pierwszych n ( ) a n = ( a p 1 ) α1... ( a p r ) αr Twierdzenie: Dla dowolnej dodatniej liczby nieparzystej n mamy ( 2 n ) = ( 1) n2 1 8
27 Twierdzenie: Dla dowolnych dodatnich liczb nieparzystych m i n mamy ( ) m n = ( 1) m 1 2 n 1 2 ( n m )
28 Twierdzenie: Dla dowolnych dodatnich liczb nieparzystych m i n mamy ( ) m n = ( 1) m 1 2 n 1 2 ( n m ) Uwaga: Jeśli liczba a Z n jest resztą kwadratową to ( a Jeśli symbol Jacobiego ( ) a n to a nie musi być resztą kwadratową! n ) = 1. = 1 dla liczby złożonej n
29 10.26 Pierwiastki kwadratowe modulo n Jeśli n = pq jest iloczynem dwóch dużych, różnych liczb pierwszych, to uważa się, że znajdowanie pierwiastków kwadratowych w Z n należy do problemów trudnych obliczeniowo! Trudność ta jest równoważna trudności z faktoryzacją liczby n. (Faktoryzując n znajdujemy liczby pierwsze p i q, znajdujemy pierwiastki kwadratowe w Z p oraz Z q, a następnie korzystając z chińskiego twierdzenia o resztach znajdujemy pierwiastki w Z n.)
30 10.26 Pierwiastki kwadratowe modulo n Jeśli n = pq jest iloczynem dwóch dużych, różnych liczb pierwszych, to uważa się, że znajdowanie pierwiastków kwadratowych w Z n należy do problemów trudnych obliczeniowo! Trudność ta jest równoważna trudności z faktoryzacją liczby n. (Faktoryzując n znajdujemy liczby pierwsze p i q, znajdujemy pierwiastki kwadratowe w Z p oraz Z q, a następnie korzystając z chińskiego twierdzenia o resztach znajdujemy pierwiastki w Z n.)
31 10.26 Pierwiastki kwadratowe modulo n Jeśli n = pq jest iloczynem dwóch dużych, różnych liczb pierwszych, to uważa się, że znajdowanie pierwiastków kwadratowych w Z n należy do problemów trudnych obliczeniowo! Trudność ta jest równoważna trudności z faktoryzacją liczby n. (Faktoryzując n znajdujemy liczby pierwsze p i q, znajdujemy pierwiastki kwadratowe w Z p oraz Z q, a następnie korzystając z chińskiego twierdzenia o resztach znajdujemy pierwiastki w Z n.)
32 10.27 Logarytm dyskretny Niech p będzie liczbą pierwszą, przez Z p oznaczamy zbiór liczb {1,..., p 1} i niech g będzie generatorem Z p, tzn. takim elementem, że dla każdej liczby a Z p istnieje takie i, że a g i (mod p) (wszystkie elementy mogą być wygenerowane z g). Problem logarytmu dyskretnego polega na znalezieniu dla danej liczby 0 < b < p takiej liczby a, że g a b (mod p). Problem znajdowania logarytmu dyskretnego jest problemem trudnym obliczeniowo!
33 10.27 Logarytm dyskretny Niech p będzie liczbą pierwszą, przez Z p oznaczamy zbiór liczb {1,..., p 1} i niech g będzie generatorem Z p, tzn. takim elementem, że dla każdej liczby a Z p istnieje takie i, że a g i (mod p) (wszystkie elementy mogą być wygenerowane z g). Problem logarytmu dyskretnego polega na znalezieniu dla danej liczby 0 < b < p takiej liczby a, że g a b (mod p). Problem znajdowania logarytmu dyskretnego jest problemem trudnym obliczeniowo!
34 10.27 Logarytm dyskretny Niech p będzie liczbą pierwszą, przez Z p oznaczamy zbiór liczb {1,..., p 1} i niech g będzie generatorem Z p, tzn. takim elementem, że dla każdej liczby a Z p istnieje takie i, że a g i (mod p) (wszystkie elementy mogą być wygenerowane z g). Problem logarytmu dyskretnego polega na znalezieniu dla danej liczby 0 < b < p takiej liczby a, że g a b (mod p). Problem znajdowania logarytmu dyskretnego jest problemem trudnym obliczeniowo!
35 10.27 Logarytm dyskretny Niech p będzie liczbą pierwszą, przez Z p oznaczamy zbiór liczb {1,..., p 1} i niech g będzie generatorem Z p, tzn. takim elementem, że dla każdej liczby a Z p istnieje takie i, że a g i (mod p) (wszystkie elementy mogą być wygenerowane z g). Problem logarytmu dyskretnego polega na znalezieniu dla danej liczby 0 < b < p takiej liczby a, że g a b (mod p). Problem znajdowania logarytmu dyskretnego jest problemem trudnym obliczeniowo!
36 Przykład: Weźmy Z 19, czyli zbiór liczb {1,..., 18} oraz g = 2. Niech b = 2 a (mod 19), mamy wtedy a b
37 Przykład: Weźmy Z 19, czyli zbiór liczb {1,..., 18} oraz g = 2. Niech b = 2 a (mod 19), mamy wtedy a b Tak więc w Z 19, np. log 2 13 = (mod 19)
38 10.28 PARI/GP teoria liczb na komputerze GP/PARI CALCULATOR Version (released) i386 running linux 32-bit version (readline v4.3 enabled, extended help available) Copyright (C) 2002 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type? for help, \q to quit. Type?12 for how to get moral (and possibly technical) support. realprecision = 28 significant digits seriesprecision = 16 significant terms format = g0.28 parisize = , primelimit =
39 Dzielenie z resztą? divrem(841,160) %1 = [5, 41]~? divrem( , ) %2 = [ , ]~ Algorytm Euklidesa NW D(a, b)? gcd(841,160) %2 = 1? gcd( , ) %3 = 1? gcd( , ) %4 = 6
40 Rozszerzony algorytm Euklidesa? bezout(841,160) %4 = [-39, 205, 1]? bezout( , ) %5 = [ , , 1]? Mod(160,841)^(-1) %6 = Mod(205, 841)? lift(mod(160,841)^(-1)) %7 = 205 Odwrotność modulo n? Mod( , )^(-1) %8 = Mod( , )? %9 =
41 Małe twierdzenie Fermata? isprime(1231) %10 = 1? gcd(1231,5871) %11 = 1? Mod(5871^1230, 1231) %12 = Mod(1, 1231)? Mod(5871,1231)^1230 %13 = Mod(1, 1231)? Mod( , )^ %14 = Mod(1, )? Mod( , )^ %15 = Mod(1, )
42 ? a=mod(1,11) %16 = Mod(1, 11)? b=mod(2,12) %17 = Mod(2, 12)? c=mod(3,13) %18 = Mod(3, 13)? d=chinese(a,b) %19 = Mod(122, 132)? chinese(c,d) %20 = Mod(1706, 1716) Chińskie twierdzenie o resztach
43 ? eulerphi(841) %21 = 812? factorint(841) %22 = [29 2]? eulerphi(1231) %23 = 1230? isprime(1231) %24 = 1? eulerphi(1000) %25 = 400? eulerphi(1200) %26 = 320 Funkcja Eulera
44 Potęgowanie modulo n? lift(mod(7,1234)^698) %27 = 287? Mod( , )^ %28 = Mod(1, ) Liczby pierwsze? primes(10) %31 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]? prime(1000) %32 = 7919? nextprime(10^30) %34 = ? nextprime(random(10^30)) %35 = ? isprime(%35) %36 = 1
45 Symbol Jacobiego? kronecker(91,167) %37 = -1? kronecker(7,167) %38 = 1? for(a=1,167,if(mod(a,167)^2==7,print1(a, " "))) 72 95? kronecker(13,167) %39 = -1? kronecker(6,7) %40 = -1? kronecker(11,13) %41 = -1? kronecker( , ) %42 = 1
46 Logarytm dyskretny? znprimroot(19) %43 = Mod(2, 19)? znorder(mod(2,19)) %44 = 18? znlog(13,mod(2,19)) %45 = 5? znlog(15,mod(2,19)) %46 = 11? znprimroot( ) %47 = Mod(3, )? znlog(124332,mod(3, ) %48 = ? Mod(3, )^ %49 = Mod(124332, )
47 ? p=1123;q=1237;n=p*q %50 = ? phin=eulerphi(n) %51 = ? e= %52 = ? gcd(e,phin) %53 = 1? d=lift(mod(e,phin)^(-1)) %54 = ? m= %55 = ? c=lift(mod(m,n)^e) %56 = ? lift(mod(c,n)^d) RSA
48 %57 = ? p=nextprime(random(10^25)) %60 = ? q=nextprime(random(10^24)) %61 = ? n=p*q %62 = ? phin=(p-1)*(q-1) %63 = ? e=random(10^10) %64 = ? while(gcd(e,phin)!=1,e=e+1)? e %65 = ? d=lift(mod(e,phin)^(-1)) %66 =
49 ? m=random(10^30) %67 = ? c=lift(mod(m,n)^e) %68 = ? lift(mod(c,n)^d) %69 =
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
Kryptografia. Wykład z podstaw klasycznej kryptografii z elementami kryptografii kwantowej. dla studentów IV roku. Ryszard Tanaś
Kryptografia Wykład z podstaw klasycznej kryptografii z elementami kryptografii kwantowej dla studentów IV roku Ryszard Tanaś Zakład Optyki Nieliniowej, Instytut Fizyki UAM tanas@kielich.amu.edu.pl Serdecznie
Wybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
Liczby pierwsze na straży tajemnic
Liczby pierwsze na straży tajemnic Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby rzadzą światem Ile włosów na głowie? Dowód z wiedzą zerową Reszty kwadratowe Dzielenie sekretu Ile włosów
Pierwiastki pierwotne, logarytmy dyskretne
Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera
Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Liczby całkowite. Zadania do pierwszych dwóch lekcji
Matematyka w klasie IE Zadania do zajęć w Marynce Jesień 2012 Liczby całkowite prof. W. Gajda Zagadka Pomyśl sobie jakąś dużą liczbę całkowitą. Dodaj do niej tę samą liczbę. Do uzyskanej sumy dodaj jeszcze
Podstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby
LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Spis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
Kongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
Równania wielomianowe
Instytut Matematyki Uniwersytetu Jagiellońskiego 20 marca 2009 Kraków Równanie z jedną niewiadomą Wielomian jednej zmiennej to wyrażenie postaci P(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, gdzie współczynniki
Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.
Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium Nr 10.
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Nr 10 Teoria liczb 1 Cel ćwiczenia Algorytmy teorioliczbowe znajdują szerokie zastosowanie
Matematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
Bezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z
Matematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Zastosowania arytmetyki modularnej. Zastosowania arytmetyki modularnej
Obliczenia w systemach resztowych [Song Y. Yan] Przykład: obliczanie z = x + y = 123684 + 413456 na komputerze przyjmującym słowa o długości 100 Obliczamy kongruencje: x 33 (mod 99), y 32 (mod 99), x 8
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
MADE IN CHINA czyli SYSTEM RESZTOWY
MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia
Jeśli lubisz matematykę
Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków
Kongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)
Copyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman
Elementy teorii liczb. Matematyka dyskretna
Elementy teorii liczb Matematyka dyskretna Teoria liczb dziedzina matematyki, zajmująca się badaniem własności liczb (początkowo tylko naturalnych). Jej początki sięgają starożytności. Zajmowali się nią
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne
KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.
KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:
Kongruencje. Sławomir Cynk. 24 września Nowy Sącz. Instytut Matematyki Uniwersytetu Jagiellońskiego
Instytut Matematyki Uniwersytetu Jagiellońskiego 24 września 2008 Nowy Sącz Przykłady W. Sierpiński, 250 zadań z elementarnej teorii liczb, Biblioteczka Matematyczna 17. Zadanie 3. Pokazać, że jeżeli 7
Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych
Teoria liczb Zajmuje się własnościami liczb, przede wszystkim całkowitych Niepraktyczna? - kryptografia Dzielenie liczb całkowitych z resztą Niech b>0, wtedy dla każdej liczby całkowitej a istnieją jednoznacznie
Kongruencje oraz przykłady ich zastosowań
Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona
Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach.
Kongruencje Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej Spis
Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.
Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby
Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku
Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Teoria liczb 1.1 Dzielenie całkowitoliczbowe Zacznijmy od przypomnienia szkolnego algorytmu dzielenia liczb naturalnych. Podzielmy
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Grzegorz Bobiński. Matematyka Dyskretna
Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2016 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................
Grzegorz Bobiński. Matematyka Dyskretna
Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2013 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................
Liczby pierwsze wielomianowo - ekstremalnie trudne?
Liczby pierwsze wielomianowo - ekstremalnie trudne? Wojciech Czerwiński Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski 28 sierpnia 2011 Wojciech Czerwiński PRIMES w P 1/12 Problem Wejście:
Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji
Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego
Kongruencje i ich zastosowania
Kongruencje i ich zastosowania Andrzej Sładek sladek@ux2.math.us.edu.pl Instytut Matematyki, Uniwersytet Śląski w Katowicach Poznamy nowe fakty matematyczne, które pozwolą nam w łatwy sposób rozwiązać
Tajemnice liczb pierwszych i tych drugich
Tajemnice liczb pierwszych i tych drugich Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby całkowite stworzył dobry Bóg, wszystko inne wymyślili ludzie Leopold Kronecker (1823-1891) Liczby
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Matematyka dyskretna
Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach
Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) Chińskie twierdzenie o resztach Wybrane zagadnienia algorytmiki i programowania I 27 października 2010 Największy wspólny dzielnik - definicja
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Metoda Lenstry-Shora faktoryzacji dużych liczb całkowitych
Metoda Lenstry-Shora faktoryzacji dużych liczb całkowitych Tomasz Stroiński 23.06.2014 Po co faktoryzować tak duże liczby? System RSA Działanie systemu RSA Każdy użytkownik wybiera duże liczby pierwsze
Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Kierunkowy dla specjalności: matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Elementy teorii liczb i kryptografii Elements of Number Theory and Cryptography
0 --> 5, 1 --> 7, 2 --> 9, 3 -->1, 4 --> 3, 5 --> 5, 6 --> 7, 7 --> 9, 8 --> 1, 9 --> 3.
(Aktualizacja z dnia 3 kwietnia 2013) MATEMATYKA DYSKRETNA - informatyka semestr 2 (lato 2012/2013) Zadania do omówienia na zajęciach w dniach 21 i 28 kwietnia 2013 ZESTAW NR 3/7 (przykłady zadań z rozwiązaniami)
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
0.1 Pierścienie wielomianów
0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Matematyka dyskretna. Wykład 5: Funkcje multiplikatywne. Gniewomir Sarbicki
Matematyka dyskretna Wykład 5: Funkcje multiplikatywne Gniewomir Sarbicki Definicja: Funkcję f : N Z nazywamy: multiplikatywną, jeżeli n, m NW D(n, m) = 1 = f(nm) = f(n)f(m) całkowicie multiplikatywną,
Liczby pierwsze Mersenne a i Fermata. Liczby pierwsze Mersenne a i Fermata
Liczby dwumianowe N = a n ± b n Tak zwane liczby dwumianowe N = a n ± b n łatwo poddają się faktoryzacji. Wynika to z wzorów (polecam sprawdzenie!) a n b n = (a b) ( a n 1 + a n 2 b +... + ab n 2 + b n
Algorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
I) Reszta z dzielenia
Michał Kremzer tekst zawiera 9 stron na moim komputerze Tajemnice liczb I) Reszta z dzielenia 1) Liczby naturalne dodatnie a, b, c dają tę samą resztę przy dzieleniu przez 3. Czy liczba A) a + b + c B)
urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania
Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja
a)wykaż,żejeżeli2 n 1jestliczbapierwszą,to2 n 1 (2 n 1)jestliczbądoskonałą.
Teoria liczb z elementami kryptografii Lista 1-Rozmaitości Liczby doskonałe, zaprzyjaźnione, trójkątne itp. były przedmiotem zainteresowania matematyków począwszy od Pitagorasa(VI-V w. p.n.e) przynajmniej
Zarys algorytmów kryptograficznych
Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................
2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16
DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy
Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
Sumy kwadratów kolejnych liczb naturalnych
Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =
Odwrotne twierdzenie Fermata. Odwrotne twierdzenie Fermata
Przypomnijmy... a p, a p 1 1 (mod p). Zachodzi naturalne pytanie...... czy z faktu a m 1 1 (mod m) wynika, że m = p? Niekoniecznie. Wprawdzie, jeszcze przed 25 wiekami chińscy matematycy uważali, że podzielność
Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),
Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)
n = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Systemy z kluczem publicznym Klasyczne systemy kryptograficzne
Pierścień wielomianów jednej zmiennej
Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów
Teoria liczb. x 3 + 3y 3 + 9z 3 9xyz = 0. x 2 + 3y 2 = 1998x.
Teoria liczb grupa starsza poniedziałek, 27 września 2004 Równania teorioliczbowe.. Rozwiazać w liczbach całkowitych x, y, z. x 3 + 3y 3 + 9z 3 9xyz = 0. 2. Rozwiazać w liczbach całkowitych dodatnich x,
Wykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
LICZBY PIERWSZE. Jan Ciurej Radosław Żak
LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Rozwijanie uzdolnień matematycznych uczniów. semestr letni, 2018/2019 wykład nr 8
Rozwijanie uzdolnień matematycznych uczniów semestr letni, 2018/2019 wykład nr 8 OMJ 2018/19 część korespondencyjna, zadanie 2 Będzie korekta B.S. na następnym wykładzie! OMJ 2018/19 część korespondencyjna,
Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): -
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): - 1. Informacje ogólne koordynator
Parametry systemów klucza publicznego
Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.
Ćwiczenia z teoria liczb, ciąg dalszy (pt 15 maja) Matematyka Dyskretna
Ćwiczenia z teoria licz, ciąg dalszy (pt 15 maja) Matematyka Dyskretna Przypomnienie: Mówimy a (a jest względnie pierwsze z ) jeśli NW D(a, ) = 1. (Zero jest podzielne przez każdą liczę naturalną, więc
Joanna Kluczenko 1. Spotkania z matematyka
Do czego moga się przydać reszty z dzielenia? Joanna Kluczenko 1 Spotkania z matematyka Outline 1 Co to sa 2 3 moje urodziny? 4 5 Jak tworzona jest liczba kontrolna w kodach towarów w sklepie? 6 7 TWIERDZENIE
Daniela Spurtacz, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 08/09. Tresci rozwiązanych
Matematyka dyskretna
Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o
Kryptologia przykład metody RSA
Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza
Wielomiany podstawowe wiadomości
Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy 2016/2017 Potęgowanie Dla dowolnej liczby dodatniej
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Wydział Fizyki, Matematyki i Informatyki Kierunek studiów: Matematyka
Algorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można