MOCE I KOMPENSACJA REAKTANCYJNA W LINIOWYCH OBWODACH TRÓJFAZOWYCH. Leszek S. Czarnecki, IEEE Life Fellow Louisiana State University

Wielkość: px
Rozpocząć pokaz od strony:

Download "MOCE I KOMPENSACJA REAKTANCYJNA W LINIOWYCH OBWODACH TRÓJFAZOWYCH. Leszek S. Czarnecki, IEEE Life Fellow Louisiana State University"

Transkrypt

1 MOCE I KOMPENSACJA REAKANCYJNA W LINIOWYCH OBWODACH RÓJFAZOWYCH Lszk S. Czarncki, IEEE Lif Fllow Louisiana Stat Univrsity

2 Rys historyczny Pirwsz wnioski o nikorzystnym wpływi nizrównoważnia odbiornika na współczynnik mocy pochodzą od Stinmtza (1917) i Lyona (1920) Obsrwacja ta ni wpłynęła na równani mocy odbiorników trójfazowych, któr w wszystkich toriach mocy: AIEE (1920); Buchholz (1922) Curtis & Silb (1935); Quad (1937); Rosnzwig (1939); Fryz (1985); Koch (1986); Dpnbrock (1993); IEEE Standard (1992) ma tę samą postać S = P + Q

3 Moc nizrównoważnia pojawia się w równaniu mocy S = P + Q + D u po raz pirwszy w 1988 roku, w pracy: Lszk S. Czarncki: Orthogonal dcomposition of th currnt in a thr-phas non-linar asymmtrical circuit with nonsinusoidal voltag, IEEE ransactions on Instrumntation and Masurmnt

4 Kluczowym zagadninim przy wyprowadzaniu równania mocy S = P + Q + D u był wybór dfinicji mocy pozornj S W artykul: Orthogonal dcomposition of th currnt in a thr-phas non-linar asymmtrical circuit with nonsinusoidal voltag, dfinicję mocy pozornj S wybrano intuicyjni, jako: S = u i rafność tgo wyboru została potwirdzona analizą dopiro w 1999r, w artykul: Lszk S. Czarncki: "Enrgy flow and powr phnomna in lctrical circuits: illusions and rality," Archiv fur Elktrotchnik, (82), No. 4, pp , 1999.

5 W artykul tym wykazano, ż arytmtyczna i gomtryczna dfinicj mocy pozornj, df S = U I + U I + U I = S R R SS A df 2 2 S = P + Q = S odbiorników nizrównoważonych G są błędn zaś poprawną jst dfinicja: R S R S S = u i = U + U + U I + I + I 5

6 Moc w obwodach trójprzwodowych z odbiornikam LI zasilanych symtrycznym i sinusoidalnym napięcim u () t i () t u() t = u () t = u, i( t) = i () t = i R R S S u() t i() t 1 ( ) 1 P = u i + u i + u i dt = ( t ) ( t ) dt = (, ) u i ui R R SS 0 0 (, ) 1 x y = ( t ) ( t ) dt x y 0 jst iloczynm skalarnym wktorów trójfazowych, x (t) i y (t) Wktory trójfazow x (t) i y (t) są wzajmni ortogonaln wtdy, gdy (x, y ) = 0 6

7 Wartość skutczna wilkości trójfazowych Moc czynna symtryczngo urządznia trójfazowgo P = R 1 ( i i i ) dt R 1 ( t ) ( t ) dt R (, ) R + + = = = i i ii i R S 0 0 i = 1 ( i + i + i ) dt = i + i + i 0 Funkcjonał: R S R S jst wartością skutczną prądu trójfazowgo. Jśli wktory x (t) i y (t) są ortogonaln, to jst (x, y ) = 0, wówczas x + y = x + y 7

8 Składow Fizyczn Prądu (SFP) (ang.: CPC- Currnts Physical Componnts) 3-fazowgo odbiornika LI zasilango symtrycznym sinusoidalnym napięcim i = ia + ir + iu ia = i = i r j 2 R{ 1t G U ω } j 2 R{ 1t jb U ω } 1 u 2 R{ # j ω = AU t } Prąd czynny Prąd birny Prąd nizrównoważnia UR UR # U = U, U = U S U U S Y = G + jb = Y + Y + Y RS S R A = ( Y + αy + α Y ) * S R RS Admitancja równoważna Admitancja nizrównoważnia 8

9 i = ia + ir + iu Wartości skutczn prądu czynngo, birngo i prądu nizrównoważnia: ia = G u ir = B u i = A u u Prądy czynny, birny i nizrównoważnia są wzajmni ortogonaln, gdyż ich iloczyny skalarn są równ zru (i a, i r ) = 0, (i a, i u ) = 0, (i r, i u ) = 0 Zatm = a + r + u i i i i 9

10 Równani mocy: a r u 2 i = i + i + i, u S = P + Q + D u D u df = u i = A u u 2 jst mocą nizrównoważnia 10

11 Przykład: u = = 381 V Y Y RS 1 = = j = j180 S Z R = G + jb = Y = j S RS A = Y = α * RS S j i = = 511 A i = G u = = 343 A, a u ir = B u = = 114 A, i = A u = = 361 A, a r u i = i + i + i = = 511 A S = 195 kva, P = 131 kw, Q = 43 kvar, D u = 138 kva 11

12 Kompnsacja raktancyjna w obwodach trójfazowych z sinusoidalnymi przbigami prądu i napięcia objmuj: - kompnsację mocy birnj - równoważni odbiorników nizrównoważonych Pirwsza koncpcja kompnsatora równoważącgo i mtoda wyznaczania jgo paramtrów pochodzi od Stinmtz a, z roku 1917 W sytuacji braku pojęcia moc nizrównoważnia wpływ równoważnia odbiornika na jgo moc pozorną S i współczynnik mocy λ pozostaj nijasny Kompnsator Stinmtz a to obwód, który rdukuj oscylacj mocy chwilowj Późnijsz mtody projktowania, często gomtryczn, poszukiwały obwodu kompnsującgo składową symtryczną koljności ujmnj prądu odbiornika

13 Algbraiczna mtoda wyznaczania paramtrów kompnsatora równoważącgo, oparta na koncpcji Składowych Fizycznych Prądu została przdstawiona w 1989 r. artykul: Lszk S. Czarncki: Ractiv and unbalancd currnts compnsation in thr-phas circuits undr nonsinusoidal conditions, IEEE ransactions on Instrumntation and Masurmnt, IM-38, No. 3, pp , 1989.

14 Raktancyjna kompnsacja prądu birngo i prądu nizrównoważnia λ = P = S i a a 2 + u 2 + r 2 i i i Y RSc Y Sc Y Rc = j RS = j S = j R Prąd birny i prąd nizrównoważnia odbiornika są całkowici skompnsowan, jśli suscptanc kompnsatora mają wartość RS S = ( 3 R{ A} Im{ A} B )/3 = (2 Im{ A} B )/3 R = ( 3 R{ A} Im{ A} B )/3 14

15 Przykład: Y = G + jb = Y = j S RS A j = α * YRS = = j 0.64 S i = 343 A, i = 361 A, i = 114 A, i = 511 A, λ = 0.67 a u r S = 195 kva RS S R = ( 3 R{ A} Im{ A} B ) / 3 = 0.30 S = ( 2 Im{ A} B ) / 3 = 0.52 S = (- 3 R{ A} Im{ A} B ) / 3 = S i = 343 A, i = 0, i = 0, i = 343 A, λ=1 a u r S = 131 kva 15

16 Przdstawion równani mocy i mtoda obliczania paramtrów kompnsatora jst punktm startowym do dfinicji mocy i projktowania kompnsatorów raktancyjnych odbiorników zasilanych napięcim nisinusoidalnym W istoci, w cytowanych artykułach: Lszk S. Czarncki: Orthogonal dcomposition of th currnt in a thr-phas non-liar asymmtrical circuit with nonsinusoidal voltag, IEEE rans. on Instr. and Mas Lszk S. Czarncki: Ractiv and unbalancd currnts compnsation in thr-phas circuits undr nonsinusoidal conditions, IEEE rans. on Instr. and Mas zagadninia t zostały rozwiązan dla odbiorników zasilanych napięcim nisinusoidalnym Wyniki t dotyczą jdnak jdyni odbiorników trójfazowych zasilanych trójprzwodowo

17 Powyższ wyniki dotyczą jdnak jdyni odbiorników trójfazowych zasilanych trójprzwodowo Ni są on prawdziw w przypadków odbiorników trójfazowych z przwodm zrowym

18 Równani mocy odbiorników LI zasilanych cztroprzwodowo napięcim symtrycznym i sinusoidalnym Wartość skutczna prądu trójfazowgo w obwodzi cztroprzwodowym RN in i = i ( ) R i 3 2

19 Odbiorniki równoważn z względu na moc czynną i moc birną ia() t = Gu() t G = P = P = ( GR + GS + G ) u 3U 3 ir() t = B d u (). t d( ωt) R Q 1 Q B 1 = = = ( BR + BS + B ) u UR n z a r u u u i i i = i = i + i

20 ,,, Składow Fizyczn Prądu zasilania n z a r u u i = i + i + i + i i i n AUR df n n n u AU j ω t A # j ω = U t n AU S = 2R{ } 2R{ } z AUR df z z z u AUR j ω t A R j ω = U t z AUR = 2R{ } 2R{ }. df n A = 1 ( YR + αys+ α* Y) 3 df z A = 1 ( YR + α* YS+ αy). 3

21 n z a r u u i = i + i + i + i Składow Fizyczn Prądu są wzajmni ortogonaln, zatm n 2 z 2 a r u u i = i + i + i + i. i = G u a r i = B u n u n i = A u z u z i = A u.

22 U = 230V R S i = I + I + I + = 51, ,0 = 126,0 A. Y R = 1 = 0,10 j 0,20 S, S 0,50 S 0. 2 j 4 Y = Y = + u = 3 U = = 398,4 V Y = G+ jb 1 = ( YR + YS+ Y) = 0,02 j 0,067 S. 3 0 n 122,7 A = 1 ( YR + αys+ α* Y ) = 0,0924 S 3 0 z 1 ( 103 R S ) = 0,217 j A = Y + α* Y + αy S. 3 a 2 i = G u = 0,20 398,4 = 79,68 A r 2 i = B u = 0, ,4 = 26,57 A n n 2 u u i = A = 0, ,4 = 36,81 A z z 2 u u i = A = 0, ,4 = 86,45 A 2 2 n 2 z a r u u i = i + i + i + i = 79, , , ,45 = 126,0A.

23 2 2 2 n 2 z 2 2 a r u u i = i + i + i + i u n2 z2 = + + u + u S P Q D D P Q = i u = G u df a = ± i u = B u r 2 2 D D df n n n 2 u = iu u = A u df z z z 2 u = iu u = A u

24 U = 230V Y R = 1 = 0,10 j 0,20 S, S 0,50 S 0. 2 j 4 Y = Y = R S i = I + I + I + = 51, ,0 = 126,0 A. u = 3 U = = 398,4 V Y = G+ jb 1 = ( YR + YS+ Y) = 0,02 j 0,067 S. 3 0 n 122,7 A = 1 ( YR + αys+ α* Y ) = 0,0924 S 3 0 z 1 ( 103 R S ) = 0,217 j A = Y + α* Y + αy S P = G u = 0,20 (398,4) = 31,7 kw 2 2 Q = B u = 0, 0667 (398,4) = 10,6 kvar n n 2 2 u u D = A = 0,0924 (398,4) = 14,7 kva z z 2 2 u u D = A = 0,217 (398,4) = 34,4 kva. 2 2 n2 z S = P + Q + Du + Du = 31,7 + 10,6 + 14,7 + 34,4 = 50,2 kva

25 Kompnsacja raktancyjna w obwodach trójfazowych z przwodm zrowym P ia i λ = = = S i i i i i a a 2 + r 2 + n 2 u + z 2 u. i' r 0 if n i' u 0 if z i' u 0 if 1 ( ) R + S + B =. 1 ( n R + α S + α ) + = 0 3 j * A 1 ( z R + α S + α ) + = 0 3 j * A 5 równań, 3 niwiadom: sprzczny układ równań

26 i' r 0 if z i' u 0 if 1 ( ) R + S + B =. 1 ( z R + α S + α ) + = 0 3 j * A R S z = 2Im A B z z = 3 R A + Im A B = 3 R A + Im A B. z z

27 n i' u 0 if S R RS 'n j( + α + α* ) + A = 0 RS ' n u ' n u = ( 3R A Im A )/3 S R ' n u = (2Im A )/3 ' n u ' n u = ( 3R A Im A )/3

28 U = 120V u = 3U = = V R Y = G+ jb = ( YR + YS+ Y) = = j S j1 0 n j165 A = ( YR + αys+ α* Y) = α* Y = α* = = j0.061 S j1 0 z 1 * j75 A = ( YR + α YS+ αy) = αy = α = = j0.228 S j1 i = G u = = 34.7 A a r i = B u = = 34.7 A n u n i = A u = = 49.0 A z u z i = A u = = 49.0 A.

29 Kompnsator Y składowj zrowj: R S z = 2ImA B = S z z = 3 R A + ImA B = S = 3 R A + ImA B = S. z z n z* n A' = A + A = ( j 0.228) * j = j S Kompnsator składowj ujmnj: n n RS = ( 3R A' Im A' )/3 = 0 n S = (2Im A' )/3 = S n n R = ( 3R A' Im A' )/3 = S.

30 Poprawny opis właściwości nrgtycznych obwodów cztroprzwodowych z sinusoidalnym napięcim zasilania tworzy solidną podstawę do poszukiwania równania mocy i mtod projktowania kompnsatorów raktancyjnych pracujących przy napięciu odkształconym Powyższ wyniki dotyczą jdyni odbiorników trójfazowych zasilanych symtryczni Ni są on prawdziw w przypadków odbiorników trójfazowych z asymtrycznym napięcim zasilania

31 Moc stacjonarnych odbiorników LI zasilanych trójprzwodowo z asymtrycznym, lcz sinusoidalnym napięcim zasilania

32 Pułapka suprpozycji p p n n n p p n a r u a r u i = i + i = ( i + i + i ) + ( i + i + i ) Składow t ni są wzajmni ortogonaln. Wartość skutczna prądu zasilania ni moż być obliczana z sumy kwadratów wartości skutcznych tych szściu prądów składowych

33 Y * P jq Cb b = Gb+ jbb = = 2 2 u u a p n jω t = Gb = 2 R{ Gb ( + ) } i u U U ir = Bb u( t+ /4) = 2 R{ jbb ( U + U ) } p n jω t jωt b I Ib u Iu jωt i i = 2 R{( ) } = i = 2 R{ }. Rozkład prądu zasilania na Składow Fizyczn: i = i a + i r + i u

34 Można wykazać, ż prądy ta są wzajmni ortogonaln, zatm = a + r + u i i i i Mnożąc to równani przz kwadrat wartości skutcznj napięcia zasilania, u, otrzymuj się równani mocy odbiornika LI zasilango sinusoidalnym i asymtrycznym napięcim S = P + Q + D u

35 Przykład U R = 100V, j 2π / 3 US = 100 V, p U = V 0 n 60 U j Y P jq = G + jb = = j S u b b b 2 0 j j p n a 2 R{ a ω t j t j. j t } 2 R{ Gb ( + ) ω i = I = U U } = 2 R{ ω } A. 0 j j jωt p n jωt j jωt ir = 2 R{ Ir } = 2 R{ jbb ( U + U ) } = 2 R{ } A. 0 j j jωt j75 jωt iu= 2R{( I Ia Ir) } = 2R{ } A 0 j

36 R S i = I + I + I = = A Wartości skutczn Składowych Fizycznych prądu zasilania: i = G u = = A a r b i = B u = = A b u ur us u i = I + I + I = = A. Wryfikacja poprawności rozkładu prądu na Składow Fizyczn: a r u i + i + i = = A = i.

37 Sam rozkład prądu na Składow Fizyczn ni tworzy jszcz podstaw dla kompnsacji raktancyjnj prądu birngo i prądu nizrównoważnia gdyż ni okrśla rlacji tych prądów z paramtrami kompnsatora

38 U U n p = a = a jψ Equivalnt circuit of unbalancd LI load supplid with asymmtrical voltag: p p n n u = Y # # d + A + A I U U U p n J = A U n# n df * S α R α RS A = ( Y + Y + Y ) n p J = A U p# p df * S α R α RS A = ( Y + Y + Y ) 2a 2π 2π Yd = [ Y 2 Scosψ + YRcos( ψ ) + YRScos( ψ+ )] 1+ a 3 3 Yb = Y Yd Y = YS+ YR+ YRS.

39 Kompnsacja raktancyjna odbiorników LI zasilanych napięcim asymtrycznym

40 Warunk kompnsacji prądu birngo: B + B = Cb b 0 Warunk kompnsacji prądu nizrównoważnia: B RSURS+ S US + R UR Cb = 2 u ( p p p n n n YCd + Yd ) UR + ( AC + A ) U + ( AC + A ) U = 0 Y Cd j2a 2π 2π = [ 2 S cosψ + Rcos( ψ ) + RS cos( ψ+ )] 1+ a 3 3 A p = ( + α α ) * C j S R + RS A n = ( + α α ) * C j S R + RS

41 Równani kompnsatora: URS US U R RS Bb u RF1 RF2 RF 3 S = RF4 ImF ImF ImF ImF R 4 z współczynnikami macirzy: df j ψ * jψ F1= c3 (1 + a ) j ( α + αa ) df jψ jψ F2 = c1 (1 + a ) j ( 1 + a ) df j ψ * jψ F3 = c2 (1 + a ) j ( α + α a ) df j ψ F4 = ( 1 + a ) Y + A + ( 1 + a ) A. d p jψ n c c c df 2a cosψ = j 1+ a df 2a cos( ψ 120 ) = j 1+ a df 2a cos( ψ 240 ) = j. 1+ a

42 Przykład kompnsacji raktancyjnj: U R = 100V, j 2π / 3 US = 100 V,

43 Dziękuję za uwagę!

MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA

MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA MOCE I KOMPENSACJA W OBWODACH Z ODKSZAŁCONYMI I NIESYMEYCZNYMI PZEBIEGAMI PĄDU I NAPIĘCIA Część 4. Moce w niezrównoważonych obwodach trójfazowych z sinusoidalnymi przebiegami prądu i napięcia Leszek S.

Bardziej szczegółowo

( t) UKŁADY TRÓJFAZOWE

( t) UKŁADY TRÓJFAZOWE KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Moce i Kompensacja w Obwodach z Niesinusoidalnymi Przebiegami Prądu i Napięcia

Moce i Kompensacja w Obwodach z Niesinusoidalnymi Przebiegami Prądu i Napięcia Moce i Kompensacja w Obwodach z Niesinusoidalnymi Przebiegami Prądu i Napięcia Cz.. Moce w obwodach jednofazowych Prof. dr hab. Leszek S. Czarnecki, IEEE Life Fellow Alfredo M. Lopez Distinguished Professor

Bardziej szczegółowo

Automatyka-Elektryka-Zakłócenia, No.6, 2011, pp MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA

Automatyka-Elektryka-Zakłócenia, No.6, 2011, pp MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA Automatyka-Elektryka-Zakłócenia, No.6, 0, pp. 5-57 MOCE KOMPENACJA W OBWODACH Z ODKZTAŁCONYM NEYMETYCZNYM PZEBEGAM PĄDU NAPĘCA Część 6. eaktancyjne równoważenie trójprzewodowych obwodów trójfazowych z

Bardziej szczegółowo

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Źródła odkształcenia prądu układy przekształtnikowe Źródła odkształcenia prądu układy

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Temat: Pochodna funkcji. Zastosowania

Temat: Pochodna funkcji. Zastosowania Tmat: Pochodna funkcji. Zastosowania A n n a R a j f u r a, M a t m a t y k a s m s t r, W S Z i M w S o c h a c z w i Kody kolorów: Ŝółty now pojęci pomarańczowy uwaga A n n a R a j f u r a, M a t m a

Bardziej szczegółowo

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Wykład 7 Transformata aplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Prowadzący: dr inż. Tomasz Sikorski Instytut Podstaw lektrotechniki i lektrotechnologii

Bardziej szczegółowo

Automatyka-Elektryka-Zakłócenia MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA

Automatyka-Elektryka-Zakłócenia MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA Automatyka-Elektryka-Zakłócenia MOCE I KOMPENSACJA W OBWODACH Z ODKSZTAŁCONYMI I NIESYMETRYCZNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA Część 9. Błędne interpretacje właściwości energetycznych obwodów elektrycznych

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

Szeregowy obwód RC - model matematyczny układu

Szeregowy obwód RC - model matematyczny układu Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony

Bardziej szczegółowo

CZĘŚĆ II ROZPŁYWY PRĄDÓW SPADKI NAPIĘĆ STRATA NAPIĘCIA STRATY MOCY WSPÓŁCZYNNIK MOCY

CZĘŚĆ II ROZPŁYWY PRĄDÓW SPADKI NAPIĘĆ STRATA NAPIĘCIA STRATY MOCY WSPÓŁCZYNNIK MOCY EEKTROEERGETYKA - ĆWCZEA - CZĘŚĆ ROZPŁYWY PRĄDÓW SPADK APĘĆ STRATA APĘCA STRATY MOCY WSPÓŁCZYK MOCY Prądy odbiorników wyznaczamy przy założeniu, że w węzłach odbiorczych występują napięcia znamionowe.

Bardziej szczegółowo

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice. Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Systemy liniowe i stacjonarne

Systemy liniowe i stacjonarne Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

Przyjmuje się umowę, że:

Przyjmuje się umowę, że: MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy

Bardziej szczegółowo

Zasady rozliczeń za pobór a skutki ekonomiczne przesyłania

Zasady rozliczeń za pobór a skutki ekonomiczne przesyłania Zasady rozliczeń za pobór a skutki ekonomiczne przesyłania Autorzy: Waldemar Szpyra, Aleksander Kot, Wiesław Nowak, Rafał Tarko - AGH w Krakowie, Jacek Słowik Manstel Bednarczyk Słowik, Wiącek Sp. J. (

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO

OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO OBWODY JEDNOFAZOWE PRĄDU PRZEMIENNEGO mgr inż. Grzegorz Strzeszewski ZespółSzkółnrwWyszkowie 01 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Zagadnienie statyki kratownicy płaskiej

Zagadnienie statyki kratownicy płaskiej Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia

PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego I. Prawa Kirchoffa Celem ćwiczenia jest zapoznanie się z rozpływami prądów w obwodach rozgałęzionych

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym

Znikanie sumy napięć ïród»owych i sumy prądów w wielofazowym układzie symetrycznym Obwody trójfazowe... / OBWODY TRÓJFAZOWE Zikaie sumy apięć ïród»owych i sumy prądów w wielofazowym układzie symetryczym liczba faz układu, α 2π / - kąt pomiędzy kolejymi apięciami fazowymi, e jα, e -jα

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja

Bardziej szczegółowo

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU

ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Seweryn MAZURKIEWICZ* Janusz WALCZAK* ANALIZA WŁAŚCIWOŚCI FILTRU PARAMETRYCZNEGO I RZĘDU W artykule rozpatrzono problem

Bardziej szczegółowo

8. ELEMENTY RZECZYWISTE W OBWODACH PRĄDU ZMIENNEGO Cewka indukcyjna rzeczywista - gałąź szeregowa RL

8. ELEMENTY RZECZYWISTE W OBWODACH PRĄDU ZMIENNEGO Cewka indukcyjna rzeczywista - gałąź szeregowa RL 8. ELEMENTY ZECZYWISTE W OBWODACH PĄDU ZMIENNEO Poznane przez nas idealne elementy obwodów elektrycznych są wyidealizowanymi, uproszczonymi odwzorowaniami obiektów rzeczywistych. Prostota ich matematycznego

Bardziej szczegółowo

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia Ćwiczenie nr 4 Badanie filtrów składowych symetrycznych prądu i napięcia 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą składowych symetrycznych, pomiarem składowych w układach praktycznych

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH OWODY SYGNŁY 0. MTODY NLGOYTMCZN NLZY OWODÓW LNOWYCH 0.. MTOD TNSFGUCJ Przez termin transfiguracji rozumiemy operację kolejnego uproszczenia struktury obwodu (zmniejszenie liczby gałęzi i węzłów), przy

Bardziej szczegółowo

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny 58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola

Bardziej szczegółowo

Sterowane źródło mocy

Sterowane źródło mocy Sterowane źródło mocy Iloczyn prądu i napięcia jest zawsze proporcjonalny (równy) do pewnej mocy p Źródła tego typu nie mogą być zwarte ani rozwarte Moc ujemna pochłanianie mocy W rozważanym podobwodzie

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

BILANS MOCY SILNIKA SYNCHRONICZNEGO O MAGNESACH TRWAŁYCH

BILANS MOCY SILNIKA SYNCHRONICZNEGO O MAGNESACH TRWAŁYCH Michał JANAZEK 61.1.8 61.1. 61.16.78 BILAN MOCY ILNIKA YNCHRONICZNEGO O MAGNEACH TRWAŁYCH TREZCZENIE Przdstawiono bilans mocy przkształcanj w trójazowym silniku synchronicznym o magnsach trwałych opirając

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Automatyzacja Procesów Przemysłowych

Automatyzacja Procesów Przemysłowych Automatyzacja Procsów Przmysłowych Tmat: Układ rgulacji zamknięto-otwarty Zspół: Kirunk i grupa: Data: Mikuś Marcin Mizra Marcin Łochowski Radosław Politowski Dariusz Szymański Zbigniw Piwowarski Przmysław

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej

LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej Ćwiczenie 6 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Co to jest kompensacja

Bardziej szczegółowo

ZASTOSOWANIA POCHODNEJ

ZASTOSOWANIA POCHODNEJ ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych

Bardziej szczegółowo

ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH W WYBRANYCH NIESYMETRYCZNYCH UKŁADACH POŁĄCZEŃ

ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH W WYBRANYCH NIESYMETRYCZNYCH UKŁADACH POŁĄCZEŃ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 7 Electrical Engineering 01 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ZAGADNIENIA STANÓW DYNAMICZNYCH TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

Bardziej szczegółowo

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego 1 Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego A. Zasada pomiaru mocy za pomocą jednego i trzech watomierzy Moc czynna układu trójfazowego jest sumą mocy czynnej wszystkich jego faz. W zależności

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 3 Pomiar mocy czynnej w układzie jednofazowym Rzeszów 2016/2017 Imię i nazwisko Grupa Rok studiów Data wykonania Podpis

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

15. CAŁKA NIEOZNACZONA cz. I

15. CAŁKA NIEOZNACZONA cz. I 5. CAŁKA NIEOZNACZONA cz. I Fukcj pirwot fukcji f w pwym przdzial (właciwym lub iwłaciwym) azywamy tak fukcj F, którj pochoda rówa si fukcji f w tym przdzial. Zbiór wszystkich fukcji pirwotych fukcji f

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

MOCE I KOMPENSACJA W UKŁADACH Z NIESINUSOIDALNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA. Leszek S. Czarnecki, Fellow IEEE

MOCE I KOMPENSACJA W UKŁADACH Z NIESINUSOIDALNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA. Leszek S. Czarnecki, Fellow IEEE MOCE I KOMPENSACJA W UKŁADACH Z NIESINUSOIDALNYMI PRZEBIEGAMI PRĄDU I NAPIĘCIA Leszek S. Czarnecki, Fellow IEEE Internet Page: www.lsczar.info Research >>> Selected papers Moc pozorna w układach trójfazowych,

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Elektrotechnika teoretyczna

Elektrotechnika teoretyczna Zachodniopomorski Uniwersytet Technologiczny w Szczecinie RYSZARD SIKORA TOMASZ CHADY PRZEMYSŁAW ŁOPATO GRZEGORZ PSUJ Elektrotechnika teoretyczna Szczecin 2016 Spis treści Spis najważniejszych oznaczeń...

Bardziej szczegółowo

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor

Bardziej szczegółowo

Oddziaływanie elektronu z materią

Oddziaływanie elektronu z materią Oddiaływani lktronu matrią p p X-ray p wt wt A wt p - lktron pirwotny, 0-3000V. wt - lktron wtórny, 0-0 V. A- lktron Augr a, 0-000V. X-ray- proiowani X, 000-000V. - plamon, 0-80 V. - fonon, 0,0-0,5V. Zdrni

Bardziej szczegółowo

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki 58 Prąd d zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w ziennych Opór r bierny Prąd d zienny Prąd d zienny 3 Prąd d zienny 4 Prąd d zienny 5 Prąd d zienny Przy stałej prędkości kątowej

Bardziej szczegółowo

Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.

Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód. Metody numeryczne Paweł Zieliński p. 1/19 Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza bazę przestrzeni liniowej Π n. Dowód. Lemat 2. Dowolny wielomian Q j stopnia j niższego od k jest prostopadły

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

Przegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UPQC

Przegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UPQC rzegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UQC dr inż. iotr L. Fabijański E IV Konferencja ytwórców Energii Elektrycznej i Cieplnej Skawina 25-27 września

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy

CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy ZADANIE.. W linii prądu przemiennego o napięciu znamionowym 00/0 V, przedstawionej na poniższym rysunku obliczyć:

Bardziej szczegółowo

Odbiorniki nieliniowe problemy, zagrożenia

Odbiorniki nieliniowe problemy, zagrożenia Odbiorniki nieliniowe problemy, zagrożenia Dr inż. Andrzej Baranecki, Mgr inż. Marek Niewiadomski, Dr inż. Tadeusz Płatek ISEP Politechnika Warszawska, MEDCOM Warszawa Wstęp Odkształcone przebiegi prądów

Bardziej szczegółowo

Podsumowanie tego co było dotychczas. w.4, p.1

Podsumowanie tego co było dotychczas. w.4, p.1 Podsumowanie tego co było dotychczas w.4, p.1 Idealizacja układów elektronicznych Rzeczywisty układ elektroniczny Idealny układ elektroniczny Wprowadzamy idealne obiekty elektroniczne (lump objects) w.4,

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi:

Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi: Ćwiczenie POMIARY MOCY. Wprowadzenie Moc (praca w jednostce czasu) pobierana przez urządzenie elektryczne wynosi: P = U I (.) Jest to po prostu (praca/ładunek)*(ładunek/czas). Dla napięcia mierzonego w

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

LAMPY WYŁADOWCZE JAKO NIELINIOWE ODBIORNIKI W SIECI OŚWIETLENIOWEJ

LAMPY WYŁADOWCZE JAKO NIELINIOWE ODBIORNIKI W SIECI OŚWIETLENIOWEJ Przedmiot: SEC NSTALACJE OŚWETLENOWE LAMPY WYŁADOWCZE JAKO NELNOWE ODBORNK W SEC OŚWETLENOWEJ Przemysław Tabaka Wprowadzenie Lampy wyładowcze, do których zaliczane są lampy fluorescencyjne, rtęciowe, sodowe

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska Room: 105 Polanka Advisor hours: Tuesday: Thursday:

Dr inż. Agnieszka Wardzińska Room: 105 Polanka Advisor hours: Tuesday: Thursday: Dr inż. Agnieszka Wardzińska Roo: 05 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Advisor hours: Tuesday: 0.00-0.45 Thursday: 0.30-.5 Jednolitość oznaczeń Oznaczenia dla prądu

Bardziej szczegółowo

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1

Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1 Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm

Bardziej szczegółowo

TEST DLA GRUPY ELEKTRYCZNEJ

TEST DLA GRUPY ELEKTRYCZNEJ XXXIX Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej K R A K Ó W, R A D O M 12.02.2016, 22-23.04.2016 WYJAŚNIENIE: TEST DLA GRUPY ELEKTRYCZNEJ Przed przystąpieniem do udzielenia odpowiedzi

Bardziej szczegółowo