ROZDZIA l 13. Zbiór Cantora

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ROZDZIA l 13. Zbiór Cantora"

Transkrypt

1 ROZDZIA l 3 Zbiór Cantora Jednym z najciekawszych i najcze ściej spotykanych w matematyce zbiorów jest zbiór Cantora W tym rozdziale opiszemy jego podstawowe w lasności topologiczne Najprościej można go zdefiniować analitycznie Definicja 3 Zbiorem Cantora nazywamy zbiór { } c n C 3 : c n n 0, 2 Innymi s lowy, zbiór C sk lada sie z liczb przedzia lu euklidesowego I [0, ], które w systemie trójkowym zapisuja sie przy użyciu tylko cyfr 0 i 2, a wie c maja postać c (0c c 2 c 3 ) 3, c, c 2, c 3, 0, 2 Nietrudno sprawdzić, że jeśli pierwsza cyfra c 0, to c [0, ], a 3 gdy c 2, to c [ 2, ] Podobnie, jeśli c 3 2 0, to w zależności od tego, czy c 0, czy c 2, mamy c [0, ] lub c [6, 7 ], a w przypadku c 2 2, otrzymamy, odpowiednio do wartości pierwszej cyfry, c [ 2, 3] lub c [ 8, ] Kontynuuja c w ten sposób badanie po lożenia w przedziale I danej liczby c (0c c 2 c 3 ) 3 C, w zależności od wartości jej kolejnych cyfr, możemy stwierdzić, że dla każdego n N, c należy do przedzia lu postaci [ in I c c 2 c n i ] 3 n, n +, 3 n dla pewnej liczby naturalnej i n < 3 n, przy czym po lożenie to jest zdeterminowane cyframi c,,c n w naste puja cy, indukcyjny sposób dla n > : jeśli [ in c I c c n i ] 3 n, n + 3 n i c n 0, to [ 3in c I c c n c n 3, 3i ] n +, n 3 n 3

2 4 3 ZBIÓR CANTORA a gdy c n 2, to c I c c n c n [ 3in + 2, 3i ] n n 3 n Dla wygody, przedstawia sie po lożenie punktu c C w przedziale I w postaci naste puja cego schematu-drzewa I I I 2 I Z powyższych uwag wynika naste puja ce stwierdzenie Stwierdzenie 3 Każdy punkt c (0c c 2 c 3 ) 3 C wyznaczony jest jednoznacznie przez przez cia g cyfr c, c 2, {0, 2} Ponieważ opisane wyżej przedzia ly I c c 2 c n maja d lugości 3 n da ża ce do 0, to można również stwierdzić, że każdy punkt c (0c c 2 c 3 ) 3 C wyznacza jednoznacznie cia g takich przedzia lów, których jest jedynym punktem wspólnym Otrzymujemy sta d naste puja cy geometryczny, indukcyjny opis zbioru Cantora, przyjmowany cze sto za jego definicje Wyste puja ce w nim przedzia ly, to w laśnie przedzia ly I c c 2 c n

3 3 ZBIÓR CANTORA 5 Stwierdzenie 32 Niech I n be dzie suma 2 n sk ladowych, be da - cych przedzia lami domknie tymi, powsta lymi z podzia lu każdej sk ladowej zbioru I n na 3 przystaja ce przedzia ly d lugści każdy i usunie cia 3 n wne trza środkowego z nich Wtedy C I n N Warto zanotować, jako lemat, naste puja ce, przydatne spostrzeżenie, które latwo wynika ze stwierdzenia 32 Lemat 3 Jeśli c (0c c 2 c 3 ) 3 i c (0c c 2 c 3 ) 3 sa punktami zbioru Cantora C, to c c < wtedy i tylko wtedy, gdy c 3 n i c i dla i < n Przejdźmy teraz do omówienia podstawowych w lasności topologicznych zbioru Cantora, rozumianego jako podprzestrzeń prostej euklidesowej Bezpośrednio z definicji 3 i określenia szeregu zbieżnego wynika naste puja cy fakt Stwierdzenie 33 Zbiór {(0c c n ) : c,,c n 0, 2, n N} jest podzbiorem przeliczalnym i ge stym w C Stwierdzenie 34 Zbiór Cantora jest w sobie ge sty Dowód Niech c c n, gdzie c 3 n n 0, 2 Oznaczmy x k k c n 3 n, y k k Wtedy x k, y k C, x k y k i oczywiście c n 3 + n nk+ lim k x k lim k y k c 2 3 n Stwierdzenie 35 Zbiór Cantora C jest przestrzenia zwarta Dowód Jest to konsekwencja stwierdzenia 32, gdyż C, jako przekrój podzbiorów I n domknie tych w przedziale I jest podzbiorem domknie tym przestrzeni zwartej I, wie c jest podprzestrzenia zwarta na mocy stwierdzenia 0 Stwierdzenie 36 Jedynymi podprzestrzeniami spójnymi zbioru Cantora sa podzbiory jednopunktowe

4 6 3 ZBIÓR CANTORA Dowód Niejedopunktowymi podprzestrzeniami spójnymi prostej euklidesowej moga być wy la cznie różnego typu przedzia ly Przypuśćmy wie c, że jakiś przedzia l [a, b], gdzie b > a, zawiera sie w C I n Wtedy [a, b] I n, wie c istnieje sk ladowa I c c 2 c n zbioru I n, zawieraja ca przedzia l [a, b] dla każdego n Wynika sta d, że 0 < b a dla 3 n każdego n, co jest niemożliwe Uwaga 3 W lasność przestrzeni C opisana w stwierdzeniu 36 nazywa sie ca lkowita niespójnościa tej przestrzeni Kolejne w lasności zbioru Cantora nie sa już tak oczywiste można je nawet uznać za zaskakuja ce Stwierdzenie 37 Iloczyn kartezjański C C jest homeomorficzny z C Dowód Określimy naturalny homeomorfizm h : C C C wzorem h(c, c ) (0c c c 2c 2 ) 3, gdzie c (0c c 2 ) 3, c (0c c 2 ) 3 Latwo widać, że h jest funkcja wzajemnie jednoznaczna Pozostaje sprawdzić cia g lość h (zob wniosek 02) Wygodnie jest w tym wypadku sprawdzać jednostajna cia g lość h Niech ɛ > 0 i n be dzie taka liczba naturalna, że 3 2n+ < ɛ Za lóżmy,że ρ((c, c ), (d, d )) c d 2 + c d 2 < 3 2n+, gdzie ρ jest metryka w iloczynie C C Wtedy c d < oraz c d < Na podstawie lematu 3 3 2n+ 3 2n+ liczby c i d maja takie same pierwsze n cyfr, tzn jeśli c (0c c 2 ) 3 i d (0d d 2 ) 3, to c i d i dla i n; podobnie jeśli c (0c c 2 ) 3 i d (0d d 2 ) 3, to c i d i dla i n Wynika sta d, znów na podstawie lematu 3, że h(c, c ) h(d, d ) (0c c c 2 c 2 c n c n ) 3 (0d d d n d n ) 3 < 3 2n+ < ɛ Stosuja c prosta indukcje, otrzymujemy naste puja cy wniosek Wniosek 3 Iloczyn kartezjański skończenie wielu zbiorów Cantora przez siebie jest homeomorficzny ze zbiorem Cantora

5 3 ZBIÓR CANTORA 7 Uwaga 32 Podobny fakt zachodzi również dla iloczynu nieskończonego: iloczyn kartezjański przeliczalnej ilości zbiorów Cantora przez siebie jest homeomorficzny ze zbiorem Cantora Dowodzić tego można w sposób podobny do dowodu stwierdzenia 37 Twierdzenie 3 Istnieje przekszta lcenie cia g le zbioru Cantora C na przedzia l euklidesowy I [0, ] Prekszta lcenie takie można określić wzorem s((0c c 2 ) 3 ) c n 2 2 n Dowód Zauważmy najpierw, że przekszta lcenie s przyjmuje wartości w przedziale I Widać to z oszacowania 0 c n n 2 2 n 2 n Naste pnie sprawdzimy, że jest to przekszta lcenie na W tym celu przedstawmy dowolna liczbe x I w zapisie dwójkowym x (0b b 2 ) 2, gdzie b, b 2, {0, }; oznacza to, jak wiadomo, że x b n Przyjmuja c c 2 n n 2b n, dla każdego n, otrzymujemy równość s(0c c 2 ) 3 ) 2 c n 2 n 2 2b n 2 n x Pozostaje do uzasadnienia cia g lość przekszta lcenia s Wygodnie jest sprawdzać od razu jego jednostajna cia g lość Niech wie c ɛ > 0 Wybieramy liczbe naturalna N tak duża, by < ɛ ( szereg 2 n jest zbieżny, wie c takie N istnieje!) Przyjmuja c δ, wnosimy na 3 N podstawie lematu 3, że jeśli c (0c c 2 ) 3, c (0c c 2 ) 3 oraz c c < δ, to c n c n dla n < N Sta d s(c) s(c ) 2 c n 2 n 2 2 c n 2 n 2 c n c n 2 n 2 c n c n 2 n 2 2 n 2 n < ɛ Definicja 32 Przekszta lcenie s : C I, opisane w twierdzeniu 3, nazywamy funkcja schodkowa

6 8 3 ZBIÓR CANTORA Wniosek 32 Zbiór Cantora ma moc continuum c Dowód Moc C nie jest mniejsza niż moc obrazu s(c) I, która wynosi c, a z drugiej strony C jest podzbiorem przedzia lu I, wie c moc C nie jest wie ksza od c Uwaga 33 Warto zwrócić uwage na wniosek 32 W geometrycznym opisie i przy próbie rysowania przybliżeń zbioru Cantora, zauważamy jedynie jego punkty trójkowo-wymierne (postaci c k 3 n (0c, c n ), dla pewnych k 3 n ), których jest oczywiście przeliczalnie wiele (stwierdzenie 33) Wie kszość punktów zbioru Cantora jest dla nas niewidoczna! Wniosek 33 Istnieja przekszta lcenia cia g le zbioru Cantora na kostki euklidesowe I n dowolnego wymiaru skończonego n oraz na kostke Hilberta I ℵ 0 Dowód Jeśli s : C I jest funkcja schodkowa i C n oznacza iloczyn kartezjański n egzemplarzy zbiorów Cantora przez siebie, to przekszta lcenie s n : C n I n określone wzorem s n (c, c 2,, c n ) (s(c ), s(c 2 ), s(c n )) jest przekszta lceniem cia g lym i na Ponadto, z wniosku 3 wiemy, że istnieje homeomorfizm h : C C n, wie c z lożenie s n h : C I n jest przekszta lceniem cia g lym zbioru C na kostke I n W przypadku kostki Hilberta argumentacja jest podobna Uwaga 34 Zachodzi znacznie ogólniejszy fakt, który podajemy tylko informacyjnie : każda przestrzeń metryczna zwarta jest obrazem cia g lym zbioru Cantora! (zob [ES]) Wniosek 34 Istnieja przekszta lcenia cia g le przedzia lu euklidesowego I [0, ] na kostki euklidesowe I n dowolnego wymiaru n i na kostke Hilberta Dowód Jeśli Y jest jedna z tych kostek, to istnieje przekszta lcenie cia g le f zbioru Cantora C na Y Ponieważ C jest domknie tym podzbiorem w I, to można skorzystać z twierdzenia Tietzego 4, które gwarantuje istnienie przed lużenia cia g lego f : I Y przekszta lcenia f Można też skonstruować takie przed lużenie bezpośrednio, nie korzystaja c z twierdzenia Tietzego W tym celu skorzystamy z opisu geometrycznego zbioru C zawartego w stwierdzeniu 32 Oznaczmy przez a i b końce dowolnie ustalonej sk ladowej dope lnienia w I zbioru I n

7 3 ZBIÓR CANTORA (te sk ladowe sa przedzia lami otwartymi usuwanymi w konstrukcji geometrycznej zbioru C) Ponieważ przedzia ly otwarte (a, b) sa roz la czne z C, wie c na nie trzeba przed lużyć przekszta lcenie f Jeśli f(a) f(b), to k ladziemy f (x) f(a) dla wszystkich x (a, b); w przeciwnym razie, odcinek prostoliniowy f(a)f(b) o końcach f(a), f(b) zawiera sie w kostce Y i można go sparametryzować funkcja α : [a, b] f(a)f(b) (zależna oczywiście, tak jak i punkty a, b, od cia gu cyfr c,,c n ) w standardowy sposób: α(x) x a x a f(b) + ( b a b a )f(a) Teraz możemy określić przed lużenie f na punktach x [a, b] wzorem f (x) α(x) Cia g lość f w punktach odcinków otwartych postaci (a, b) wynika wprost z cia g lości parametryzacji α Uzasadnimy cia g lość f w punktach zbioru Cantora Niech ɛ > 0 Z jednostajnej cia g lości przekszta lcenia f (zob stwierdzenie 05) wynika istnienie liczby δ > 0 takiej, że jeśli x, x C oraz x x < δ, to f(x) f(x ) < ɛ 2 Niech c C Istnieje sk ladowa I c c n zbioru I n zawieraja ca c o średnicy mniejszej od δ Przedzia l I c c n może mieć wspólne końce z co najwyżej dwiema sk ladowymi dope lnienia I \ C, czyli przedzia lami otwartymi postaci (a, b), (a, b ), rozważanymi wyżej przy określaniu przed lużenia f Na przedzia lach [a, b], [a b ] określone sa parametryzacje α i α, które, oczywiście, też sa jednostajnie cia g le, wie c istnieje liczba θ > 0 taka, że jeśli x, x [a, b] (x, x [a, b ]) oraz x x < θ, to α(x) α(x ) < ɛ 2 ( α (x) α (x ) < ɛ 2, odpowiednio) Przyjmijmy δ min{δ, θ} i za lóżmy, że x I \ C oraz x c < δ W przypadku, gdy x I c c n, istnieje sk ladowa dope lnienia I \ C postaci (a x, b x ), zawieraja ca punkt x i zawarta wraz z końcami a x, b x w I c c n (przypomnijmy przy tym, że te końce należa do zbioru Cantora C) Wtedy otrzymujemy oszacowanie odleg lości f (x) f (c) f (x) f (a x ) + f (a x ) f (c) f (b x ) f (a x ) + f(a x ) f(c) f(b x ) f(a x ) + f(a x ) f(c) < ɛ 2 + ɛ 2 ɛ Gdy x / I c c n, to x (a, b) lub x (a, b ) Za lóżmy, że x (a, b) i przyjmijmy, że przedzia l (a, b) leży na prawo od przedzia lu I c c n (dla

8 00 3 ZBIÓR CANTORA drugiego przypadku rozumowanie jest analogiczne) Wtedy f (x) f (c) f (x) f (a) + f (a) f (c) Wreszcie, jeśli x C i x c < δ, to oczywiście α(x) α(a) + f(a) f(c) < ɛ f (x) f (c) f(x) f(c) < ɛ Uwaga 35 Przekszta lcenia cia g le przedzia lu I na kwadrat I 2 zwa sie tradycyjnie przekszta lceniami Peana Opis geometryczny takiego przekszta lcenia zamieszczaja podre czniki [ES] i [Ku] Na zakończenie warto wymienić jeszcze kilka ważnych w lasności zbioru Cantora, których dowody (lub wskazówki do nich) można znaleźć np w [ES] i [Ku] Przestrzeń topologiczna X jest homeomorficzna ze zbiorem Cantora wtedy i tylko wtedy, gdy X jest przestrzenia metryczna zwarta, w sobie ge sta, której jedynymi podprzestrzeniami spójnymi sa podzbiory jednopunktowe Każda przestrzeń metryzowalna w sposób zupe lny i w sobie ge sta zawiera podprzestrzeń homeomorficzna ze zbiorem Cantora Każda przestrzeń metryczna ośrodkowa której każdy punkt ma otoczenia otwarto-domknie te dowolnie ma lej średnicy (taka przestrzeń nazywa sie zero-wymiarowa) jest homeomorficzna z podzbiorem zbioru Cantora

9 ĆWICZENIA 0 Ćwiczenia () Sprawdź, czy zbiór końców usuwanych przedzia lów w konstrukcji zbioru Cantora C (tzn zbiór końców sk ladowych zbiorów I n dla wszystkich n N) jest przeliczalny i ge sty w C i czy jest zwarty (2) Wskaż kilka podzbiorów otwarto-domknie tych w C Wykaż, że zbiór C jest podobny do swych podzbiorów C [0, ], 3 C [ 2, ], C [0, ], C 3 [2, ], itd 3 (3) Niech X {0, } {0, } z metryka f ρ ((s, s 2, ), (t, t 2, )) min{n : s n t n } lub 0, gdy (s, s 2, ) (t, t 2, ) Sprawdź, że ρ jest metryka w X Wykaż, że przekszta lcenie f : C X określone wzorem ( t 3 + t ) ( t 2, t 2 2, ) gdzie t n {0, 2} dla każdego n, jest homeomorfizmem (4) Skonstruuj zbiór homeomorficzny ze zbiorem Cantora C zawarty w zbiorze liczb niewymiernych z metryka euklidesowa (zob [Ku]) (5) Przestrzeń metryczna X jest grupa topologiczna, gdy w X jest określone dzia lanie grupowe, które jest cia g le jako przekszta lcenie X X X i w którym branie elementu odwrotnego x x też jest przekszta lceniem cia g lym X X Sprawdzić, czy przestrzenie euklidesowe, przestrzeń Hilberta l 2, R ℵ 0, okra g S {z (R 2, ρ e ) : z }, torus n-wymiarowy (S ) n sa grupami topologicznymi (z jakimi dzia laniami?) Korzystaja c z zadania 3 pokazać, że zbiór Cantora jest grupa topologiczna (6) Czy istnieja przekszta lcenia cia g le (homeomorfizmy) z: C na C 3, C na Q, C na R \ Q, C na I 3, C na R 2, C na okra g S, C na sfere S 2, C na C I, C na X {0,,,, }, C na 2 3 X I, I na C, X I na C, R na C, Q na C, Q I na C, S 2 na C? Podaj przekszta lcenia (wykorzystuj, m in funkcje z C na I) lub przyczyne ich braku (np zwartość, spójność) (7) Czy zbiór Cantora jest ścia galny? Czy przestrzeń X suma odcinków la cza cych punkt (, ) z 2 punktami zbioru C na osi x na p laszczyźnie euklidesowej jest ścia - galna?

Pojȩcie przestrzeni metrycznej

Pojȩcie przestrzeni metrycznej ROZDZIA l 1 Pojȩcie przestrzeni metrycznej Definicja 1.1. Dowolny niepusty zbiór X z funkcja ρ : X X [0, ), spe lniaja ca naste puja ce trzy warunki M1: ρ(x, y) = 0 x = y, M2: ρ(x, y) = ρ(y, x), M3: ρ(x,

Bardziej szczegółowo

1 Przestrzenie metryczne

1 Przestrzenie metryczne Topologia I Notatki do wyk ladu LITERATURA UZUPE LNIAJA CA R. Duda, Wprowadzenie do topologii, czȩść I. R. Engelking, Topologia ogólna. R. Engelking, K. Sieklucki, Wstȩp do topologii. W. Rudin, Podstawy

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla

Bardziej szczegółowo

DZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut

DZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut XLIII MIE DZYSZKOLNE ZAWODY MATEMATYCZNE Eliminacje rejonowe Czas trwania zawodów: 150 minut Każdy uczeń rozwia zuje dwadzieścia cztery zadania testowe, w których podano za lożenia oraz trzy (niekoniecznie

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

P DO TOPOLOGII (A) Skrypt dla studentów. Pawe l Krupski

P DO TOPOLOGII (A) Skrypt dla studentów. Pawe l Krupski WSTE P DO TOPOLOGII (A) Skrypt dla studentów Pawe l Krupski Instytut Matematyczny Uniwersytetu Wroc lawskiego Spis treści PRZEDMOWA v Rozdzia l 1. Pojȩcie przestrzeni metrycznej 1 Ćwiczenia 5 Rozdzia

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów

Bardziej szczegółowo

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Wyk lady z topologii I

Wyk lady z topologii I Wyk lady z topologii I Wies law Kubiś Akademia Świȩtokrzyska ul. Świȩtokrzyska 15, 25-406 Kielce, Poland E-mail: wkubis@pu.kielce.pl 1 maja 2006 Spis treści 1 Przestrzenie metryczne 3 1.1 Definicje........................................

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Aproksymacja diofantyczna

Aproksymacja diofantyczna Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element

Bardziej szczegółowo

W poszukiwaniu kszta ltów kulistych

W poszukiwaniu kszta ltów kulistych W poszukiwaniu kszta ltów kulistych Piotr Mankiewicz April 4, 2005 Konwersatorium dla doktorantów Notacje 1 Cia lo wypuk le - wypuk ly, domkniȩty podzbiór ograniczony w R n. Odleg lość geometryczna dwóch

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

13 Zastosowania Lematu Szemerédiego

13 Zastosowania Lematu Szemerédiego 13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{

Bardziej szczegółowo

Teoria miary i całki

Teoria miary i całki Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach.

Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Topologia I*, jesień 2013 (prowadzący H. Toruńczyk). Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Wyk lad 10 Przestrzeń przekszta lceń liniowych

Wyk lad 10 Przestrzeń przekszta lceń liniowych Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych

Bardziej szczegółowo

Analiza matematyczna 2, cze ść dziesia ta

Analiza matematyczna 2, cze ść dziesia ta Analiza matematyczna 2, cze ść dziesia ta Informacja ogólna dla tych, którzy jeszcze ze mna chca rozmawiać o stopniach: zdecydowana wie kszość twierdzeń w matematyce, w analizie w szczególności, sk lada

Bardziej szczegółowo

Wyk lad 1 Podstawowe struktury algebraiczne

Wyk lad 1 Podstawowe struktury algebraiczne Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość

Bardziej szczegółowo

Tekst poprawiony 27 XII, godz. 17:56. Być może dojda

Tekst poprawiony 27 XII, godz. 17:56. Być może dojda Tekst poprawiony 27 XII, godz. 7:56. Być może dojda naste pne zadania Definicja 7. krzywej) Niech P oznacza dowolny przedzia l niezdegenerowany. Przekszta lcenie r: P IR k nazywamy krzywa. Jeśli r jest

Bardziej szczegółowo

Szeregi liczbowe wste

Szeregi liczbowe wste 3 grudnia 2007 orawi lem dowód twierdzenia o rzybliżeniach dziesie tnych Zajmiemy sie teraz cia gami nieskończonym, ale zaisywanymi w ostaci sum. Definicja 2. (szeregu) Niech (a n ) be dzie dowolnym cia

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Pisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8

Pisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8 EGZAMIN DYPLOMOWY, cze ść I (testowa) 22.06.2009 INSTRUKCJE DOTYCZA CE WYPE LNIANIA TESTU 1. Nie wolno korzystać z kalkulatorów. 2. Sprawdzić, czy wersja testu podana na treści zadań jest zgodna z wersja

Bardziej szczegółowo

TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski. Typeset by AMS-TEX

TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski. Typeset by AMS-TEX TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski 20 Typeset by AMS-TEX 8. GRAFY PLANARNE. 8.1. Grafy p laskie i planarne. TEORIA GRAFÓW. MATERIA LY VI. 21 Mówimy, że graf jest uk ladalny

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

f(t) f(x), D f(x) = lim sup t x oraz D f(x) = lim inf

f(t) f(x), D f(x) = lim sup t x oraz D f(x) = lim inf 9. Różniczkowanie. Jeśli f jest funkcją rzeczywistą, to granice D + f(x) = lim sup t x + f(t) f(x), D f(x) = lim sup t x t x f(t) f(x), t x f(t) f(x) f(t) f(x) D + f(x) = lim inf oraz D f(x) = lim inf

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Dekompozycje prostej rzeczywistej

Dekompozycje prostej rzeczywistej Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

Teoria miary. Matematyka, rok II. Wykład 1

Teoria miary. Matematyka, rok II. Wykład 1 Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 6 Podprzestrzenie przestrzeni liniowych Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)

Bardziej szczegółowo

R n jako przestrzeń afiniczna

R n jako przestrzeń afiniczna R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

Granice funkcji, definicja cia

Granice funkcji, definicja cia Granice funkcji, definicja Jednym z najważniejszych poje ć w matematyce jest poje cie funkcji Przypomnimy definicje Definicja 61 funkcji, wartości, obrazu, dziedziny i przeciwdziedziny Przyporza dkowanie

Bardziej szczegółowo

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013 Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania luty 2013 WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

2a )2 a b2. = 2 4a ====== x + b. nawias

2a )2 a b2. = 2 4a ====== x + b. nawias Wielomiany kwadratowe Wielomian a + + c nazywamy kwadratowym lu wielomianem drugiego stopnia, jeśli a jest licza różna od 0. W dalszym cia gu zak ladamy, że a i a 0. Możemy napisać a + + c = a ( + a )

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

1 Ciągłe operatory liniowe

1 Ciągłe operatory liniowe 1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

Elementy Teorii Miary i Całki

Elementy Teorii Miary i Całki Elementy Teorii Miary i Całki c Lech Drewnowski Wydział Matematyki i Informatyki Uniwersytet im. dama Mickiewicza w Poznaniu Poznań 2008 http://main2.amu.edu.pl/ drewlech/dydaktyka.html http://main2.amu.edu.pl/

Bardziej szczegółowo

Analiza matematyczna 2, cze ść dwunasta Tekst poprawiony 4 września 2011, godz. 00:02. o zauważonych b le. dach, poprawie

Analiza matematyczna 2, cze ść dwunasta Tekst poprawiony 4 września 2011, godz. 00:02. o zauważonych b le. dach, poprawie Analiza matematyczna 2, cze ść dwunasta Tekst poprawiony 4 września 2011, godz 00:02 Zwyk la prośba: prosze o informacje o zauważonych b le dach, poprawie Zajmiemy sie teraz określeniem miary na rozmaitości

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

2. PRZELICZANIE OBIEKTÓW KOMBINATORYCZNYCH

2. PRZELICZANIE OBIEKTÓW KOMBINATORYCZNYCH 2. PRZELICZANIE OBIEKTÓW KOMBINATORYCZNYCH Typeset by AMS-TEX 2. PRZELICZANIE OBIEKTÓW KOMBINATORYCZNYCH 7 Zasada bijekcji. Jeżeli istnieje bijekcja f : A B, tj. f jest funkcja różnowartościowa i,,na (tzn.

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

Zbiory wypukłe i stożki

Zbiory wypukłe i stożki Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R

Bardziej szczegółowo

Wybrane zagadnienia teorii continuów

Wybrane zagadnienia teorii continuów Wybrane zagadnienia teorii continuów Mirosława Reńska, Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW Prezentacja wykładu Warszawa, maj 2011, (prezentacja dostępna na stronie http://www.mimuw.edu.pl/

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

zaznaczymy na osi liczbowej w ten sposób:

zaznaczymy na osi liczbowej w ten sposób: 1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb

Bardziej szczegółowo

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................

Bardziej szczegółowo

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Normy wektorów i macierzy

Normy wektorów i macierzy Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja przestrzenie liniowe nad A: każdy z nich ma rozk lad na sume modu lów prostych. W tych rozk

Bardziej szczegółowo

Wyk lad 3 Grupy cykliczne

Wyk lad 3 Grupy cykliczne Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym

Bardziej szczegółowo

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

5. Obliczanie pochodnych funkcji jednej zmiennej

5. Obliczanie pochodnych funkcji jednej zmiennej Kiedy może być potrzebne numeryczne wyznaczenie pierwszej lub wyższej pochodnej funkcji jednej zmiennej? mamy f(x), nie potrafimy znaleźć analitycznie jej pochodnej, nie znamy postaci f(x), mamy stablicowane

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

O liczbach niewymiernych

O liczbach niewymiernych O liczbach niewymiernych Agnieszka Bier Spotkania z matematyką jakiej nie znacie ;) 8 stycznia 0 Liczby wymierne i niewymierne Definicja Liczbę a nazywamy wymierną, jeżeli istnieją takie liczby całkowite

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo