Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A"

Transkrypt

1

2 Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do wartości własnj λ4 macirzy A Wktory własn do wartości własnj λ4: m 3 dt( A λ I) ( 3 λ )( 4 λ ) λ 3 λ λ 4 oraz,, v Wybiramy v T a drugi wktor znajdujmy jako ortogonalny do v v v + v 3 T A więc do potrójnj wartości własnj λ4 istniją tylko dwa wktory własn. Jst to przyczyna z powodu którj ni potrafimy zdiagonalizować macirzy A. m Wykład 4-

3 Uogólnion wktory własnw Znajdzimy traz uogólniony wktor własny rzędu do wartości własnj λ4: ( A I) ( A I) np. Natomiast ni istnij uogólniony wktor własny rzędu 3 do wartości własnj λ4, poniważ musiałyby zachodzić jdnoczśni warunki: 3 ( A I) czyli składowa 4 wktora musiałaby być jdnoczśni równa zro i różna od zra, co jst nimożliw. ( A I) Wykład 4-3

4 Ciągi uogólnionych wktorów w własnychw,,... ( A I) j - λ j+ gdzi j m-, m-,..., Dfinicja: Ciągim gnrowanym przz uogólniony wktor własny rzędu m stowarzyszony z wartością własnąλ nazywamy zbiór wktorów okrślony przz: Przykład: Znajdź ciąg gnrowany przz uogólniony wktor własny rzędu do wartości własnj λ4 z poprzdnigo przykładu. m { } m m- A I 4 T { } T A wic gnrowany ciąg ma postać {, } ( ),( ) Twirdzni: Jśli m jst uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ, wtdy okrślon rlacją (*) jst uogólnionym wktorm własnym j rzędu j do tj samj wartości własnj. m Dowód: Mamy m A I oraz ( A I) λ m λ m ( A I) m j ( A I) j λ j+ λ j m m A λ I j A λ I m j ( A I) m λ ( A λ I) j m j (*) u.w.w. rzędu j Wykład 4-4

5 Ciągi uogólnionych wktorów w własnychw Twirdzni: Każdy ciąg uogólnionych wktorów własnych jst układm wktorów liniowo nizalżnych. Dowód (indukcyjny): Dla ciągu o długości uogólniony wktor własny jst po prostu wktorm własnym, a więc, dlatgo c c Załóżmy, ż wszystki ciągi zawirając dokładni k- wktorów są liniowo nizalżn i rozważmy ciąg złożony z k wktorów. Chcmy pokazać, ż c + c c c c... c k k k k- k k Mnożymy od lwj strony przz (A-λI) k-. Dla wszystkich j < k zachodzi: ( A I) k ( A I) k j c ( A I) j ( A I) k j - λ j j c j - λ - λ j c j - λ k Stąd mamy c k ( A- λ I) k k c k al ( A- λ I) k A więc zachodzi ck k c k-,..., c c... c Al układ wktorów jst ciągim o długości k-, który z założnia jst zbiorm wktorów liniowo nizalżnych. A więc mamy k k Wykład 4-5

6 Baza kanoniczna Dfinicja: Bazą kanoniczną dla macirzy A stopnia n nazywamy układ n liniowo nizalżnych uogólnionych wktorów własnych złożony całkowici z ciągów (tzn. ż jśli uogólniony wktor rzędu m pojawia się w bazi to równiż w bazi występuj cały ciąg gnrowany przz tn wktor). Uwaga: Najprostszą bazą kanoniczną (jśli istnij) jst baza złożona z liniowo nizalżnych wktorów własnych (ciągów o długości ). Taka baza istnij zawsz kidy wartości własn macirzy są różn. ( 3 5 ) Przykład: Znajdź bazę kanoniczną dla macirzy Wartości własn i wktory własn dan są przz: λ : u A 4 ( 5) λ : u T A więc baza kanoniczna macirzy A to ( 5 ),( ) T { } Wykład 4-6

7 Baza kanoniczna Znajdowani ciągów gnrowanych przz uogólnion wktory własn do wilokrotnych wartości własnych macirzy kwadratowj A stopnia n: oznaczamy krotność wartości własnj λ przz m i znajdujmy najmnijszą całkowitą liczbę dodatnią p dla którj rząd macirzy (A-λI) p jst równy n-m, dla każdj wartości k p znajdujmy liczbę uogólnionych wktorów własnych rzędu k okrślonych przz: N k k rz( A λ I) rz( A λ I) znajdujmy uogólniony wktor własny rzędu p i konstruujmy ciąg gnrowany przz tn wktor (każdy z tych wktorów nalży do bazy kanonicznj). zmnijszamy wartość każdj z liczb N k o jśli wszystki N k są równ zro, wtdy procdura znajdowania wktorów bazy kanonicznj jst zakończona, w przciwnym wypadku przchodzimy do następngo kroku. znajdujmy uogólniony wktor własny rzędu k, liniowo nizalżny od wszystkich wczśnij znalzionych uogólnionych wktorów własnych, do wartości własnj λ, gdzi k jst największą wartością dla którj N k ni jst równ zro. Wktor tn dołączamy do bazy i wracamy do punktu poprzdnigo. k Wykład 4-7

8 Znajdowani bazy kanonicznj Przykład: Znajdź bazę kanoniczną dla macirzy A. 4 4 A Wartości własn macirzy A to λ4 (o krotności 5) oraz pojdyncza wartość własna λ7. Dla wartości własnj λ4 mamy: n 6, m 5 oraz n-m szukamy najmnijszj liczby p takij z rz(a-4i) p n-m A - 4I A - 4I 3 A - 4I rz(a-4i) 4 rz(a-4i) rz(a-4i) 3 dla każdj liczby k p 3 znajdujmy liczbę uogólnionych wktorów własnych rzędu k: 3 N rz( A I) rz( A I) N rz( A I) rz( A I) N rz( A I) rz( A I) Wykład 4-8

9 Znajdowani bazy kanonicznj znajdujmy uogólniony wktor rzędu p3. Nich 3 3 ( A - 4I) 3 6 ( A - 4I) np T Wktor 3 gnruj pozostał wktory ciągu: ( A - 4I) ( ) T A - 4I 3 T T obniżamy wszystki wartości N k o otrzymując: N 3, N i N. znajdujmy uogólniony wktor własny rzędu. Nich y T y y y3 y4 y5 y6 ( A - 4I) y y3 y6 np T ( A - 4I) y y y lub y5 Wktor y y T gnruj pozostał wktory ciągu: A - 4I y obniżamy wszystki wartości N k o otrzymując: N 3, N i N, a więc zostały znalzion już wszystki wktory bazy kanonicznj do wartości własnj λ4. Ostatnim wktorm bazy kanonicznj jst wktor do wartości własnj λ7. Jst to wktor własny, który możmy wybrać jako z T,,,y, y,z Płna baza kanoniczna dla macirzy A to zbiór wktorów { } 3 Wykład 4-9

10 Macirz modalna Dfinicja: Macirzą modalną M dla macirzy A nazywamy macirz tgo samgo stopnia co macirz A, którj kolumnami są wktory bazy kanonicznj macirzy A. Uwaga: Macirz modalna jst odwracalna (zbudowana z wktorów liniowo nizalżnych). Uwaga: Macirz modalna M ni jst jdnoznaczna. Będzimy stosować konwncję, ż: wszystki ciągi o długości poprzdzają dłuższ ciągi, wktory każdgo z ciągów dłuższych niż umiszczamy obok sibi, przy czym rząd wzrasta od lwj do prawj. Przykład: Znajdź macirz modalną M dla macirzy A z poprzdnigo przykładu. Baza kanoniczna dla macirzy A składa się z jdngo ciągu o długości 3: ( ) ( ) ( ) T y ( ) y ( ) z ( ) T T T T 3 z jdngo ciągu o długości : i z jdngo ciągu o długości : Macirz modalna M ma wic postać: M z y y 3 T Wykład 4-

11 Postać kanoniczna Jordana Dfinicja: Klatką Jordana nazywamy macirz kwadratową którj lmnty diagonaln są taki sam, lmnty bzpośrdnio nad diagonalą są równ, a wszystki pozostał lmnty to : λ λ J λ λ λ λ Dfinicja: Mówimy, ż macirz jst w postaci kanonicznj Jordana jśli jst macirzą diagonalną lub ma jdną z następujących postaci blokowych (D macirz diagonalna): D J J J k J J J 3 Uwaga: Elmnty diagonaln macirzy D mogą być różn. Uwaga: Choć każda klatka Jordana musi mić jdnakow lmnty na diagonali, to różn klatki Jordana J i (i,, k) mogą mić różn lmnty diagonaln. J k Wykład 4-

12 Postać kanoniczna Jordana Twirdzni: Każda macirz kwadratowa A jst podobna do jakijś macirzy J będącj w postaci kanonicznj Jordana, a transformacja podobiństwa okrślona jst przz macirz modalną M dla macirzy A: - A MJM Dowód: (dla pojdynczgo ciągu o długości r złożongo z wktorów,,..., r ) Każdy z wktorów (i,,, r) jst uogólnionym wktorm własnym rzędu i macirzy i A do tj samj wartości własnj λ. r A λ I r A r λ r ( A I) A λ + r λ r A r λ r A 3 λ 3 + ( A λ I) 3 A 3 λ 3 ( A λ I) A r λ r + r A λ Poniważ jst wktorm własnym, więc dodatkowo mamy: A λ Korzystając z powyższych związków otrzymujmy: AM A[,, 3,...,r] [ A, A, A 3,..., A r] λ, λ +, λ +,..., λ +,,,..., J MJ [ ] [ ] 3 r r 3 r A MJM Wykład 4- -

13 Postać kanoniczna Jordana Przykład: Znajdź macirz J w postaci kanonicznj Jordana, która jst podobna do macirzy A z poprzdnich przykładów. 4 4 A 4 4 M ( z 3 y y) Macirz w postaci kanonicznj [ ] J M AM J 4 Jordana znajdujmy stosując J 4 transformację podobiństwa: 4 4 Uogólniony wktor z odpowiadający wartości własnj 7 gnruj macirz diagonalną [7] Ciąg wktorów {,,3} o długości 3 odpowiadający wartości własnj 4 gnruj klatkę Jordana J, natomiast ciąg wktorów y,y odpowiadający tj samj wartości własnj 4 gnruj klatkę Jordana J. { } Wykład 4-3 3

14 Postać kanoniczna Jordana Przykład: Znajdź postać kanoniczną Jordana dla macirzy: Macirz A ma dwi różn wartości własn: 3 5 λ A (krotność m 4) n-m λ - (krotność m ) n-m rz(a-i) 4 N 3 rz A I rz A I 3,, rz(a-i) 3 N rz( A I) rz( A I) 4 3 rz(a-i) 3 N rz( A I) rz( A I) { y } 6 4 rz(a+i) 4 { z N ( ) rz( A +I) rz( A +I) } { } { t } J J J J 3 J 4 Wykład 4-4

15 Funkcj macirzy W przypadku macirzy diagonalizowalnych okrśliliśmy funkcj macirzy przz: ( λ ) ( λ ) Do dfinicji funkcji macirzy dających się przdstawić w postaci kanonicznj Jordana można wykorzystać rozwinięci funkcji w niskończony szrg Taylor a: n d f z n ( f λ f z z λ f λ + f λ )( z λ ) + z λ +... n n n! dz zλ! λ ( k ) f A Sf D S Sdiag f I,..., f I S Dla pojdynczj klatki Jordana dfiniujmy: - - f λ J I J I ( J I ) f λ f f f ( J I ) 3 λ + λ λ + λ + λ +...! 3! Dfiniujmy macirz N JλI, dla którj mamy: N, N,..., N k - Wykład 4-5 5

16 Funkcj macirzy ( k A więc ) ( k ) f λ f λ f λ f λ f ( λ )!!! ( k )! ( k )! ( k ) ( k ) 3 f λ f λ f λ f ( λ )!! ( k )! ( k )! λ 3 ( k ) ( k ) 4 3 k i f f f i ( J) f λ λ λ λ f f N!! ( k )! ( k )! i i 4 3 λ f ( λ ) f ( λ )!! f ( λ)! Dla dowolnj macirzy kwadratowj A mamy ( k ) f A Mf J M M diag f J I,..., f J I M - - gdzi J i oznaczają różn klatki Jordana, natomiast M to macirz modalna sprowadzająca przz transformację podobiństwa macirz A do postaci kanonicznj Jordana. Uwaga: Aby istniała funkcja f (A) muszą istnić wszystki nizbędn pochodn (,,..., k i λ λ ) ( λ ) f f f i i i Wykład 4-6 6

17 M. Przybyci Matmatyczn Mtody Fizyki I Wyk Wykład 4 ad Funkcj macirzy Funkcj macirzy Przykład: Znajdź A gdzi macirz A dana jst przz: A J M AM Najpirw obliczymy J : M J / Traz możmy już znalźć A : A J M M - 4 3

EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.

EKONOMETRIA. Ekonometryczne modele specjalne.   Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel. EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katdra Wytrzymałości Matriałów i Mtod Komputrowych Mchaniki Rozprawa doktorska Tytuł: Optymalizacja układów powirzchniowych z wykorzystanim

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO I. Krytria i wymagania dla zawodników Optimist PSKO 1. W rgatach PSKO mogą startować zawodnicy do lat 15 posiadający licncję sportową PZŻ, aktualn ubzpiczni OC i będący członkami PSKO, spłniający wymagania

Bardziej szczegółowo

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej. Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

Mikroekonomia II. Teoria konsumenta - zadania dodatkowe. w której mamy 20 konsumentów, chcacych. kupić samochody, o 5 typach, charakteryzujacych

Mikroekonomia II. Teoria konsumenta - zadania dodatkowe. w której mamy 20 konsumentów, chcacych. kupić samochody, o 5 typach, charakteryzujacych Mikrokonomia II Toria konsumnta - zadania dodatkow 1. Rozważmy sytuacj w którj mamy 20 konsumntów, chcacych kupić samochody, o 5 typach, charaktryzujacych si różnymi cnami granicznymi. Poniższa tabla przdstawia

Bardziej szczegółowo

WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ.

WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ. Ewa Czapla Instytut Ekonomii i Zarządzania Politchnika Koszalińska WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ. Stopy procntow

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

POLITYKA BEZPIECZEŃSTWA OKTAWAVE (dalej również: Polityka )

POLITYKA BEZPIECZEŃSTWA OKTAWAVE (dalej również: Polityka ) POLITYKA BEZPIECZEŃSTWA OKTAWAVE (dalj równiż: Polityka ) wrsja: 20150201.1 Wyrazy pisan wilką litrą, a nizdfiniowan w Polityc mają znacznia nadan im odpowidnio w Rgulamini świadcznia usług Oktawav dla

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

Ubezpieczenie w razie poważnego zachorowania. Maj 2012

Ubezpieczenie w razie poważnego zachorowania. Maj 2012 LifProtct Ubzpiczni w razi poważngo zachorowania. Maj 2012 Nasz plan ubzpiczniowy dotyczący poważnych zachorowań stanowi najbardzij komplksową ochronę tgo typu dostępną w Irlandii. Podniśliśmy jakość polisy

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Zamówień Publicznych ul. Szamocka 3, 5, 01-748 Warszawa tel: 22 667 17 04, fax: 22 667 17 33

Zakład Ubezpieczeń Społecznych Departament Zamówień Publicznych ul. Szamocka 3, 5, 01-748 Warszawa tel: 22 667 17 04, fax: 22 667 17 33 Zakład Ubzpiczń Społcznych Dpartamnt Zamówiń Publicznych ul. Szamocka 3, 5, 01-748 Warszawa tl: 22 667 17 04, fax: 22 667 17 33 993200/271/IN- 268/15 Warszawa, dnia 19.03.2015 r. Informacja dla Wykonawców,

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

KATALOG TECHNICZNY. www.rurgaz.pl. RC MULTIsafe Rury z polietylenu PE 100RC do układania bez obsypki piaskowej i do renowacji rurociągów

KATALOG TECHNICZNY. www.rurgaz.pl. RC MULTIsafe Rury z polietylenu PE 100RC do układania bez obsypki piaskowej i do renowacji rurociągów KATALOG TECHNICZNY Dz Dz Di RC MULTIsaf Rury z politylnu PE 100RC do układania bz obsypki piaskowj i do rnowacji rurociągów RC MAXIprotct PE/PP-d Rury z politylnu PE 100RC z dodatkowym płaszczm z PE lub

Bardziej szczegółowo

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 5: Projektowanie połączeń

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 5: Projektowanie połączeń KONSTRUKCJE STLOWE W EUROPIE Wilokondygnacyjn konstrukcj stalow Część 5: Projktowani ołączń. Wilokondygnacyjn konstrukcj stalow Część 5: Projktowani ołączń 5 - ii Część 5: Projktowani ołączń PRZEDMOW

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

KATALOG TECHNICZNY GRUPA KAPITAŁOWA RADPOL S.A.

KATALOG TECHNICZNY GRUPA KAPITAŁOWA RADPOL S.A. KATALOG TECHNICZNY Dz Dz Di RC MULTIsaf Rury z politylnu PE 100RC do układania bz obsypki piaskowj i do rnowacji rurociągów RC MAXIprotct PE/PP-d Rury z politylnu PE 100RC z dodatkowym płaszczm z PE lub

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni

Bardziej szczegółowo

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013 Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

Wszystkie elementy Twojego licznika MySpeedy są do siebie w pełni

Wszystkie elementy Twojego licznika MySpeedy są do siebie w pełni PL Dsign l d Tak różnrdn jak Ty. Krzystając z najbardzij dsignrskig licznika rwrwg, pkazujsz, kim naprawdę jstś. Wybirz swój ulubiny mdl i bądź nipwtarzalny na rwrz. Wszystki lmnty Twjg licznika yspdy

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

ZADANIA Układy nieliniowe. s 2

ZADANIA Układy nieliniowe. s 2 Przykłd Okrślić punky równowgi podngo ukłdu ZDNI Ukłdy niliniow u f(,5 y Ry. Część niliniow j okrślon z poocą funkcji: f ( Zkłdy, ż wyuzni j zrow: u. Punky równowgi odpowidją yucji, gdy pochodn części

Bardziej szczegółowo

Michał Brzozowski Wykład 40 h Makrokonomia zaawansowana Część I: Ekonomia Montarna Dyżur: onidziałki.30 2.45, p. 409 E-mail: brzozowski@wn.uw.du.pl http://coin.wn.uw.du.pl/brzozowski lan wykładu. Czym

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

Fizyka w doświadczeniach

Fizyka w doświadczeniach Matriały do wykładu 12. Elktrony wwnątrz matrii 12.1 Wstęp Fizyka w doświadczniac Krzysztof Korona Arcolodzy mają zwyczaj dzilić poki wdług matriałów, któr były najważnijsz w danyc czasac dla człowika.

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Pojęcie ciągłości umysłu Michaela Spivey'a

Pojęcie ciągłości umysłu Michaela Spivey'a Pojęci ciągłości umysłu Michala Spivy'a ROBERT PIŁAT Instytut Filozofii i Socjologii PAN Rfrat przdstawia główn założnia dynamicznych modli umysłu i prcpcji oraz rflksję na tmat ich wartości ksplanacyjnj.

Bardziej szczegółowo

2. Tablica routingu dla pewnej sieci złożonej z czterech węzłów wygląda następująco:

2. Tablica routingu dla pewnej sieci złożonej z czterech węzłów wygląda następująco: Colloquium 4, Grupa A. Jaką oszczędność w zarządzaniu działm Biura Obsługi Klina (polgającą na rdukcji liczby sanowisk obsługi) mogą odnoować dwa połączon przdsiębiorswa, jżli: a. każda z firm przd połącznim

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

INSTYTUT TELEKOMUNIKACJI, TELEINFORMATYKI I AKUSTYKI POLITECHNIKI WROCŁAWSKIEJ. Raport I28/P-006/07

INSTYTUT TELEKOMUNIKACJI, TELEINFORMATYKI I AKUSTYKI POLITECHNIKI WROCŁAWSKIEJ. Raport I28/P-006/07 INSTYTUT TELEKOMUNIKACJI, TELEINFORMATYKI I AKUSTYKI POLITECHNIKI WROCŁAWSKIEJ Raport I28/P-006/07 PLANARNE I KONFOREMNE ZINTEGROWANE UKŁADY ANTENOWE Z MACIERZĄ BUTLERA JAKO SIECIĄ FORMOWANIA WIELU WIĄZEK.

Bardziej szczegółowo

Perspektywy rozwoju rolnictwa ekologicznego w Polsce

Perspektywy rozwoju rolnictwa ekologicznego w Polsce Anna urczak Zachodniopomorska Szkoła Biznsu w Szczcini Prspktywy rozwoju rolnictwa kologiczngo w Polsc Strszczni W artykul wyjaśniono istotę rolnictwa kologiczngo Następni szczgółowo omówiono zasady, na

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

INFORMATOR TECHNICZNY

INFORMATOR TECHNICZNY INFRMATR TECHNICZNY YTEMY RURWE PE - WDA - KANALIZACJA P.P.H.U. MIL-pol sp. z o.o. 42-0 Częstochowa ul. partańska 8/10 http://www.milo-pol.pl, -mail: milo@milo-pol.pl tl./fax +48 34 362 72 11, 362 83 12

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10 System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

Elektrony, kwanty, fotony

Elektrony, kwanty, fotony Wstęp. Elktrony, kwanty, fotony dr Janusz B. Kępka Sir Isaa Nwton (angilski fizyk i filozof, 16-177) w swym znakomitym dzil Optiks (170 r.) rozważał zarówno korpuskularny jak i falowy araktr światła, z

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

... (środowisko) ... ... 60 minut

... (środowisko) ... ... 60 minut EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) WYBRANE:... (środowisko)... (kompilator)...

Bardziej szczegółowo

ciałem F i oznaczamy [L : F ].

ciałem F i oznaczamy [L : F ]. 11. Wykład 11: Baza i stopień rozszerzenia. Elementy algebraiczne i przestępne. Rozszerzenia algebraiczne i skończone. 11.1. Baza i stopień rozszerzenia. Uwaga 11.1. Niech F będzie ciałem, L rozszerzeniem

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA ĆWICZENIE OPTYMALIZACJA NIEZAWODNOŚCIOWA STUKTUY ELEKTONICZNEGO SYSTEMU EZPIECZEŃSTWA Cl ćwicznia: zapoznani z analizą nizawodnościowo-ksploaacyjną lkronicznych sysmów bzpiczńswa; wyznaczni wybranych wskaźników

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wielu z nas, myśląc. o kursie nauki jazdy

Wielu z nas, myśląc. o kursie nauki jazdy _0 =:=1\) V 58 PILOTclub LUTY 2011 SZKOLENIE PILOTA Wilu z nas, myśląc o kursi nauki jazdy przd gzaminm na prawo jazdy, przypomina sobi jak mało miał on wspólngo, z tym jak wygląda prowadzni pojazdu po

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Optymalizacja reguł przejścia systemu bonus-malus

Optymalizacja reguł przejścia systemu bonus-malus Optymalizaca rguł przścia systmu onus-malus Dr Marcin Topolwski Dr Michał Brnardlli Instytut Ekonomtrii Szkoła Główna Handlowa w Warszawi Plan: Inspiraca, motywaca, cl i zakrs adania Ryzyko Systm onus-malus

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

REGULAMIN PRZYJMOWANIA I PRZEKAZYWANIA ZLECEŃ NABYCIA LUB ZBYCIA INSTRUMENTÓW FINANSOWYCH PRZEZ EFIX DOM MAKLERSKI S.A.

REGULAMIN PRZYJMOWANIA I PRZEKAZYWANIA ZLECEŃ NABYCIA LUB ZBYCIA INSTRUMENTÓW FINANSOWYCH PRZEZ EFIX DOM MAKLERSKI S.A. REGULAMIN PRZYJMOWANIA I PRZEKAZYWANIA ZLECEŃ NABYCIA LUB ZBYCIA INSTRUMENTÓW FINANSOWYCH PRZEZ EFIX DOM MAKLERSKI S.A. Rozdział I. POSTANOWIENIA OGÓLNE 1. Rgulamin okrśla zasady przyjmowania i przkazywania

Bardziej szczegółowo

, KUP GRASZ O. o.---:-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.~ I\) Tylko u nas - Cena 3000. Łodzi

, KUP GRASZ O. o.---:-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.~ I\) Tylko u nas - Cena 3000. Łodzi , KUP,,'' GRASZ O n z z 5000000 ZŁ o ---:-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----~ I\) Tylko u nas - ogłosznia Program tlwizyjny drobn za darmo!!! ' konkursu: Jśli masz gzmplarz Odgłosów"

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 KAROL MAREK KLIMCZAK SYMULACJA FINANSOWA SPÓŁKI ZA POMOCĄ MODELU ZYSKU REZYDUALNEGO Słowa kluczow:

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Materia skondensowana

Materia skondensowana Matria skondnsowana Jack.Szczytko@fuw.du.pl http://www.fuw.du.pl/~szczytko/nt Podziękowania za pomoc w przygotowaniu zajęć: Prof. dr hab. Pawł Kowalczyk Prof. dr hab. Dariusz Wasik Uniwrsytt Warszawski

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Blok I: Wyrażenia algebraiczne. dla xy = 1. (( 7) x ) 2 ( 7) 11 7 x c) x ( x 2) 4 (x 3 ) 3 dla x 0 d)

Blok I: Wyrażenia algebraiczne. dla xy = 1. (( 7) x ) 2 ( 7) 11 7 x c) x ( x 2) 4 (x 3 ) 3 dla x 0 d) Blok I: Wyrażenia algebraiczne I. Obliczyć a) 9 9 9 9 ) 7 y y dla y = z, jeśli = 0 4, y = 0 0.7 i z = y 64 7) ) 7) 7 7 I. Uprościć wyrażenia a) 48 6 4 dla 0 5) 4 dla 0 ) 4 ) dla 0 45 4 y ) dla yz 0 I.

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny 1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2

Bardziej szczegółowo

następnego 21 czerwca 1992 r.

następnego 21 czerwca 1992 r. MEN otwira fabiykę matołó~ (str. 4J w Canns (str. s) Łódzki zoo (str. 6J Rozmowa z wróżką (str. loj Co zdarzyło się na stadioni ŁKS (str. 16J TV i 5.000.000 zł dla Czytlnika Odgłosów. -~. Na pomoc Wałęsi

Bardziej szczegółowo

Ćwiczenie 3. Strona 1 z 10

Ćwiczenie 3. Strona 1 z 10 Ćwiczni 3 Baani oka. Pomiary fotomtryczn. Baani prztworników optolktronicznych (szum, rozzilczość) - różn natężni oświtlnia. Porównani wyników. Część tortyczna Baani narząu wzroku. Ocna narząu wzroku.

Bardziej szczegółowo

Twierdzenie o podziale odcinków w czworokącie. Joanna Sendorek

Twierdzenie o podziale odcinków w czworokącie. Joanna Sendorek Twierdzenie o podziale odcinków w czworokącie Joanna Sendorek Spis treści Wstęp 2 2 Stosunki odcinków w czworokątach 2 3 Twierdzenie o podziale odcinków w czworokącie 4 4 ibliografia 5 Wstęp W swojej pracy

Bardziej szczegółowo

WYMAGANIA PROGRMOWE NA STOPNIE W KLASIE 6 PRZYRODA, WITAJ Szkoły Podstawowej w Rogowie Sobóckim

WYMAGANIA PROGRMOWE NA STOPNIE W KLASIE 6 PRZYRODA, WITAJ Szkoły Podstawowej w Rogowie Sobóckim WYMAGANIA PROGRMOWE NA STOPNIE W KLASIE 6 PRZYRODA, WITAJ Szkoły Podstawowj w Rogowi Sobóckim tmat lkcji Wymagania podstawow Uczń: ocna dopuszczająca ocna dostatczna ocna dobra Wymagania ponadpodstawow

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

DUQUE DATA COLLECTION FOR ACUTE MYOCARDIAL INFARCTION (AMI) ŚWIEŻY ZAWAŁ SERCA - zbieranie danych w projekcie DUQuE

DUQUE DATA COLLECTION FOR ACUTE MYOCARDIAL INFARCTION (AMI) ŚWIEŻY ZAWAŁ SERCA - zbieranie danych w projekcie DUQuE Tak Tak Tak Tak Ni Ni Ni Inclusion Dfinicj Ostry zawał srca (AMI) Tlmdycyna DUQUE DATA COLLECTION FOR ACUTE MYOCARDIAL INFARCTION (AMI) ŚWIEŻY ZAWAŁ SERCA - zbirani danych w projkci DUQuE AMI (świży zawał

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych LABORATORIUM

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych LABORATORIUM POLITECHNIKA GDAŃSKA Wydział Elktrotchniki i Automatyki Katdra Enrgolktroniki i Maszyn Elktrycznych LABORATORIUM SYSTEMY ELEKTROMECHANICZNE TEMATYKA ĆWICZENIA MASZYNA SYNCHRONICZNA BADANIE PRACY W SYSTEMIE

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Model Atomu Bohra. Część 2

Model Atomu Bohra. Część 2 Część Modl Atomu Bohra.1: Modl atomu Thomsona i Ruthrforda.: Modl Ruthrforda.3: Klasyczny Modl Atomu.4: Modl Bohra atomu wodoru.5: Liczby atomow a rntgnowski widma charaktrystyczn.6: Zasada korspondncji..7:

Bardziej szczegółowo

GRASZ O 5.000.000. Nr indeksu 36-76-21. Cena 3000. Jan Gerhard

GRASZ O 5.000.000. Nr indeksu 36-76-21. Cena 3000. Jan Gerhard KUP,,'' GRASZ O 5000000 n z z ZŁ o Rozwiązani konkursu: Jśli masz gzmplarz Odgłosów" z poprzdnigo tygodnia z numrm konkursowym 14/008181, przyjdź do rdakcji w tym tygodniu, ni późnij niż wczw&11:k 160492

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH

ĆWICZENIE 5 BADANIE WYBRANYCH STRUKTUR NIEZAWODNOŚCIOWYCH ĆWICZEIE 5 BADAIE WYBAYCH STUKTU IEZAWODOŚCIOWYCH Cl ćwczna: lustracja praktyczngo sposobu wyznaczana wybranych wskaźnków opsujących nzawodność typowych struktur nzawodnoścowych. Przdmot ćwczna: wrtualn

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo