LAMPY WYŁADOWCZE JAKO NIELINIOWE ODBIORNIKI W SIECI OŚWIETLENIOWEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "LAMPY WYŁADOWCZE JAKO NIELINIOWE ODBIORNIKI W SIECI OŚWIETLENIOWEJ"

Transkrypt

1 Przedmiot: SEC NSTALACJE OŚWETLENOWE LAMPY WYŁADOWCZE JAKO NELNOWE ODBORNK W SEC OŚWETLENOWEJ Przemysław Tabaka Wprowadzenie Lampy wyładowcze, do których zaliczane są lampy fluorescencyjne, rtęciowe, sodowe i rtęciowo-halogenkowe wraz z koniecznymi dla ich prawidłowej pracy urządzeniami stabilizującymi prądwyładowania, są przy częstotliwości napięcia zasilającego 50 Hz odbiornikami nieliniowymi. Przy zasilaniu lamp wyładowczych napięciem sinusoidalnym o częstotliwości sieciowej w ich obwodach płynie prąd niesinusoidalny, przebieg napięcia na zaciskach lampy jest odkształcony.

2 Niesinusoidalny prąd w obwodach lamp wyładowczych wywołać może w sieci zasilającej różne niekorzystne zjawiska, doktórych zaliczyć można: dodatkowe straty mocy i energii: w przewodach sieci niskiego napięcia, w transformatorze zasilającym przepływ prądu odużej wartości w przewodach neutralnych sieci trójfazowej przy symetrycznym obciążeniu faz, odkształcenie napięcia zasilającego Natężenie występowania tych zjawisk jest proporcjonalne do mocy lamp zainstalowanych w danej sieci oświetleniowej, jednakże przede wszystkim zależy ono od stopnia odkształcenia prądu. Odkształcenie prądu w obwodzie lampy zależy m.in. : od rodzaju zastosowanych stateczników, od obecności kondensatorów do kompensacji mocy biernej. Jako miarę odkształcenia prądu przyjmuje się często tzw. zawartość wyż szych harmonicznych: p k = k l 100 (7.10/1) Miarą zawartości wyższych harmonicznych w prądzie lampy może być także współ czynnik THD: THD = k 2 k 100 (7.10/2)

3 1. Lampa wyładowcza jako nieliniowy odbiornik energii elektrycznej Lampy wyładowcze wraz z koniecznymi dla stabilizacji prądu w czasie ich pracy urządzeniami stanowią odbiorniki elektryczne o nieliniowej charakterystyce prądowo-napięciowej. Bardzo silnie nieliniowym elementem jest sama lampa. Jej charakterystyka dla prądu przemiennego o częstotliwości 50 Hz ma kształt pętli. Rys. 7.10/1 Przebieg napięcia na lampie połączonej ze statecznikiem indukcyjnym w funkcji prądu lampy u L =f(i L ) Warunki pracy lampy wyładowczej a) ze statecznikiem indukcyjnym u S napięcie sieci zasilającej u L napięcie na zaciskach lampy i L prąd lampy Rys. 7.10/2a Przebiegi prądu i napięcia dla lampy wyładowczej połączonej ze statecznikiem indukcyjnym

4 Warunki pracy lampy wyładowczej b) ze statecznikiem rezystancyjnym u S napięcie sieci zasilającej u L napięcie na zaciskach lampy i L prąd lampy Rys. 7.10/2b Przebiegi prądu i napięcia dla lampy wyładowczej połączonej ze statecznikiem rezystancyjnym Warunki pracy lampy wyładowczej c) ze statecznikiem pojemnościowo-indukcyjnym u S napięcie sieci zasilającej u L napięcie na zaciskach lampy i L prąd lampy Rys. 7.10/2c Przebiegi prądu i napięcia dla lampy wyładowczej połączonej ze statecznikiem pojemnościowoindukcyjnym

5 Rys. 7.10/3 Przebiegi napięcia i prądów dla układu antystroboskopowego dwuświetlówkowego. Do stabilizacji wyładowania w lampach nie stosuje się przy częstotliwości napięcia zasilającego 50 Hz stateczników pojemnościowych. 50 Hz Prąd lampy ma wtedy charakter pikowy, co jest bardzo niekorzystne ze względu na: pulsowanie strumienia świetlnego, przyczynienie się do zmniejszenia trwałości lamp. Stabilizacja pojemnościowa jest bardziej korzystniejsza przy podwyższonej częstotliwości napięcia zasilającego.

6 Przy sinusoidalnym napięciu sieci zasilającej, napięcie u L na zaciskach lampy jest silnie odkształcone. Jeżeli elektrody lampy są symetryczne, może być ono opisane równaniem: u L = k= 1 U Lk 2sin k ( ωt + ϕ ) w którym: k numer harmonicznej (k = 1, 3, 5, 7,...), U Lk wartość skuteczna k-tej harmonicznej, ϕ k przesunięcie k-tej harmonicznej. k (7.10/3) Wartość chwilowa prądu lampy może być wyrażona zależnością: Lk k= 1 ( ωt + ϕ ) i = 2 sin k (7.10/4) L w którym: Lk wartość skuteczna k-tej harmonicznej prądu dla k=1,3,5,... ϕ k faza początkowa dla k-tej harmonicznej prądu. Lk Wnioski wynikające z odkształcenia prądu w obwodach lamp wyładowczych połączonych ze statecznikiem indukcyjnym i pojemnościowo-indukcyjnym 1 Stopień odkształcenia prądu lampy zależy ściśle od nieliniowości samej lampy oraz nieliniowości statecznika. Duży wpływ na zawartość wyższych harmonicznych ma stosunek wartości napięcianalampieu L do napięcia sieci zasilającej U S. 2 Na odkształcenie prądu w obwodzie lampy decydujący wpływ ma trzecia harmoniczna

7 Rys. 7.10/4 Zawartość trzeciej harmonicznej prądu w obwodzie lampy wyładowczej ze statecznikiem indukcyjnym; b - stosunek rezystancji do reaktancji statecznika (b=r/ωl). Rys. 7.10/5 Zawartość piątej harmonicznej prądu w obwodzie lampy wyładowczej ze statecznikiem indukcyjnym Rys. 7.10/6 Zawartość trzeciej harmonicznej prądu w obwodzie lampy wyładowczej ze statecznikiem pojemnościowo-indukcyjnym; c stosunek reaktancji pojemnościowej do reaktancji indukcyjnej statecznika (c=1/ω 2 LC)

8 2. Wpływ kompensacji mocy biernej na odkształcenie prądu w obwodach lamp wyładowczych Ze względu na niski współczynnik mocy lampy w połączeniu z dławikiem, do obwodu przyłącza się kondensator równoległydo indywidualnej kompensacji mocy biernej (rys. 7.10/7). Prąd pobierany z sieci jest sumą prądu lampy i prądu płynącego przez kondensator: i = i L + i c (7.10/5) Przy sinusoidalnym napięciu zasilającym prąd i c określić można równaniem: i c = u s 2ωc sin ωt + ϕ s + π 2 (7.10/6) a) i L prąd lampy i C prąd kondensatora i prąd dopływający z sieci b) Rys. 7.10/7 Jednofazowy obwód lampy wyładowczej z indywidualną kompensacją mocy biernej a) schemat obwodu b) oscylogramy prądów

9 Wskaz odkształconego prądu 1 (t) jest geometryczną sumą wskazów L1, L3 (t), L5 (t),... i ma zależną od czasu: fazę i wartość. Dla uproszczenia na rys. 7.10/8 harmoniczne o numerach wyższych od 3 nie zostały zaznaczone. Rys. 7.10/8 Wykres wskazowy napięć i prądów dla obwodu lampy wyładowczej z kompensacją mocy biernej Zawartość k-tej harmonicznej w prądzie lampy i w prądzie dopływającym z sieci można oznaczyć odpowiednio jako p = Lk Lk k = oraz pk (7.10/7) L1 1 Ponieważ wartości poszczególnych harmonicznych prądu lampy Lk nie różnią się od odpowiadających im harmonicznych k,można na podstawie (7.10/7) napisać: p k = L1 (7.10/8) Z kolei na podstawie rys. 7.10/8 można napisać: p Lk 1 L1 cosϕi1 = 1 cosϕ 1 (7.10/9)

10 Na podstawie wzorów (7.10/8) i (7.10/9) otrzymuje się: p k cosϕ 1 = plk (7.10/10) cosϕi1 Zawartość poszczególnych harmonicznych w prądzie dopływającym z sieci jest tyle razy większa od ich zawartości w prądzie lampy, ile razy współczynnik mocy dla pierwszej harmonicznej obwodu skompensowanego jest większy od naturalnego współczynnika mocy obwodu lampa-statecznik. Współczynnik mocy lamp wyładowczych określany jest stosunkiem mocy czynnej do mocy pozornej. Wielkość ta jest różnie oznaczana, najczęściej jako λ lub W m Przy założeniu, że napięcie sieci zasilającej jest sinusoidalne, a prąd odkształcony, moc czynna i moc pozorna obwodu mogą być wyrażone zależnościami: P = UsL1 cosϕ (7.10/11) i S = U (7.10/12) s L1 L3 L5 + Zatem współczynnik mocy λ = P S = U s U s L1 2 L1 + cosϕ 2 L3 + i1 2 L (7.10/13)

11 Oznaczając zawartość pierwszej harmonicznej w odkształconym przebiegu prądu lampy jako: otrzymuje się z wzorów (7.10/13) i (7.10/14) L1 p 1 = (7.10/14) L λ = p1 cosϕi1 (7.10/15) 3. Specyficzne cechy lamp wyładowczych jako odbiorników w trójfazowej sieci oświetleniowej Jeżeli trzy lampy zasilane są w układzie trójfazowym czteroprzewodowym, w którym napięcia są symetryczne i sinusoidalne, to przyjmując oznaczenia kl1, kl2, kl3 na wartość skuteczną h-tej harmonicznej prądu lampy w fazach L 1,L 2 il 3 układu, można wartości chwilowe prądów i L1, i L2, i L3 wyrazić zależnościami i i i L1 L2 L3 = = = kl1 k= 1 kl2 k= 1 kl3 k= 1 sin k ( ωt + ϕ ) sin k ωt sin k ωt ikl π + ϕ π + ϕ ikl2 ikl3 (7.10/16)

12 Jeżeli zarówno lampy, jak i towarzyszące im elementy są identyczne, to wartości odpowiednich harmonicznych prądu oraz ich kąty fazowe są sobie równe, tj. kl1 ϕ ikl1 = kl2 = ϕ = ikl2 kl3 = ϕ = k ikl2 = ϕ ik (7.10/17) Wartość chwilowa prądu w przewodzie neutralnym wynosi: i + N = il1 + il2 il3 (7.10/18) Harmoniczne prądu o odpowiednich numerach tworzą układy o kolejności: z g o d n e j p r z e c i w n e j z e r o w e j k = 1, 7, 13, 19,... k = 5, 11, 17, 23,... k = 3, 9, 15, 21,... Harmoniczne o kolejności: z g o d n e j i p r z e c i w n e j ZERUJĄ SĘ w przewodzie neutralnym Harmoniczne o kolejności: z e r o w e j SUMUJĄ SĘ w przewodzie neutralnym

13 Zatem wartość chwilowa prądu w przewodzie neutralnym wyniesie: i N = 3 k 2sin( kωt + ϕik ) (7.10/19) k= 3,9,15,... Wartość skuteczną prądu w przewodzie neutralnym można wyznaczyć zwzoru: = (7.10/20) N + Można przyjąć w przybliżeniu, że wartość skuteczna prądu w przewodzie neutralnym wynosi : N 3 3 (7.10/21) a) przebiegi prądów b) schemat połączeń 1 prąd wypadkowy 2 pierwsza harmoniczna prądu 3 trzecia harmoniczna prądu 4 prąd w przewodzie neutralnym Rys. 7.10/9 Zasilanie trzech lamp w układzie trójfazowym czteroprzewodowym

14 4. Wyniki badań laboratoryjnych odkształcenia prądu w trójfazowych układach lamp wyładowczych Pomiary laboratoryjne zostały wykonane w następujących trójfazowych układach lamp wyładowczych: 1. w układzie trzech świetlówek o mocy po 40 W ze statecznikami indukcyjnymi; 2. w układzie trzech świetlówek o mocy po 40 W ze statecznikami pojemnościowo-indukcyjnymi; 3. w układzie sześciu świetlówek o mocy po 40 W; 4. w układzie dziewięciu świetlówek o mocy po 40 W ; 5. w układzie trzech lamp rtęciowych o mocy po 250 W, połączonych w gwiazdę; 6. w układzie trzech trzech lamp rtęciowo-halogenkowych o mocy po 400 W każda; 7. w układzie trzech lamp sodowych o mocy po 400 W.

15 Tabela 7./10.1 Wyniki pomiarów zawartości wyższych harmonicznych prądu w przewodach fazowych i przewodzie neutralnym linii 3-fazowej, 4-przewodowej Lp Rodzaj, liczba i moc lamp świetlówki 3 x 40W świetlówki 3 x 40W świetlówki 6 x 40W świetlówki 9 x 40W lampy rtęciowe 3 x 250W l. rtęciowo-halogenk. 3 x 400W prąd A A A A A A L1 = L2 = L3 0,250 0,243 0,057 0,021 0,010 0,005 N 0, , ,014 L1 = L2 = L3 0,438 0,420 0,122 0,027 0,013 0,006 N 0, , ,018 L1 = L2 = L3 0,450 0,430 0,126 0,022 0,012 0,005 N 0, , ,015 L1 = L2 = L3 0,732 0,710 0,172 0,036 0,018 0,010 N 0, , ,030 L1 = L2 = L3 1,26 1,23 0,258 0,090 0,053 0,027 N 0, , ,081 L1 = L2 = L3 2,14 2,10 0,374 0,130 0,065 0,036 N 1,12 0 1, ,110 1/2 Lp Rodzaj, liczba i moc lamp lampy sodowe 3 x 400W świetlówki (ok. 3000szt.) w oprawach 3 x 65W świetlówki (ok. 3000szt.) w oprawach 3 x 40W świetlówki (ok. 1200szt.) w oprawach 2 x 40W prąd A A A A A A L1 = L2 = L3 2,15 2,10 0,361 0,132 0,071 0,034 N 1,18 0 1, ,10 L ,8 11,2 5,6 L2 325 b r a k d a n y c h L3 322 N ,8 L ,4 15,2 8,3 3,7 L2 330 b r a k d a n y c h L3 286 N ,4 0 11,2 L ,7 7,9 3,9 1,8 L2 135 b r a k d a n y c h L3 134 N ,4 2/2

16 świetlówki, 3 szt., po 40 W (1) L1 = L2 = L3 =0,25A N =0,172A N3 =0,171A lampy rtęciowe, 3 szt., po 250 W (5) L1 = L2 = L3 =1,26A N =0,779A N3 =0,774A lampy rtęciowo-halogenkowe, 3 szt., po 400W (6) L1 = L2 = L3 =2,14A N =1,12A N3 =1,12A lampy sodowe, 3 szt., po 400 W (7) L1 = L2 = L3 =2,15A N =1,18A N3 =1,173A

17 świetlówki ok szt., w oprawach 3 szt. po 65W (8) L1 =320A L2 =325A L3 =322A N =225A N3 =225A świetlówki ok szt., w oprawach 2 szt. po 40 W (9) L1 =288A L2 =330A L3 =286A N =251A N3 =247A Wyniki pomiarów wykazują przepływ w przewodzie neutralnym prądu o znacznej wartości w stosunku do prądu w przewodzie fazowym. Największy udział w prądzie płynącym przewodem neutralnym posiada trzecia harmoniczna. W układach gdzie była możliwa pełna symetryzacja odbiornika brak jest w przewodzie neutralnym harmonicznej pierwszej, występuje tylko harmoniczna trzecia i dziewiąta.

18 5. Świetlówki kompaktowe jako źródła odkształcenia prądu w sieci zasilającej Szczegółowe badania obwodów świetlówek kompaktowych ze statecznikami elektronicznymi wykazują, że lampy te powodują znacznie silniejsze odkształcenie prądu niż lampy wyładowcze ze statecznikami konwencjonalnymi. a) b) Rys. 7.10/10 Przebiegi prądu dopływającego z sieci: a) dla świetlówki o mocy 40W ze statecznikiem indukcyjnym, b) dla świetlówki kompaktowej o mocy 32W ze statecznikiem elektronicznym

19 Wykonano badania laboratoryjne odkształcenia prądu w obwodach świetlówek kompaktowych oferowanych przez trzy różne firmy na rynku krajowym dla następujących świetlówek: 1 świetlówka SL o mocy 18W ze statecznikiem indukcyjnym (prod. firmy ) 2 świetlówka PL o mocy 9 W ze statecznikiem elektronicznym (prod. firmy ) 3 świetlówka PLC o mocy 20 W ze statecznikiem elektronicznym (prod. firmy ) 4 świetlówka EL o mocy 15 W ze statecznikiem elektronicznym (prod. firmy ) 5 świetlówka EL o mocy 23 W ze statecznikiem elektronicznym (prod. firmy ) 6 świetlówka EL o mocy 20 W ze statecznikiem elektronicznym (prod. firmy ) Tabela 7.10/2 Wyniki badań parametrów elektrycznych świetlówek kompaktowych Numer badanej lampy wg wykazu ma ,8 149, ma ,9 85,4 62,9 87,6 80,4 3 ma 24,2 33,9 72,3 55,0 85,2 63,0 5 ma 2,3 22,4 54,5 42,7 56,9 40,5 7 ma 3,3 15,6 39,0 30,5 40,2 23,8 9 ma 0,7 14,0 32,2 24,5 34,1 26,4 11 ma 0,5 11,6 27,4 26,4 35,0 26,1 13 ma 0,4 7,0 20,4 23,9 29,9 23,4 λ - 0,45 0,61 0,55 0,53 0,56 0,58 η lm/w 38,9 38,5 51,8 42,5 42,5 47,8 THD % 13,8 114,5 137,

20 Odkształcenie prądu w obwodzie świetlówki kompaktowej ze statecznikiem indukcyjnym ma taki sam charakter jak odkształcenie świetlówki liniowej z takim samym statecznikiem i bez kompensacji mocy biernej Odkształcenie prądu badanych świetlówek kompaktowych ze statecznikami elektronicznymi jest bardzo silne. Stosunkowo niska wartość wypadkowego współczynnika mocy λ wynika z braku kondensatorów do kompensacji indywidualnej mocy biernej. Szczególnie niskie wartości współczynnika mocy mają świetlówki ze stabilizacją indukcyjną. Tabela 7.10/3 Wyniki badań parametrów elektrycznych świetlówek kompaktowych pracujących w sieci trójfazowej czteroprzewodowej Przewód: ma ma ma ma ma ma ma ma fazowy 152,0 86,5 84,2 66,9 41,5 33,8 34,6 29,3 neutralny 273, , ,5 0 0

21 Negatywne zjawiska w pracy sieci oświetleniowej spowodowane dużym odkształceniem prądu, w przypadku instalowania świetlówek kompaktowych mogą być spotęgowane. Wartość prądu w przewodzie neutralnym trójfazowej czteroprzewodowej sieci zasilającej może przekroczyć wartość prądu w przewodzie fazowym. Świetlówki kompaktowe mogą być przyczyną różnorakich zaburzeń w pracy sieci zasilającej, do których należą: odkształcenie napięcia zasilającego, obciążenie przewodów neutralnych sieci, dodatkowe straty mocy, zagrożenie porażeniem prądem elektrycznym. KONEC WYKŁADU

PULSOWANIE STRUMIENIA ŚWIETLNEGO I SPOSOBY JEGO OGRANICZANIA

PULSOWANIE STRUMIENIA ŚWIETLNEGO I SPOSOBY JEGO OGRANICZANIA Przedmiot: SIECI I INSTAACJE OŚIETENIOE PUSOANIE STUMIENIA ŚIETNEGO I SPOSOBY JEGO OGANICZANIA Przemysław Tabaka prowadzenie Oko ludzkie przystosowane jest do odbierania światła stałego w czasie. Jeżeli

Bardziej szczegółowo

KOMPENSACJA MOCY BIERNEJ W SIECIACH OŚWIETLENIOWYCH

KOMPENSACJA MOCY BIERNEJ W SIECIACH OŚWIETLENIOWYCH Przedmiot: SIECI I INSTALACJE OŚWIETLENIOWE KOMPENSACJA MOCY BIERNEJ W SIECIACH OŚWIETLENIOWYCH Wprowadzenie Kompensacja mocy biernej w sieciach oświetleniowych dotyczy różnego rodzaju lamp wyładowczych,

Bardziej szczegółowo

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

Problematyka mocy biernej w instalacjach oświetlenia drogowego. Roman Sikora, Przemysław Markiewicz

Problematyka mocy biernej w instalacjach oświetlenia drogowego. Roman Sikora, Przemysław Markiewicz Problematyka mocy biernej w instalacjach oświetlenia drogowego Roman Sikora, Przemysław Markiewicz WPROWADZENIE Moc bierna a efektywność energetyczna. USTAWA z dnia 20 maja 2016 r. o efektywności energetycznej.

Bardziej szczegółowo

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego 1 Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego A. Zasada pomiaru mocy za pomocą jednego i trzech watomierzy Moc czynna układu trójfazowego jest sumą mocy czynnej wszystkich jego faz. W zależności

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE

Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE 1. Wiadomości ogólne Wytwarzanie i przesyłanie energii elektrycznej odbywa się niemal wyłącznie za pośrednictwem prądu przemiennego trójazowego. Głównymi zaletami

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYZNA EEKTONZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE ÓWNOEGŁEGO OBWOD (SYMAJA) rok szkolny klasa grupa data wykonania.

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Ćwiczenie: Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską

Bardziej szczegółowo

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1) 1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu

Bardziej szczegółowo

Odbiorniki nieliniowe problemy, zagrożenia

Odbiorniki nieliniowe problemy, zagrożenia Odbiorniki nieliniowe problemy, zagrożenia Dr inż. Andrzej Baranecki, Mgr inż. Marek Niewiadomski, Dr inż. Tadeusz Płatek ISEP Politechnika Warszawska, MEDCOM Warszawa Wstęp Odkształcone przebiegi prądów

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH

Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAOWYCH Celem ćwiczenia jest poznanie własności odbiorników trójfazowych symetrycznych i niesymetrycznych połączonych w trójkąt i gwiazdę w układach z przewodem neutralnym

Bardziej szczegółowo

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH 15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Wiadomości do tej pory Podstawowe pojęcia Elementy bierne Podstawowe prawa obwodów elektrycznych Moc w układach 1-fazowych Pomiary

Bardziej szczegółowo

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

Obciążenia nieliniowe w sieciach rozdzielczych i ich skutki

Obciążenia nieliniowe w sieciach rozdzielczych i ich skutki Piotr BICZEL Wanda RACHAUS-LEWANDOWSKA 2 Artur STAWIARSKI 2 Politechnika Warszawska, Instytut Elektroenergetyki () RWE Stoen Operator sp. z o.o. (2) Obciążenia nieliniowe w sieciach rozdzielczych i ich

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY Zespół zkół Technicznych w karżysku-kamiennej prawozdanie z ćwiczenia nr Temat ćwiczenia: OWN ELEKTYZN ELEKTONZN imię i nazwisko OMY MOY rok szkolny klasa grupa data wykonania. el ćwiczenia: oznanie pośredniej

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża:

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: Teoria obwodów 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę superpozycji

Bardziej szczegółowo

W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC)

W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC) W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC) W W2 i W3 przedstawiono układy jednokierunkowe 2 i 3-pulsowe (o jednokierunkowym prądzie w źródle napięcia przemiennego). Ich poznanie

Bardziej szczegółowo

Przedmiot: SIECI I INSTALACJE OŚWIETLENIOWE ZASILANIE LAMP FLUORESCENCYJNYCH PRĄDEM O PODWYŻSZONEJ CZĘSTOTLIWOŚCI

Przedmiot: SIECI I INSTALACJE OŚWIETLENIOWE ZASILANIE LAMP FLUORESCENCYJNYCH PRĄDEM O PODWYŻSZONEJ CZĘSTOTLIWOŚCI Przedmiot: SIECI I INSTALACJE OŚWIETLENIOWE ZASILANIE LAMP FLUORESCENCYJNYCH PRĄDEM O PODWYŻSZONEJ CZĘSTOTLIWOŚCI Wprowadzenie Problem zasilania lamp fluorescencyjnych prądem o częstotliwości większej

Bardziej szczegółowo

Kompensacja mocy biernej podstawowe informacje

Kompensacja mocy biernej podstawowe informacje Łukasz Matyjasek ELMA energia I. Cel kompensacji mocy biernej Kompensacja mocy biernej podstawowe informacje Indukcyjne odbiorniki i urządzenia elektryczne w trakcie pracy pobierają z sieci energię elektryczną

Bardziej szczegółowo

X X. Rysunek 1. Rozwiązanie zadania 1 Dane są: impedancje zespolone cewek. a, gdzie a = e 3

X X. Rysunek 1. Rozwiązanie zadania 1 Dane są: impedancje zespolone cewek. a, gdzie a = e 3 EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 20/202 Odpowiedzi do zadań dla grupy elektrycznej na zawody II stopnia Zadanie Na rysunku przedstawiono schemat obwodu

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

Podstawy Elektroenergetyki 2

Podstawy Elektroenergetyki 2 POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Laboratorium z przedmiotu: Podstawy Elektroenergetyki 2 Kod: ES1A500 037 Temat ćwiczenia: BADANIE SPADKÓW

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 310) Wydział/Kierunek Nazwa zajęć laboratoryjnych Nr zajęć

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Data oddania sprawozdania BADANIA ODBIORNIKÓW TRÓJFAZOWYCH

Data oddania sprawozdania BADANIA ODBIORNIKÓW TRÓJFAZOWYCH LORTORIUM ELEKTROTEHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Lp. Nazwisko i imię Ocena Data wykonania 1. ćwiczenia. Podpis prowadzącego 3. zajęcia 4. 5. Temat Data oddania sprawozdania DNI ODIORNIKÓ

Bardziej szczegółowo

CZĘŚĆ II ROZPŁYWY PRĄDÓW SPADKI NAPIĘĆ STRATA NAPIĘCIA STRATY MOCY WSPÓŁCZYNNIK MOCY

CZĘŚĆ II ROZPŁYWY PRĄDÓW SPADKI NAPIĘĆ STRATA NAPIĘCIA STRATY MOCY WSPÓŁCZYNNIK MOCY EEKTROEERGETYKA - ĆWCZEA - CZĘŚĆ ROZPŁYWY PRĄDÓW SPADK APĘĆ STRATA APĘCA STRATY MOCY WSPÓŁCZYK MOCY Prądy odbiorników wyznaczamy przy założeniu, że w węzłach odbiorczych występują napięcia znamionowe.

Bardziej szczegółowo

Współczesne układy kompensacji mocy biernej Jaworzno marzec 2010 r.

Współczesne układy kompensacji mocy biernej Jaworzno marzec 2010 r. Zbigniew HANZELKA (hanzel@agh.edu.pl) Współczesne układy kompensacji mocy biernej Jaworzno marzec 2010 r. POPRAWA WSPÓŁCZYNNIKA MOCY napięcie prąd ωt φ S=UI φ P=UI cosφ Q=UI sinφ S* Q=- UI sinφ S 2 2 2

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej

LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej Ćwiczenie 6 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Kompensacja mocy biernej Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Co to jest kompensacja

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy

CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy ZADANIE.. W linii prądu przemiennego o napięciu znamionowym 00/0 V, przedstawionej na poniższym rysunku obliczyć:

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

ANALIZA HARMONICZNA PRĄDU W INSTALACJI Z LAMPAMI METALOHALOGENKOWYMI

ANALIZA HARMONICZNA PRĄDU W INSTALACJI Z LAMPAMI METALOHALOGENKOWYMI Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 19 XIII Seminarium ZASTOSOWANIE KOMPUTERÓW W NAUCE I TECHNICE 2003 Oddział Gdański PTETiS ANALIZA HARMONICZNA PRĄDU W INSTALACJI

Bardziej szczegółowo

(EL1A_U09) 4. Przy otwartym przełączniku, woltomierz idealny wskazał 0. Po zamknięciu wyłącznika woltomierz i amperomierz idealny wskażą:

(EL1A_U09) 4. Przy otwartym przełączniku, woltomierz idealny wskazał 0. Po zamknięciu wyłącznika woltomierz i amperomierz idealny wskażą: Teoria obwodów (EL1A_U07) 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Badanie układów prostowniczych

Badanie układów prostowniczych Instrukcja do ćwiczenia: Badanie układów prostowniczych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia Poznanie budowy, zasady działania i właściwości podstawowych układów elektronicznych,

Bardziej szczegółowo

Sesja referatowa IV: Metrologia i sprzęt oświetleniowy. XXI Krajowa Konferencja Oświetleniowa Technika Świetlna 2012 Warszawa 22 23 listopada 2012

Sesja referatowa IV: Metrologia i sprzęt oświetleniowy. XXI Krajowa Konferencja Oświetleniowa Technika Świetlna 2012 Warszawa 22 23 listopada 2012 Sesja referatowa IV: Metrologia i sprzęt oświetleniowy DZIEŃ DOBRY Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki WPROWADZENIE Od kilkudziesięciu

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny

Bardziej szczegółowo

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i

Bardziej szczegółowo

W tym krótkim artykule spróbujemy odpowiedzieć na powyższe pytania.

W tym krótkim artykule spróbujemy odpowiedzieć na powyższe pytania. Odkształcenia harmoniczne - skutki, pomiary, analiza Obciążenie przewodów przekracza parametry znamionowe? Zabezpieczenia nadprądowe wyzwalają się i nie wiesz dlaczego? Twój silnik przegrzewa się i wykrywasz

Bardziej szczegółowo

transformatora jednofazowego.

transformatora jednofazowego. Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Pracownia elektryczna MontaŜ Maszyn Instrukcja laboratoryjna Pomiar mocy w układach prądu przemiennego (dwa ćwiczenia) Opracował: mgr inŝ.

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA.

Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA. Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu ES1C 200 012 Ćwiczenie pt. POMIAR

Bardziej szczegółowo

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ Jerzy Niebrzydowski, Grzegorz Hołdyński Politechnika Białostocka Streszczenie W referacie przedstawiono

Bardziej szczegółowo

43. Badanie układów 3-fazowych

43. Badanie układów 3-fazowych 43. elem ćwiczenia jest zapoznanie się z podstawowymi właściwościami symetrycznych i niesymetrycznych układów trójfazowych gwiazdowych i trójkątowych. 43.1. Wiadomości ogólne 43.1.1 Określenie układów

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

Ćwiczenia tablicowe nr 1

Ćwiczenia tablicowe nr 1 Ćwiczenia tablicowe nr 1 Temat Pomiary mocy i energii Wymagane wiadomości teoretyczne 1. Pomiar mocy w sieciach 3 fazowych 3 przewodowych: przy obciążeniu symetrycznym i niesymetrycznym 2. Pomiar mocy

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11 NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu

Bardziej szczegółowo

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Źródła odkształcenia prądu układy przekształtnikowe Źródła odkształcenia prądu układy

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTROTECHNIKI

LABORATORIUM PODSTAWY ELEKTROTECHNIKI LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk

Bardziej szczegółowo

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego TRANSFORMATORY Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Maszyny elektryczne Przemiana energii za pośrednictwem pola magnetycznego i prądu elektrycznego

Bardziej szczegółowo

TEST DLA GRUPY ELEKTRYCZNEJ

TEST DLA GRUPY ELEKTRYCZNEJ XXXIX Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej K R A K Ó W, R A D O M 12.02.2016, 22-23.04.2016 WYJAŚNIENIE: TEST DLA GRUPY ELEKTRYCZNEJ Przed przystąpieniem do udzielenia odpowiedzi

Bardziej szczegółowo

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,

Bardziej szczegółowo

ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH

ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH Cel ćwiczenia: zbadanie wpływu typu układu prostowniczego oraz wartości i charakteru obciążenia na parametry wyjściowe zasilacza. 3.1. Podstawy teoretyczne 3.1.1.

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Wykład nr 5 Spis treści 1.WPROWADZENIE. Źródła odkształcenia napięć i prądów 3.

Bardziej szczegółowo

PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe

PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe PRZEKSZTAŁTNIKI SIECIOWE zadania zaliczeniowe 1. UWAGA: W podanych poniżej zadaniach w każdym przypadku odniesionym do określonego obwodu przekształtnikowego należy narysować kompletny schemat wraz zastrzałkowanymi

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Obliczanie i pomiary parametrów obwodu prądu trójfazowego 724[01].O1.06

Obliczanie i pomiary parametrów obwodu prądu trójfazowego 724[01].O1.06 MINISTERSTWO EDUKACJI NARODOWEJ Teresa Birecka Obliczanie i pomiary parametrów obwodu prądu trójfazowego 724[01].O1.06 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy

Bardziej szczegółowo

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć REZONANS SZEREGOWY I RÓWNOLEGŁY I. Rezonans napięć Zjawisko rezonansu napięć występuje w gałęzi szeregowej RLC i polega na tym, Ŝe przy określonej częstotliwości sygnałów w obwodzie, zwanej częstotliwością

Bardziej szczegółowo

WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA

WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA POLITECHNIKA ŁÓDZKA INSTYTUT ELEKTROENERGETYKI Instrukcja do ćwiczenia O9 Temat ćwiczenia WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA Ćwiczenie O9 WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Pracownia Technik Informatycznych w Inżynierii Elektrycznej

Pracownia Technik Informatycznych w Inżynierii Elektrycznej UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 5. Badanie rezonansu napięć w obwodach szeregowych RLC. Rzeszów 206/207 Imię i nazwisko Grupa Rok studiów Data wykonania

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna 1. Przed zamknięciem wyłącznika prąd I = 9A. Po zamknięciu wyłącznika będzie a) I = 27A b) I = 18A c) I = 13,5A d) I = 6A 2. Prąd I jest równy a) 0,5A b) 0 c) 1A d) 1A 3. Woltomierz wskazuje 10V. W takim

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek

Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek 1. Dane osobowe Data wykonania ćwiczenia: Nazwa szkoły, klasa: Dane uczniów: A. B. C. D. E. 2. Podstawowe informacje BHP W pracowni większość

Bardziej szczegółowo

Teoria Przekształtników zadania zaliczeniowe cz. I ( Przekształtniki Sieciowe)

Teoria Przekształtników zadania zaliczeniowe cz. I ( Przekształtniki Sieciowe) Teoria Przekształtników zadania zaliczeniowe cz. I ( Przekształtniki Sieciowe) UWAGA: 1.Przy rozwiązywaniu każdego zdania należy podać kompletny schemat przekształtnika z opisanymi symbolicznie elementami

Bardziej szczegółowo

2. REZONANS W OBWODACH ELEKTRYCZNYCH

2. REZONANS W OBWODACH ELEKTRYCZNYCH 2. EZONANS W OBWODAH EEKTYZNYH 2.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód elektryczny,

Bardziej szczegółowo

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych

12. Zasilacze. standardy sieci niskiego napięcia tj. sieci dostarczającej energię do odbiorców indywidualnych . Zasilacze Wojciech Wawrzyński Wykład z przedmiotu Podstawy Elektroniki - wykład Zasilacz jest to urządzenie, którego zadaniem jest przekształcanie napięcia zmiennego na napięcie stałe o odpowiednich

Bardziej szczegółowo

Wpływ szybkości komutacji baterii kondensatorów na zawartość wyższych harmonicznych

Wpływ szybkości komutacji baterii kondensatorów na zawartość wyższych harmonicznych Kazimierz HERLENDER 1, Maciej ŻEBROWSKI 2 Politechnika Wrocławska, Katedra Energoelektryki (1) REBUD Sp. z o.o. (2) Wpływ szybkości komutacji baterii kondensatorów na zawartość wyższych harmonicznych Streszczenie:

Bardziej szczegółowo

SPRAWOZDANIE LABORATORIUM ENERGOELEKTRONIKI. Prowadzący ćwiczenie 5. Data oddania 6. Łączniki prądu przemiennego.

SPRAWOZDANIE LABORATORIUM ENERGOELEKTRONIKI. Prowadzący ćwiczenie 5. Data oddania 6. Łączniki prądu przemiennego. SPRAWOZDANIE LABORATORIUM ENERGOELEKTRONIKI Grupa Podgrupa Lp. Nazwisko i imię Numer ćwiczenia 2 1. Data wykonania 2. ćwiczenia 3. 4. Prowadzący ćwiczenie 5. Data oddania 6. sprawozdania Temat Łączniki

Bardziej szczegółowo

Przegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UPQC

Przegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UPQC rzegląd topologii i strategii sterowania układów do poprawy jakości energii elektrycznej UQC dr inż. iotr L. Fabijański E IV Konferencja ytwórców Energii Elektrycznej i Cieplnej Skawina 25-27 września

Bardziej szczegółowo

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na

Bardziej szczegółowo

ANALIZA DANYCH POMIAROWYCH:

ANALIZA DANYCH POMIAROWYCH: ANALIZA DANYCH POMIAROWYCH: JAKOŚCI ENERGII ELEKTRYCZNEJ DLA DOBORU BATERII KONDENSATORÓW DO KOMPENSACJI MOCY BIERNEJ zleceniodawca: SAMODZIELNY WOJEWÓDZKI SZPITAL DLA NERWOWO I PSYCHICZNIE CHORYCH IM.

Bardziej szczegółowo

Temat: Badanie własności elektrycznych p - pulsowych prostowników niesterowanych

Temat: Badanie własności elektrycznych p - pulsowych prostowników niesterowanych Temat: Badanie własności elektrycznych p - pulsowych prostowników niesterowanych PRACOWNIA SPECJALIZACJI Centrum Kształcenia Praktycznego w Inowrocławiu Cel ćwiczenia: Str. Poznanie budowy, działania i

Bardziej szczegółowo

Ćwiczenie 13. Pomiary mocy w obwodach prądu trójfazowego

Ćwiczenie 13. Pomiary mocy w obwodach prądu trójfazowego Ćwiczenie 13 Pomiary mocy w obwodach prądu trójfazowego Program ćwiczenia: 1. Wyznaczanie kolejności faz i sprawdzenie symetrii zasilania 2. Pomiar mocy odbiornika trójfazowego za pomocą jednego watomierza

Bardziej szczegółowo

PN-EN :2014. dr inż. KRZYSZTOF CHMIELOWIEC KOMPATYBILNOŚĆ ELEKTROMAGNETYCZNA (EMC) CZEŚĆ 3-2: POZIOMY DOPUSZCZALNE

PN-EN :2014. dr inż. KRZYSZTOF CHMIELOWIEC KOMPATYBILNOŚĆ ELEKTROMAGNETYCZNA (EMC) CZEŚĆ 3-2: POZIOMY DOPUSZCZALNE PN-EN 61000-3-2:2014 KOMPATYBILNOŚĆ ELEKTROMAGNETYCZNA (EMC) CZEŚĆ 3-2: POZIOMY DOPUSZCZALNE POZIOMY DOPUSZCZALNE EMISJI HARMONICZNYCH PRĄDU (FAZOWY PRĄD ZASILAJĄCY ODBIORNIKA 16 A) dr inż. KRZYSZTOF CHMIELOWIEC

Bardziej szczegółowo

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia Ćwiczenie nr 4 Badanie filtrów składowych symetrycznych prądu i napięcia 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą składowych symetrycznych, pomiarem składowych w układach praktycznych

Bardziej szczegółowo