Odwrotne twierdzenie Fermata. Odwrotne twierdzenie Fermata
|
|
- Beata Sawicka
- 6 lat temu
- Przeglądów:
Transkrypt
1
2 Przypomnijmy... a p, a p 1 1 (mod p). Zachodzi naturalne pytanie czy z faktu a m 1 1 (mod m) wynika, że m = p? Niekoniecznie. Wprawdzie, jeszcze przed 25 wiekami chińscy matematycy uważali, że podzielność przez n liczby 2 n 2 jest równoznaczna z pierwszością n (jeszcze trzysta trzydzieści lat temu zgadzał się z tym sam Leibniz), ale Sarrus (francuski spec od algebry, Strasbourg, 1819) pokazał, że (mod 341), mimo że 341 = Rzeczywiście: = 1023 = dzieli ( ) (bo ). Podobnie mamy (mod 91), mimo że 91 = Wprowadzając pewne dodatkowe ograniczenie można sformułować... twierdzenie Lucasa (odwrotne do twierdzenia Fermata): Jeżeli, dla pewnej liczby a zachodzi kongruencja a m 1 1 (mod m), natomiast nie zachodzi dla żadnego t; 0 < t < m 1 to moduł m jest liczbą pierwszą.
3 Dowód: z warunków twierdzenia wynika, że rząd liczby a modulo m jest równy m 1, a więc jest równy maksymalnej wartości φ(m), która to wartość dla modułu złożonego ) m = p 1... ) p r wynosi φ(m) = m (1 1p1... (1 1pr a więc zachodzi φ(m) m ( 1 1 p 1 ) = m m p 1 m 1, czyli dla φ(m) = m 1 liczba m musi być liczba pierwszą. Badając ewentualne spełnianie kongruencji a t 1 1 (mod t) dla t; 0 < t < m 1 wystarczy się oczywiście ograniczyć do wykładników, które są dzielnikami m 1. twierdzenie Lucasa (zmodyfikowane) Jeżeli liczby q 1, q 2,..., q s są dzielnikami liczby m 1 i dla dowolnego a zachodzi a m 1 1 (mod m), a nie zachodzi żadna z kongruencji to liczba m jest liczbą pierwszą. a m 1 q i 1 (mod m), i = 1,..., s
4 przykład Jak praktycznie badać spełnianie kongruencji a m 1 1 (mod m) na przykład dla m = 143? Wybieramy zwykle małe a na przykład 2 i dla m 1 = 142 konstruujemy pierwszą kolumnę tabeli (każdy następny wiersz to podłoga z poprzednika/2) (mod 143) Drugą kolumnę wypełniamy od dołu; podnosimy do kwadratu i (ewentualnie) domnażamy przez dwa. 1 2 Okazuje się, że 142-ga potęga dwójki nie przylega do 1 modulo 143; wnioskujemy, że 143 nie jest liczbą pierwszą. Jeszcze przed epoką komputerów, Lehmer i Poulet zbudowali tabele wszystkich liczb złożonych m, spełniających a m 1 1 (mod m) dla m sięgających do milionów, podając dla każdej z nich (jakiś) czynnik pierwszy.
5 Prawdopodobne liczby pierwsze i liczby pseudopierwsze Definicja Liczba naturalna n > 1 jest prawdopodobną liczbą pierwszą przy podstawie b jeżeli b n 1 1 (mod n). Jeżeli liczba taka jest złożona, to nazywamy ją liczbą pseudopierwszą przy podstawie b. Czasem używa się określeń: prawdopodobne (pseudopierwsze) liczby Fermata, przy podstawie b. Tak więc liczba n = 341 jest liczbą pseudopierwszą przy podstawie 2; podobnie liczba n = 91 jest liczbą pseudopierwszą przy podstawie 3. Co ciekawe, istnieją liczby n, tzw. liczby Carmichaela, które spełniają kogruencję b n 1 1 (mod n) przy dowolnej podstawie b, b n. Taką liczbą jest liczba n = 561 = Wynika to z małego twierdzenia Fermata i chińskiego twierdzenia o resztach: b 2 1 (mod 3) b 560 = (b 2 ) (mod 3), b 10 1 (mod 11) b 560 = (b 10 ) 56 1 (mod 11), b 16 1 (mod 17) b 560 = (b 16 ) 35 1 (mod 17). a więc b (mod ( )) dla wszystkich b 561 =
6 Liczby Carmichaela Twierdzenie Spełnienie kongruencji b n 1 1 (mod n) dla dowolnej podstawy b, b n będzie możliwe, wtedy i tylko wtedy, gdy λ(n) n 1, albo n 1 (mod λ(n)). I rzeczywiście: dla liczby Carmichaela 561 mamy λ(561) = [φ(3), φ(11), φ(17)] = [2, 10, 16] = 80; (mod 80). Kolejne twierdzenie... Liczba Carmichaela musi być liczbą nieparzystą i musi mieć przynajmniej trzy czynniki pierwsze: K n = p k, K 3, k=1 gdzie wszystkie nieparzyste p k, k = 1,..., K spełniają warunek λ(p k ) (n 1), czyli p k 1 (n 1) dla każdego 1 k K.
7 Dowód: Z kongruencji n 1 (mod ()λ(n)) wynika, że (n, λ(n)) = 1. Funkcja Carmichaela, jest, dla n > 2 zawsze parzysta, a więc n musi być nieparzyste. Funkcja Carmichaela λ(n) jest też zawsze podzielna przez φ(p α ), gdzie p α jest czynnikiem n. Ale φ(p α ) = p α 1 (p 1), czyli dla α > 1 istniałby wspólny dzielnik n i λ(n) liczba p. Nie mogą więc w rozkładzie kanonicznym n występować potęgi czynniki pierwszych wyższe od pierwszej. Pozostaje wykazać, że n p 1 p 2. Wówczas bowiem λ(n) = [p 1 1, p 2 1] i z kongruencji n 1 (mod λ(n)) wynika, że liczba n 1 = p 1 p 2 1 = (p 1 1)p 2 + p 2 1 musi być podzielna przez p 1 1 co będzie możliwe (patrz wyżej) wtedy i tylko wtedy, gdy p 1 1 p 2 1. Analogicznie dowodzimy, że musi zachodzić p 2 1 p 1 1 a to oznacza, że p 1 = p 2.
Twierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera
Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Kongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Kongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
Funkcje arytmetyczne. Funkcje arytmetyczne
Definicja 1 Każda arytmetyczna, to funkcja f(n, n N, przyporządkowująca N C, (R. Na przykład: f(n = n. Definicja 2: Funkcję arytmetyczną f : N f(n R nazywamy multyplikatywną, jeżeli m,n N, m n mamy f(mn
Pierwiastki pierwotne, logarytmy dyskretne
Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem
Tajemnice liczb pierwszych i tych drugich
Tajemnice liczb pierwszych i tych drugich Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby całkowite stworzył dobry Bóg, wszystko inne wymyślili ludzie Leopold Kronecker (1823-1891) Liczby
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
Matematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Matematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
Sumy kwadratów kolejnych liczb naturalnych
Sumy kwadratów kolejnych liczb naturalnych Andrzej Nowicki 24 maja 2015, wersja kk-17 Niech m < n będą danymi liczbami naturalnymi. Interesować nas będzie równanie ( ) y 2 + (y + 1) 2 + + (y + m 1) 2 =
Sumy kolejnych bikwadratów
Sumy kolejnych bikwadratów Znane są następujące dwie równości Andrzej Nowicki 18 maja 2015, wersja bi-12 3 2 + 4 2 = 5 2 3 3 + 4 3 + 5 3 = 6 3. Czy istnieją podobnego typu równości dla czwartych potęg?
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.
KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:
Ćwiczenia z teoria liczb, ciąg dalszy (pt 15 maja) Matematyka Dyskretna
Ćwiczenia z teoria licz, ciąg dalszy (pt 15 maja) Matematyka Dyskretna Przypomnienie: Mówimy a (a jest względnie pierwsze z ) jeśli NW D(a, ) = 1. (Zero jest podzielne przez każdą liczę naturalną, więc
Liczby całkowite. Zadania do pierwszych dwóch lekcji
Matematyka w klasie IE Zadania do zajęć w Marynce Jesień 2012 Liczby całkowite prof. W. Gajda Zagadka Pomyśl sobie jakąś dużą liczbę całkowitą. Dodaj do niej tę samą liczbę. Do uzyskanej sumy dodaj jeszcze
Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji
Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego
Liczby pierwsze na straży tajemnic
Liczby pierwsze na straży tajemnic Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby rzadzą światem Ile włosów na głowie? Dowód z wiedzą zerową Reszty kwadratowe Dzielenie sekretu Ile włosów
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Wybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
Kongruencje oraz przykłady ich zastosowań
Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Zestaw zadań dotyczących liczb całkowitych
V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.
Matematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku
Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Teoria liczb 1.1 Dzielenie całkowitoliczbowe Zacznijmy od przypomnienia szkolnego algorytmu dzielenia liczb naturalnych. Podzielmy
Rzędy Elementów Grupy Abelowej Andrzej Nowicki 16 września 2015, wersja rz-15
Materiały Dydaktyczne 2015 Rzędy Elementów Grupy Abelowej Andrzej Nowicki 16 września 2015, wersja rz-15 Niech G będzie grupą z elementem neutralnym e i niech a G. Załóżmy, że istnieje co najmniej jedna
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach.
Kongruencje Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej Spis
Wielomiany. XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1
XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1 Definicja Definicja Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję W (x) = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1 x + a 0 gdzie
2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16
DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy
Liczby pierwsze Mersenne a i Fermata. Liczby pierwsze Mersenne a i Fermata
Liczby dwumianowe N = a n ± b n Tak zwane liczby dwumianowe N = a n ± b n łatwo poddają się faktoryzacji. Wynika to z wzorów (polecam sprawdzenie!) a n b n = (a b) ( a n 1 + a n 2 b +... + ab n 2 + b n
MADE IN CHINA czyli SYSTEM RESZTOWY
MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.
Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21
Jeśli lubisz matematykę
Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,
Matematyka dyskretna. Wykład 5: Funkcje multiplikatywne. Gniewomir Sarbicki
Matematyka dyskretna Wykład 5: Funkcje multiplikatywne Gniewomir Sarbicki Definicja: Funkcję f : N Z nazywamy: multiplikatywną, jeżeli n, m NW D(n, m) = 1 = f(nm) = f(n)f(m) całkowicie multiplikatywną,
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Kongruencje. Sławomir Cynk. 24 września Nowy Sącz. Instytut Matematyki Uniwersytetu Jagiellońskiego
Instytut Matematyki Uniwersytetu Jagiellońskiego 24 września 2008 Nowy Sącz Przykłady W. Sierpiński, 250 zadań z elementarnej teorii liczb, Biblioteczka Matematyczna 17. Zadanie 3. Pokazać, że jeżeli 7
Kongruencje i ich zastosowania
Kongruencje i ich zastosowania Andrzej Sładek sladek@ux2.math.us.edu.pl Instytut Matematyki, Uniwersytet Śląski w Katowicach Poznamy nowe fakty matematyczne, które pozwolą nam w łatwy sposób rozwiązać
w. SIERPIŃSKI (Warszawa)
ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MA.TEMATYCZNE IX (1966) w. SIERPIŃSKI (Warszawa) O podzielności liczb Odczyt popularny, wygłoszony w Warszawie 11 listopada 1964 r. Z
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 202/203 Seria VI (grudzień 202) rozwiązania zadań 26. Udowodnij, że istnieje 0 00 kolejnych liczb całkowitych dodatnich nie większych
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Zadania z arytmetyki i teorii liczb
Zadania z arytmetyki i teorii liczb Andrzej Nowicki 1. Znaleźć największą wartość iloczynu liczb naturalnych, których suma równa się 2010. 2. Z cyfr 1, 2,..., 9 utworzono trzy trzycyfrowe liczby o największym
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
a)wykaż,żejeżeli2 n 1jestliczbapierwszą,to2 n 1 (2 n 1)jestliczbądoskonałą.
Teoria liczb z elementami kryptografii Lista 1-Rozmaitości Liczby doskonałe, zaprzyjaźnione, trójkątne itp. były przedmiotem zainteresowania matematyków począwszy od Pitagorasa(VI-V w. p.n.e) przynajmniej
Podróże po Imperium Liczb
Podróże po Imperium Liczb Część 06. Podzielność w Zbiorze Liczb Całkowitych Rozdział 10 10. Sporadyczne ciągi arytmetyczne Andrzej Nowicki 10 maja 2012, http://www.mat.uni.torun.pl/~anow Spis treści 10
0 --> 5, 1 --> 7, 2 --> 9, 3 -->1, 4 --> 3, 5 --> 5, 6 --> 7, 7 --> 9, 8 --> 1, 9 --> 3.
(Aktualizacja z dnia 3 kwietnia 2013) MATEMATYKA DYSKRETNA - informatyka semestr 2 (lato 2012/2013) Zadania do omówienia na zajęciach w dniach 21 i 28 kwietnia 2013 ZESTAW NR 3/7 (przykłady zadań z rozwiązaniami)
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Wzory skróconego mnożenia w zadaniach olimpijskich
Wzory skróconego mnożenia w zadaniach olimpijskich Jacek Dymel 17.10.008 Bardzo często uczniowie wyrażają taką opinię, że do rozwiązywania zadań olimpijskich niezbędna jest znajomość wielu skomplikowanych
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 6a
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 6a Spis treści 10 Trochę matematyki (c.d.) 3 10.19 Reszty kwadratowe w Z p.............. 3 10.20
Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku.
Liczby pierwsze Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczbą pierwszą nazywany każdą taką liczbę naturalną, która posiada dokładnie dwa dzielniki naturalne, czyli jest podzielna
SCENARIUSZ LEKCJI MATEMATYKI. Temat: Podzielność liczb całkowitych Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność
SCENARIUSZ LEKCJI MATEMATYKI Temat: Podzielność liczb całkowitych Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność Czas: 1 godzina dydaktyczna Cele zajęć: Uczeń po zajęciach: przedstawia
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Badanie pierwszości liczby, klasa NP i test Rabina
Badanie pierwszości liczby, klasa NP i test Rabina Mateusz Chynowski 11 stycznia 2009 Liczby pierwsze są bardzo istotne zarówno w matematyce, jak i informatyce. W tej drugiej nauce istnieje dość poważny
I) Reszta z dzielenia
Michał Kremzer tekst zawiera 9 stron na moim komputerze Tajemnice liczb I) Reszta z dzielenia 1) Liczby naturalne dodatnie a, b, c dają tę samą resztę przy dzieleniu przez 3. Czy liczba A) a + b + c B)
1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Daniela Spurtacz, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 08/09. Tresci rozwiązanych
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Wielokąty foremne. (Konstrukcje platońskie)
Wielokąty foremne (Konstrukcje platońskie) 1 Definicja 1. Wielokąt wypukły nazywa się foremny, jeżeli ma wszystkie kąty równe i wszystkie boki równe. Przykładami wielokątów foremnych są trójkąt równoboczny,
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie
Matematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Joanna Kluczenko 1. Spotkania z matematyka
Do czego moga się przydać reszty z dzielenia? Joanna Kluczenko 1 Spotkania z matematyka Outline 1 Co to sa 2 3 moje urodziny? 4 5 Jak tworzona jest liczba kontrolna w kodach towarów w sklepie? 6 7 TWIERDZENIE
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Pierścień wielomianów jednej zmiennej
Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów
Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Zadania z algebry liniowej - sem. I Struktury algebraiczne
Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,
Podzielność liczb. Podzielność liczb
Euclides i kwestie podzielności liczb Definicja Niech a, b Z. Mówimy, że liczba a > 0 dzieli liczbę b, albo a b, jeżeli istnieje taka całkowita liczba c, że b = ac. Definicja a b a > 0 i b = ac, c całkowite.
Spis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
5. Logarytmy: definicja oraz podstawowe własności algebraiczne.
5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008
Zadania z elementarnej teorii liczb Andrzej Nowicki
Zadania z elementarnej teorii liczb Andrzej Nowicki UMK, Toruń 2012 1. Wykazać, że liczba 2222 5555 + 5555 2222 jest podzielna przez 7. 2. Wykazać, że liczba 222222 555555 + 555555 222222 jest podzielna
Schematy Piramid Logicznych
Schematy Piramid Logicznych geometryczna interpretacja niektórych formuł Paweł Jasionowski Politechnika Śląska w Gliwicach Wydział Matematyczno-Fizyczny Streszczenie Referat zajmuje się następującym zagadnieniem:
Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie
Rozmieszczenie liczb pierwszych Wprowadzamy funkcję π(x) def = p x 1, liczbę liczb pierwszych nie przekraczających x. Łatwo sprawdzić: π(12) = 5 (2, 3, 5, 7, 11); π(17) = 7 (2, 3, 5, 7, 11, 13, 17). Jeszcze
I Liceum Ogólnokształcące im. Cypriana Kamila Norwida w Bydgoszczy. Wojciech Kretowicz PODZIELNOŚĆ SILNI A SUMA CYFR
I Liceum Ogólnokształcące im. Cypriana Kamila Norwida w Bydgoszczy Wojciech Kretowicz PODZIELNOŚĆ SILNI A SUMA CYFR Opiekun Mariusz Adamczak wojtekkretowicz@gmail.com Bydgoszcz 2017 Spis treści Wstęp...
Równania wielomianowe
Instytut Matematyki Uniwersytetu Jagiellońskiego 20 marca 2009 Kraków Równanie z jedną niewiadomą Wielomian jednej zmiennej to wyrażenie postaci P(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, gdzie współczynniki
Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia
1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Poprawna odpowiedź Zad. 4 Zad. 5 Zad.
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
III Powiatowy Konkurs Matematyczny dla uczniów gimnazjum organizowany przez II LO im. Marii Skłodowskiej-Curie w Końskich
III Powiatowy Konkurs Matematyczny dla uczniów gimnazjum organizowany przez II LO im. Marii Skłodowskiej-Curie w Końskich Rozwiązania zadań konkursowych 01 czerwca 2014 r. Zadanie 1. Uzasadnij nierówność
Liczby Mersenne a, Fermata i inne liczby
Podróże po Imperium Liczb Część 8 Liczby Mersenne a, Fermata i inne liczby Andrzej Nowicki Wydanie drugie, uzupełnione i rozszerzone Olsztyn, Toruń, 2012 MER - 37(980) - 20.05.2012 Spis treści Wstęp 1
Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.
Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
Treści zadań Obozu Naukowego OMJ
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana
Jednoznaczność rozkładu na czynniki pierwsze I
Jednoznaczność rozkładu na czynniki pierwsze I 1. W Biwerlandii w obiegu są monety o nominałach 5 eciepecie i 8 eciepecie. Jaką najmniejszą (dodatnią) kwotę można zapłacić za zakupy, jeżeli sprzedawca