u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C"

Transkrypt

1 Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0

2 Prąd I w obwodzie określa wzór: E E 1 I = s =. 1 L 2 R 1 R + sl + s + s + sc L LC Bieguny transformaty I są określone przez rozwiązanie równania kwadratowego: 2 R 1 s + s + = 0, L LC o wyróżniku: = 2 R 4 L. LC

3 Rozpatrzmy trzy przypadki: 1. < 0. W tym przypadku równanie ma dwa pierwiastki zespolone sprzężone, określone wzorem: s 1,2 2 R R 1 = ± j 2L = α ± ω 2L, LC gdzie: α = ω = R, 2L 2 R 1. 2L LC

4 Przebieg czasowy prądu i(t) określa wzór: E 1 st 1 st i(t) = res e + res e 1(t) = L s= s1 ( s s )( ) s s 1 s s = 2 2 ( s s1 )( s s2 ) E 1 st 1 = e + L s s s s st e 1(t). Po podstawieniu do wzoru uzyskujemy: jωt jωt E 1 ( α+ jω) t 1 ( α jω) t E αt e e i(t) = e e 1(t) = e 1(t) = L 2jω 2jω L 2jω E e αt sin t 1 (t). = ω ωl W tym przypadku w obwodzie popłynie prąd o przebiegu periodycznym tłumionym.

5 2. > 0. W tym przypadku równanie ma dwa pierwiastki rzeczywiste: s R R 1 = α = ± 2L 2L LC 1,2 1,2 2. Prąd i(t) po podstawieniu zależności przyjmuje postać: E 1 1 2E e e i(t) = e + e (t) = (t) L α α α α 1 L ( α α ) 2 1. α1t α2t α1t α2t W tym przypadku w obwodzie popłynie prąd o przebiegu aperiodycznym.

6 3. = 0. Równanie ma jeden pierwiastek s 1 : s 1 R = 2L o podwójnej krotności. Przypadek ten nazywany jest krytycznym. Prąd i(t) określa tu wzór: E 1 st E d 1 2 st i(t) = res e 2 1(t) = lim 2 ( s s1 ) e 1(t) = L s= s1 s s1 ( s s1 ) L ds ( s s1 ) E st E st 1 = limte 1(t) = te 1(t). Ls s1 L

7 i(t) < 0, przebieg periodyczny = 0, przebieg krytyczny > 0, przebieg aperiodyczny t 0

8 Metoda Thévenina i Nortona Rozpatrzmy w dziedzinie transformat układ złożony z połączenia dwóch dwójników: aktywnego i pasywnego. Napięcie na zaciskach układu a-b wynosi U ab (rys. a). Prąd I w układzie nie ulegnie zmianie przy dołączeniu do obwodu dwóch źródeł napięcia przeciwnie skierowanych, jak to ilustruje rys. b. Napięcie jest dobrane w taki sposób, by kompensowało wpływ wszystkich źródeł autonomicznych (prądowych i napięciowych znajdujących się we wnętrzu dwójnika aktywnego. Zgodnie z zasadą superpozycji prąd I określić można wzorem: I = I + I na podstawie rys. c prąd I = 0 jest prądem w układzie zawierającym dwójnik aktywny, jedno ze źródeł i dowolną impedancję Z.

9 Z twierdzenia o kompensacji wynika, że prąd ten jest równy zeru. Prąd I jest prądem w układzie złożonym z dwójnika pasywnego o impedancji Z w powstałego z dwójnika aktywnego przez zwarcie wszystkich jego źródeł autonomicznych napięciowych i rozwarcie źródeł autonomicznych prądowych, źródła i impedancji Z. W tej sytuacji dwójnik pasywny jest opisany impedancją operatorową Z w, a prąd I określa wzór (rys. d): U 0 = = I Z + Z w I. Wzór ten wyraża treść twierdzenia Thévenina o napięciowym źródle zastępczym (rys.).

10 Twierdzenie Thévenina W dziedzinie transformat dowolny liniowy dwójnik aktywny jest równoważny połączeniu szeregowemu: autonomicznego źródła napięcia występującego na zaciskach dwójnika, gdy jego zaciski są otwarte, czyli tzw. napięcia w stanie jałowym, impedancji operatorowej Z w widzianej z zacisków dwójnika.

11 a) b) a I a I aktywny U ab Z aktywny U ab Z b b c) a I = 0 aktywny b d) a I ' = 0 a I '' aktywny + Z ab pasywny U U ab Z b b

12

13 Ilustracja twierdzenia Thévenina Parametry zastępczego dwójnika Thévenina wyznacza się w dziedzinie transformat w znany z metody symbolicznej sposób. Możliwe jest: 1. Wyznaczenie napięcia w stanie jałowym dwójnika i jego prądu zwarcia I 0 i obliczenie impedancji wewnętrznej Z w : Z w U 0 =. I 0 Wyznaczenie napięcia w stanie jałowym i wyznaczenie impedancji wewnętrznej Z w dwójnika (nie zawierającego sprzężeń magnetycznych i źródeł sterowanych) metodą transfiguracji.

14 Wyznaczenie parametrów dwójnika Thévenina I = 0 aktywny aktywny = 0 I 0 pasywny (eliminacja wszystkich źródeł autonomicznych) Z w

15 Twierdzenie Nortona W dziedzinie transformat dowolny liniowy dwójnik aktywny jest równoważny połączeniu równoległemu: autonomicznego źródła prądu I 0 płynącego przez zaciski dwójnika 1 = widzianej z zacisków dwójni- Z przy zwarciu, admitancji operatorowej Y w ka. w

16 Twierdzenie i Thévenina i Nortona przyporządkowane dowolnemu dwójnikowi aktywnemu są sobie równoważne. Ilustrację twierdzeń pokazano na poniższym rys., a metody wyznaczania parametrów dwójnika zastępczego Nortona są identyczne jak opisane wcześniej dla dwójnika Thévenina.

17 Z w I a I a U Thévenina aktywny U I b a b I 0 Yw = 1 Z w U Nortona b

Przyjmuje się umowę, że:

Przyjmuje się umowę, że: MODELE OPERATOROWE Modele operatorowe elementów obwodów wyprowadza się wykorzystując znane zależności napięciowo-prądowe dla elementów R, L, C oraz źródeł idealnych. Modele te opisują zależności pomiędzy

Bardziej szczegółowo

Metody analizy obwodów w stanie ustalonym

Metody analizy obwodów w stanie ustalonym Metody analizy obwodów w stanie ustalonym Stan ustalony Stanem ustalonym obwodu nazywać będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią

Bardziej szczegółowo

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH

10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH OWODY SYGNŁY 0. MTODY NLGOYTMCZN NLZY OWODÓW LNOWYCH 0.. MTOD TNSFGUCJ Przez termin transfiguracji rozumiemy operację kolejnego uproszczenia struktury obwodu (zmniejszenie liczby gałęzi i węzłów), przy

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

Obwody elektryczne prądu stałego

Obwody elektryczne prądu stałego Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo

Układ liniowy. Przypomnienie

Układ liniowy. Przypomnienie Układ liniowy. Przypomnienie y (t)=t [a1 x 1 (t)+a 2 x 2 (t)]=a 1 T [ x 1 (t )]+a2 T [ x 2 (t)]=a1 y 1 (t )+a 2 y 2 (t) Demonstracja: 1 Z C (ω)= jω C Jak wygląda uwe i uwy? Z R =R w.4, p.1 Z R =R Dwójnik

Bardziej szczegółowo

Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.

Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. Prawa Kirchhoffa Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. k=1,2... I k =0 Suma napięć w oczku jest równa zeru: k u k =0 Elektrotechnika,

Bardziej szczegółowo

Podsumowanie tego co było dotychczas. w.4, p.1

Podsumowanie tego co było dotychczas. w.4, p.1 Podsumowanie tego co było dotychczas w.4, p.1 Idealizacja układów elektronicznych Rzeczywisty układ elektroniczny Idealny układ elektroniczny Wprowadzamy idealne obiekty elektroniczne (lump objects) w.4,

Bardziej szczegółowo

Układ liniowy. Przypomnienie

Układ liniowy. Przypomnienie Układ liniowy. Przypomnienie y(t)=t [a 1 x 1 (t)+a 2 x 2 (t)]=a 1 T [ x 1 (t )]+a 2 T [ x 2 (t)]=a 1 y 1 (t )+a 2 y 2 (t) Demonstracja: Z C (ω)= 1 jω C Jak wygląda u we i u wy? Z R =R Z R =R w.4, p.1 Moc

Bardziej szczegółowo

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE

Bardziej szczegółowo

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd. 10-1 dodruk (PWN). Warszawa, 2017 Spis treści Przedmowa 13 1. Wiadomości wstępne 15 1.1. Wielkości i jednostki używane w elektrotechnice 15 1.2.

Bardziej szczegółowo

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II

Wykład 7 Transformata Laplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Wykład 7 Transformata aplace a oraz jej wykorzystanie w analizie stanu nieustalonego metodą operatorową część II Prowadzący: dr inż. Tomasz Sikorski Instytut Podstaw lektrotechniki i lektrotechnologii

Bardziej szczegółowo

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8) Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE OODY I SYGNŁY 1 4. OODY LINIOE PRĄDU STŁEGO 4.1. ŹRÓDŁ RZECZYISTE Z zależności (2.19) oraz (2.20) wynika teoretyczna możliwość oddawania przez źródła idealne do obwodu dowolnie dej mocy chwilowej. by uniknąć

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża:

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: Teoria obwodów 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę superpozycji

Bardziej szczegółowo

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD Wydział IMi Zadania z elektrotechniki i elektroniki 2014 A. W obwodzie jak na rysunku oblicz wskazanie woltomierza pracującego w trybie TU MS. Przyjmij diodę, jako element idealny. Dane: = 230 2sin( t),

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

(EL1A_U09) 4. Przy otwartym przełączniku, woltomierz idealny wskazał 0. Po zamknięciu wyłącznika woltomierz i amperomierz idealny wskażą:

(EL1A_U09) 4. Przy otwartym przełączniku, woltomierz idealny wskazał 0. Po zamknięciu wyłącznika woltomierz i amperomierz idealny wskażą: Teoria obwodów (EL1A_U07) 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę

Bardziej szczegółowo

ĆWICZENIE 6 OBWODY NIELINIOWE PRĄDU STAŁEGO Podstawy teoretyczne ćwiczenia

ĆWICZENIE 6 OBWODY NIELINIOWE PRĄDU STAŁEGO Podstawy teoretyczne ćwiczenia ĆWCZENE 6 OBWODY NELNOWE RĄD STAŁEGO Cel ćwiczenia: poznanie podstawowych zjawisk zachodzących w nieliniowych obwodach elektrycznych oraz pomiar parametrów charakteryzujących te zjawiska. 6.1. odstawy

Bardziej szczegółowo

dr inż. Krzysztof Stawicki

dr inż. Krzysztof Stawicki Wybrane zagadnienia teorii obwodów 1 dr inż. Krzysztof Stawicki e-mail: ks@zut.edu.pl w temacie wiadomości proszę wpisać tylko słowo STUDENT strona www: ks.zut.edu.pl/wzto 2 Wybrane zagadnienia teorii

Bardziej szczegółowo

Elektrotechnika teoretyczna

Elektrotechnika teoretyczna Zachodniopomorski Uniwersytet Technologiczny w Szczecinie RYSZARD SIKORA TOMASZ CHADY PRZEMYSŁAW ŁOPATO GRZEGORZ PSUJ Elektrotechnika teoretyczna Szczecin 2016 Spis treści Spis najważniejszych oznaczeń...

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia

Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Sprawdzenie zasady superpozycji. Sprawdzenie twierdzenia Thevenina. Sprawdzenie twierdzenia Nortona. Czytanie schematów

Bardziej szczegółowo

Obwody rozgałęzione. Prawa Kirchhoffa

Obwody rozgałęzione. Prawa Kirchhoffa Obwody rozgałęzione. Prawa Kirchhoffa Węzeł Oczko - * - * * 4-4 * 4 Pierwsze prawo Kirchhoffa. Suma natęŝeń prądów wchodzących do węzła sieci elektrycznej jest równa sumie natęŝeń prądów wychodzących z

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność

Bardziej szczegółowo

Własności i charakterystyki czwórników

Własności i charakterystyki czwórników Własności i charakterystyki czwórników nstytut Fizyki kademia Pomorska w Słupsku Cel ćwiczenia. Celem ćwiczenia jest poznanie własności i charakterystyk czwórników. Zagadnienia teoretyczne. Pojęcia podstawowe

Bardziej szczegółowo

ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym

ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym ĆWIZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych R przy wyuszeniu sinusoidaie zienny. el ćwiczenia Zapoznanie się z rozpływe prądów, rozkłade w stanach nieustalonych w obwodach szeregowych

Bardziej szczegółowo

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h

Metody rozwiązywania ob o w b o w d o ów ó w e l e ek e t k r t yc y zny n c y h Metody rozwiązywania obwodów elektrycznych ozwiązaniem obwodu elektrycznego - określa się wyznaczenie wartości wszystkich prądów płynących w rozpatrywanym obwodzie bądź wartości wszystkich napięć panujących

Bardziej szczegółowo

Lekcja 14. Obliczanie rozpływu prądów w obwodzie

Lekcja 14. Obliczanie rozpływu prądów w obwodzie Lekcja 14. Obliczanie rozpływu prądów w obwodzie Zad 1.Oblicz wartość rezystancji zastępczej obwodu z rysunku. Dane: R1= 10k, R2= 20k. Zad 2. Zapisz równanie I prawa Kirchhoffa dla węzła obwodu elektrycznego

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

INŻYNIERII LABORATORIUM ELEKTROTECHNIKI. kierunek: Automatyka i Robotyka. Lab: Twierdzenie Thevenina

INŻYNIERII LABORATORIUM ELEKTROTECHNIKI. kierunek: Automatyka i Robotyka. Lab: Twierdzenie Thevenina Twierdzenie Thevenina można sformułować w następujący cytując: "Podstawy Elektrotechniki", R.Kurdziel, wyd II, WNT Warszawa 1972: Prąd płynący przez odbiornik rezystancyjny R, przyłączony do dwóch zacisków

Bardziej szczegółowo

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4 1) Wyprowadź wzór pozwalający obliczyć rezystancję B i konduktancję G B zastępczą układu. 1 2 3 6 B 4 2) Wyprowadź wzór pozwalający obliczyć impedancję (Z, Z) i admitancję (Y, Y) obwodu. Narysować wykres

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 5. Badanie rezonansu napięć w obwodach szeregowych RLC. Rzeszów 206/207 Imię i nazwisko Grupa Rok studiów Data wykonania

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Zaliczenie

Wykład Ćwiczenia Laboratorium Projekt Seminarium Zaliczenie Zał. nr 4 do ZW 33/0 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI POLITECHNIKI WROCŁAWSKIEJ / FIZYKA TECHNICZNA KARTA PRZEDMIOTU Nazwa w języku polskim Obwody Elektryczne Nazwa w języku angielskim Electric

Bardziej szczegółowo

Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa.

Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa. Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa. Materiały dydaktyczne dla kierunku Technik Optyk (W) Kwalifikacyjnego kursu zawodowego. Prawo Ohma NatęŜenie prądu zaleŝy wprost proporcjonalnie

Bardziej szczegółowo

Podstawy Teorii Obwodów

Podstawy Teorii Obwodów Podstawy Teorii Obwodów 203 Model obwodowy... 2 Klasyfikacjaobwodów.... 3 Założenia.... 4 Opis obwodów...... 5 Topologiaobwodu........ 6 Rodzaje elementówobwodów.... 7 Konwencje oznaczeńelementówobwodów....

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Pracownia Fizyczna i Elektroniczna 2014

Pracownia Fizyczna i Elektroniczna 2014 Pracownia Fizyczna i Elektroniczna 04 http://pe.fw.ed.pl/ Wojciech DOMNK ozbłysk gamma GB 08039B 9.03.008 teleskop Pi of the Sky sfilmował najpotężniejszą eksplozję obserwowaną przez człowieka pierwszy

Bardziej szczegółowo

IMIC Zadania zaliczenie wykładu Elektrotechnika i elektronika AMD 2015

IMIC Zadania zaliczenie wykładu Elektrotechnika i elektronika AMD 2015 IMI Zadania zaliczenie wykładu lektrotechnika i elektronika MD 2015 Dla t < 0 obwód w stanie ustalonym. chwili t = 0 zamknięto wyłącznik. Sformułuj równanie różniczkowe obwodu w dziedzinie czasu, z którego

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Pomiar indukcyjności.

Pomiar indukcyjności. Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego

Bardziej szczegółowo

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe

Przygotowanie do Egzaminu Potwierdzającego Kwalifikacje Zawodowe Przygotowanie do gzaminu Potwierdzającego Kwalifikacje Zawodowe Powtórzenie materiału Opracował: mgr inż. Marcin Wieczorek Obwód elektryczny zespół połączonych ze sobą elementów, umożliwiający zamknięty

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ELEKTROTECHNIKA 2. Kod przedmiotu: Eef 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH

9. METODY SIECIOWE (ALGORYTMICZNE) ANALIZY OBWODÓW LINIOWYCH OBWOD SGNAŁ 9. METOD SECOWE (ALGORTMCZNE) ANALZ OBWODÓW LNOWCH 9.. WPROWADZENE ANALZA OBWODÓW Jeżeli przy badaniu obwodu elektrycznego dane są parametry elementów i schemat obwodu, a poszukiwane są napięcia

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

INDEKS ALFABETYCZNY CEI:2002

INDEKS ALFABETYCZNY CEI:2002 185 60050-131 CEI:2002 INDEKS ALFABETYCZNY A admitancja admitancja... 131-12-51 admitancja obciążenia... 131-14-06 admitancja pozorna... 131-12-52 admitancja robocza... 131-14-03 admitancja wejściowa...

Bardziej szczegółowo

Opracowała Ewa Szota. Wymagania edukacyjne. Pole elektryczne

Opracowała Ewa Szota. Wymagania edukacyjne. Pole elektryczne Opracowała Ewa Szota Wymagania edukacyjne dla klasy I Technikum Elektrycznego i Technikum Elektronicznego Z S Nr 1 w Olkuszu na podstawie programu nauczania dla zawodu technik elektryk [311303] oraz technik

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium Wybrane zagadnienia teorii obwodów Osoba odpowiedzialna za przedmiot (wykłady): dr hab. inż. Ryszard Pałka prof. PS ćwiczenia i projekt: dr inż. Krzysztof Stawicki e-mail: ks@ps.pl w temacie wiadomości

Bardziej szczegółowo

Elektronika. Laboratorium nr 2. Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie Thevenina

Elektronika. Laboratorium nr 2. Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie Thevenina Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 2 emat: Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie hevenina SPIS REŚCI Spis treści...2

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC Celem ćwiczenia jest poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC. I. Zamodelować jednofazowy szeregowy układ RLC (rys.1a)

Bardziej szczegółowo

Systemy liniowe i stacjonarne

Systemy liniowe i stacjonarne Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Podstawy elektrotechniki Odpowiedzialny za przedmiot (wykłady): dr hab. inż. Tomasz Chady prof. ZUT Ćwiczenia: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości proszę wpisywać STUDENT

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

Metoda superpozycji - rozwiązanie obwodu elektrycznego.

Metoda superpozycji - rozwiązanie obwodu elektrycznego. Metoda superpozycji - rozwiązanie obwodu elektrycznego. W celu rozwiązania obwodu elektrycznego przedstawionego na rysunku poniżej musimy zapisać dla niego prądowe i napięciowe równania Kirchhoffa. Rozwiązanie

Bardziej szczegółowo

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

Ćwiczenie: Obwody ze sprzężeniami magnetycznymi Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE

Wykład 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym. PEiE Parametry sygnału sinusoidalnego Sygnały sinusoidalne zwane również harmonicznymi są opisane w dziedzinie czasu następującym wzorem (w opisie przyjęto oznaczenie sygnału napięciowego) : Wielkości występujące

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Podstawy elektrotechniki i elektroniki I 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej

Bardziej szczegółowo

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1 Ćwiczenie nr Podstawowe czwórniki aktywne i ich zastosowanie cz.. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobem realizacji czwórników aktywnych opartym na wzmacniaczu operacyjnym µa, ich

Bardziej szczegółowo

Podstawy elektroniki

Podstawy elektroniki dr hab. inż. Michał K. Urbański, prof. nzw. Wydział Fizyki Politechniki Warszawskiej Zakład V, Badań strukturalnych Gmach Fizyki pok. 18 GF, Gmach Mechatroniki pok. 713, Gmach Główny pok. 159 murba@if.pw.edu.pl,

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem:

Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem: Wyprowadzenie wzorów na impedancję w dwójniku RLC. Dwójnik zbudowany jest z rezystora, kondensatora i cewki. Do zacisków dwójnika przyłożone zostało napięcie sinusoidalnie zmienne. W wyniku przyłożonego

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 02 Analiza obwodów prądu stałego Źródło napięciowe Idealne źródło napięciowe jest dwójnikiem, na którego zaciskach

Bardziej szczegółowo

Metoda symboliczna Zad. 1.1 Znaleźć zespolone wartości skuteczne następujących prądów i napięć:

Metoda symboliczna Zad. 1.1 Znaleźć zespolone wartości skuteczne następujących prądów i napięć: Metoda symboliczna ad.. naleźć zespolone wartości skuteczne następujących prądów i napięć: 7 a) ut ( ) sin 5t V, b) it () 5 cos5t, 4 c) ut ( ) sin t cost V, d) it () 5sint 4cost. 4 Wynik: 7 j a) e V, 5rad/s,

Bardziej szczegółowo

4.8. Badania laboratoryjne

4.8. Badania laboratoryjne BOTOIUM EEKTOTECHNIKI I EEKTONIKI Grupa Podgrupa Numer ćwiczenia 4 p. Nazwisko i imię Ocena Data wykonania ćwiczenia Podpis prowadzącego zajęcia 4. 5. Temat Wyznaczanie indukcyjności własnej i wzajemnej

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

Obwody sprzężone magnetycznie.

Obwody sprzężone magnetycznie. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTT MASZYN I RZĄDZEŃ ENERGETYCZNYCH LABORATORIM ELEKTRYCZNE Obwody sprzężone magnetycznie. (E 5) Opracował: Dr inż. Włodzimierz OGLEWICZ

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

X X. Rysunek 1. Rozwiązanie zadania 1 Dane są: impedancje zespolone cewek. a, gdzie a = e 3

X X. Rysunek 1. Rozwiązanie zadania 1 Dane są: impedancje zespolone cewek. a, gdzie a = e 3 EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 20/202 Odpowiedzi do zadań dla grupy elektrycznej na zawody II stopnia Zadanie Na rysunku przedstawiono schemat obwodu

Bardziej szczegółowo

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC U L U R U C. Informatyka w elektrotechnice

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC U L U R U C. Informatyka w elektrotechnice ĆWICZENIE JEDNOFAZOWE OBWODY RLC Celem ćwiczenia jest poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC, szeregowych i równoległych zjawisko rezonansu prądowego i

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria» ELEKTRYKA z Nr kol. 402

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria» ELEKTRYKA z Nr kol. 402 ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria» ELEKTRYKA z. 42 1973 Nr kol. 402 Zofia Cichowska Instytut Podstawowych Problemów Elektrotechniki i Energoelektroniki OBLICZANIE PR4DÓW ZWARCIA I NAPIĘĆ POWROTNYCH

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM TECHNIK INFORMACYJNYCH

INSTRUKCJA LABORATORIUM TECHNIK INFORMACYJNYCH INSTRUKCJA LABORATORIUM TECHNIK INFORMACYJNYCH WPROWADZENIE DO PROGRAMU PSPICE Autor: Tomasz Niedziela, Strona /9 . Uruchomienie programu Pspice. Z menu Start wybrać Wszystkie Programy Pspice Student Schematics.

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo