ROZDZIA l 13. Zbiór Cantora

Wielkość: px
Rozpocząć pokaz od strony:

Download "ROZDZIA l 13. Zbiór Cantora"

Transkrypt

1 ROZDZIA l 3 Zbiór Cantora Jednym z najciekawszych i najcze ściej spotykanych w matematyce zbiorów jest zbiór Cantora W tym rozdziale opiszemy jego podstawowe w lasności topologiczne Najprościej można go zdefiniować analitycznie Definicja 3 Zbiorem Cantora nazywamy zbiór { } c n C 3 : c n n 0, 2 Innymi s lowy, zbiór C sk lada sie z liczb przedzia lu euklidesowego I [0, ], które w systemie trójkowym zapisuja sie przy użyciu tylko cyfr 0 i 2, a wie c maja postać c (0c c 2 c 3 ) 3, c, c 2, c 3, 0, 2 Nietrudno sprawdzić, że jeśli pierwsza cyfra c 0, to c [0, ], a 3 gdy c 2, to c [ 2, ] Podobnie, jeśli c 3 2 0, to w zależności od tego, czy c 0, czy c 2, mamy c [0, ] lub c [6, 7 ], a w przypadku c 2 2, otrzymamy, odpowiednio do wartości pierwszej cyfry, c [ 2, 3] lub c [ 8, ] Kontynuuja c w ten sposób badanie po lożenia w przedziale I danej liczby c (0c c 2 c 3 ) 3 C, w zależności od wartości jej kolejnych cyfr, możemy stwierdzić, że dla każdego n N, c należy do przedzia lu postaci [ in I c c 2 c n i ] 3 n, n +, 3 n dla pewnej liczby naturalnej i n < 3 n, przy czym po lożenie to jest zdeterminowane cyframi c,,c n w naste puja cy, indukcyjny sposób dla n > : jeśli [ in c I c c n i ] 3 n, n + 3 n i c n 0, to [ 3in c I c c n c n 3, 3i ] n +, n 3 n 3

2 4 3 ZBIÓR CANTORA a gdy c n 2, to c I c c n c n [ 3in + 2, 3i ] n n 3 n Dla wygody, przedstawia sie po lożenie punktu c C w przedziale I w postaci naste puja cego schematu-drzewa I I I 2 I Z powyższych uwag wynika naste puja ce stwierdzenie Stwierdzenie 3 Każdy punkt c (0c c 2 c 3 ) 3 C wyznaczony jest jednoznacznie przez przez cia g cyfr c, c 2, {0, 2} Ponieważ opisane wyżej przedzia ly I c c 2 c n maja d lugości 3 n da ża ce do 0, to można również stwierdzić, że każdy punkt c (0c c 2 c 3 ) 3 C wyznacza jednoznacznie cia g takich przedzia lów, których jest jedynym punktem wspólnym Otrzymujemy sta d naste puja cy geometryczny, indukcyjny opis zbioru Cantora, przyjmowany cze sto za jego definicje Wyste puja ce w nim przedzia ly, to w laśnie przedzia ly I c c 2 c n

3 3 ZBIÓR CANTORA 5 Stwierdzenie 32 Niech I n be dzie suma 2 n sk ladowych, be da - cych przedzia lami domknie tymi, powsta lymi z podzia lu każdej sk ladowej zbioru I n na 3 przystaja ce przedzia ly d lugści każdy i usunie cia 3 n wne trza środkowego z nich Wtedy C I n N Warto zanotować, jako lemat, naste puja ce, przydatne spostrzeżenie, które latwo wynika ze stwierdzenia 32 Lemat 3 Jeśli c (0c c 2 c 3 ) 3 i c (0c c 2 c 3 ) 3 sa punktami zbioru Cantora C, to c c < wtedy i tylko wtedy, gdy c 3 n i c i dla i < n Przejdźmy teraz do omówienia podstawowych w lasności topologicznych zbioru Cantora, rozumianego jako podprzestrzeń prostej euklidesowej Bezpośrednio z definicji 3 i określenia szeregu zbieżnego wynika naste puja cy fakt Stwierdzenie 33 Zbiór {(0c c n ) : c,,c n 0, 2, n N} jest podzbiorem przeliczalnym i ge stym w C Stwierdzenie 34 Zbiór Cantora jest w sobie ge sty Dowód Niech c c n, gdzie c 3 n n 0, 2 Oznaczmy x k k c n 3 n, y k k Wtedy x k, y k C, x k y k i oczywiście c n 3 + n nk+ lim k x k lim k y k c 2 3 n Stwierdzenie 35 Zbiór Cantora C jest przestrzenia zwarta Dowód Jest to konsekwencja stwierdzenia 32, gdyż C, jako przekrój podzbiorów I n domknie tych w przedziale I jest podzbiorem domknie tym przestrzeni zwartej I, wie c jest podprzestrzenia zwarta na mocy stwierdzenia 0 Stwierdzenie 36 Jedynymi podprzestrzeniami spójnymi zbioru Cantora sa podzbiory jednopunktowe

4 6 3 ZBIÓR CANTORA Dowód Niejedopunktowymi podprzestrzeniami spójnymi prostej euklidesowej moga być wy la cznie różnego typu przedzia ly Przypuśćmy wie c, że jakiś przedzia l [a, b], gdzie b > a, zawiera sie w C I n Wtedy [a, b] I n, wie c istnieje sk ladowa I c c 2 c n zbioru I n, zawieraja ca przedzia l [a, b] dla każdego n Wynika sta d, że 0 < b a dla 3 n każdego n, co jest niemożliwe Uwaga 3 W lasność przestrzeni C opisana w stwierdzeniu 36 nazywa sie ca lkowita niespójnościa tej przestrzeni Kolejne w lasności zbioru Cantora nie sa już tak oczywiste można je nawet uznać za zaskakuja ce Stwierdzenie 37 Iloczyn kartezjański C C jest homeomorficzny z C Dowód Określimy naturalny homeomorfizm h : C C C wzorem h(c, c ) (0c c c 2c 2 ) 3, gdzie c (0c c 2 ) 3, c (0c c 2 ) 3 Latwo widać, że h jest funkcja wzajemnie jednoznaczna Pozostaje sprawdzić cia g lość h (zob wniosek 02) Wygodnie jest w tym wypadku sprawdzać jednostajna cia g lość h Niech ɛ > 0 i n be dzie taka liczba naturalna, że 3 2n+ < ɛ Za lóżmy,że ρ((c, c ), (d, d )) c d 2 + c d 2 < 3 2n+, gdzie ρ jest metryka w iloczynie C C Wtedy c d < oraz c d < Na podstawie lematu 3 3 2n+ 3 2n+ liczby c i d maja takie same pierwsze n cyfr, tzn jeśli c (0c c 2 ) 3 i d (0d d 2 ) 3, to c i d i dla i n; podobnie jeśli c (0c c 2 ) 3 i d (0d d 2 ) 3, to c i d i dla i n Wynika sta d, znów na podstawie lematu 3, że h(c, c ) h(d, d ) (0c c c 2 c 2 c n c n ) 3 (0d d d n d n ) 3 < 3 2n+ < ɛ Stosuja c prosta indukcje, otrzymujemy naste puja cy wniosek Wniosek 3 Iloczyn kartezjański skończenie wielu zbiorów Cantora przez siebie jest homeomorficzny ze zbiorem Cantora

5 3 ZBIÓR CANTORA 7 Uwaga 32 Podobny fakt zachodzi również dla iloczynu nieskończonego: iloczyn kartezjański przeliczalnej ilości zbiorów Cantora przez siebie jest homeomorficzny ze zbiorem Cantora Dowodzić tego można w sposób podobny do dowodu stwierdzenia 37 Twierdzenie 3 Istnieje przekszta lcenie cia g le zbioru Cantora C na przedzia l euklidesowy I [0, ] Prekszta lcenie takie można określić wzorem s((0c c 2 ) 3 ) c n 2 2 n Dowód Zauważmy najpierw, że przekszta lcenie s przyjmuje wartości w przedziale I Widać to z oszacowania 0 c n n 2 2 n 2 n Naste pnie sprawdzimy, że jest to przekszta lcenie na W tym celu przedstawmy dowolna liczbe x I w zapisie dwójkowym x (0b b 2 ) 2, gdzie b, b 2, {0, }; oznacza to, jak wiadomo, że x b n Przyjmuja c c 2 n n 2b n, dla każdego n, otrzymujemy równość s(0c c 2 ) 3 ) 2 c n 2 n 2 2b n 2 n x Pozostaje do uzasadnienia cia g lość przekszta lcenia s Wygodnie jest sprawdzać od razu jego jednostajna cia g lość Niech wie c ɛ > 0 Wybieramy liczbe naturalna N tak duża, by < ɛ ( szereg 2 n jest zbieżny, wie c takie N istnieje!) Przyjmuja c δ, wnosimy na 3 N podstawie lematu 3, że jeśli c (0c c 2 ) 3, c (0c c 2 ) 3 oraz c c < δ, to c n c n dla n < N Sta d s(c) s(c ) 2 c n 2 n 2 2 c n 2 n 2 c n c n 2 n 2 c n c n 2 n 2 2 n 2 n < ɛ Definicja 32 Przekszta lcenie s : C I, opisane w twierdzeniu 3, nazywamy funkcja schodkowa

6 8 3 ZBIÓR CANTORA Wniosek 32 Zbiór Cantora ma moc continuum c Dowód Moc C nie jest mniejsza niż moc obrazu s(c) I, która wynosi c, a z drugiej strony C jest podzbiorem przedzia lu I, wie c moc C nie jest wie ksza od c Uwaga 33 Warto zwrócić uwage na wniosek 32 W geometrycznym opisie i przy próbie rysowania przybliżeń zbioru Cantora, zauważamy jedynie jego punkty trójkowo-wymierne (postaci c k 3 n (0c, c n ), dla pewnych k 3 n ), których jest oczywiście przeliczalnie wiele (stwierdzenie 33) Wie kszość punktów zbioru Cantora jest dla nas niewidoczna! Wniosek 33 Istnieja przekszta lcenia cia g le zbioru Cantora na kostki euklidesowe I n dowolnego wymiaru skończonego n oraz na kostke Hilberta I ℵ 0 Dowód Jeśli s : C I jest funkcja schodkowa i C n oznacza iloczyn kartezjański n egzemplarzy zbiorów Cantora przez siebie, to przekszta lcenie s n : C n I n określone wzorem s n (c, c 2,, c n ) (s(c ), s(c 2 ), s(c n )) jest przekszta lceniem cia g lym i na Ponadto, z wniosku 3 wiemy, że istnieje homeomorfizm h : C C n, wie c z lożenie s n h : C I n jest przekszta lceniem cia g lym zbioru C na kostke I n W przypadku kostki Hilberta argumentacja jest podobna Uwaga 34 Zachodzi znacznie ogólniejszy fakt, który podajemy tylko informacyjnie : każda przestrzeń metryczna zwarta jest obrazem cia g lym zbioru Cantora! (zob [ES]) Wniosek 34 Istnieja przekszta lcenia cia g le przedzia lu euklidesowego I [0, ] na kostki euklidesowe I n dowolnego wymiaru n i na kostke Hilberta Dowód Jeśli Y jest jedna z tych kostek, to istnieje przekszta lcenie cia g le f zbioru Cantora C na Y Ponieważ C jest domknie tym podzbiorem w I, to można skorzystać z twierdzenia Tietzego 4, które gwarantuje istnienie przed lużenia cia g lego f : I Y przekszta lcenia f Można też skonstruować takie przed lużenie bezpośrednio, nie korzystaja c z twierdzenia Tietzego W tym celu skorzystamy z opisu geometrycznego zbioru C zawartego w stwierdzeniu 32 Oznaczmy przez a i b końce dowolnie ustalonej sk ladowej dope lnienia w I zbioru I n

7 3 ZBIÓR CANTORA (te sk ladowe sa przedzia lami otwartymi usuwanymi w konstrukcji geometrycznej zbioru C) Ponieważ przedzia ly otwarte (a, b) sa roz la czne z C, wie c na nie trzeba przed lużyć przekszta lcenie f Jeśli f(a) f(b), to k ladziemy f (x) f(a) dla wszystkich x (a, b); w przeciwnym razie, odcinek prostoliniowy f(a)f(b) o końcach f(a), f(b) zawiera sie w kostce Y i można go sparametryzować funkcja α : [a, b] f(a)f(b) (zależna oczywiście, tak jak i punkty a, b, od cia gu cyfr c,,c n ) w standardowy sposób: α(x) x a x a f(b) + ( b a b a )f(a) Teraz możemy określić przed lużenie f na punktach x [a, b] wzorem f (x) α(x) Cia g lość f w punktach odcinków otwartych postaci (a, b) wynika wprost z cia g lości parametryzacji α Uzasadnimy cia g lość f w punktach zbioru Cantora Niech ɛ > 0 Z jednostajnej cia g lości przekszta lcenia f (zob stwierdzenie 05) wynika istnienie liczby δ > 0 takiej, że jeśli x, x C oraz x x < δ, to f(x) f(x ) < ɛ 2 Niech c C Istnieje sk ladowa I c c n zbioru I n zawieraja ca c o średnicy mniejszej od δ Przedzia l I c c n może mieć wspólne końce z co najwyżej dwiema sk ladowymi dope lnienia I \ C, czyli przedzia lami otwartymi postaci (a, b), (a, b ), rozważanymi wyżej przy określaniu przed lużenia f Na przedzia lach [a, b], [a b ] określone sa parametryzacje α i α, które, oczywiście, też sa jednostajnie cia g le, wie c istnieje liczba θ > 0 taka, że jeśli x, x [a, b] (x, x [a, b ]) oraz x x < θ, to α(x) α(x ) < ɛ 2 ( α (x) α (x ) < ɛ 2, odpowiednio) Przyjmijmy δ min{δ, θ} i za lóżmy, że x I \ C oraz x c < δ W przypadku, gdy x I c c n, istnieje sk ladowa dope lnienia I \ C postaci (a x, b x ), zawieraja ca punkt x i zawarta wraz z końcami a x, b x w I c c n (przypomnijmy przy tym, że te końce należa do zbioru Cantora C) Wtedy otrzymujemy oszacowanie odleg lości f (x) f (c) f (x) f (a x ) + f (a x ) f (c) f (b x ) f (a x ) + f(a x ) f(c) f(b x ) f(a x ) + f(a x ) f(c) < ɛ 2 + ɛ 2 ɛ Gdy x / I c c n, to x (a, b) lub x (a, b ) Za lóżmy, że x (a, b) i przyjmijmy, że przedzia l (a, b) leży na prawo od przedzia lu I c c n (dla

8 00 3 ZBIÓR CANTORA drugiego przypadku rozumowanie jest analogiczne) Wtedy f (x) f (c) f (x) f (a) + f (a) f (c) Wreszcie, jeśli x C i x c < δ, to oczywiście α(x) α(a) + f(a) f(c) < ɛ f (x) f (c) f(x) f(c) < ɛ Uwaga 35 Przekszta lcenia cia g le przedzia lu I na kwadrat I 2 zwa sie tradycyjnie przekszta lceniami Peana Opis geometryczny takiego przekszta lcenia zamieszczaja podre czniki [ES] i [Ku] Na zakończenie warto wymienić jeszcze kilka ważnych w lasności zbioru Cantora, których dowody (lub wskazówki do nich) można znaleźć np w [ES] i [Ku] Przestrzeń topologiczna X jest homeomorficzna ze zbiorem Cantora wtedy i tylko wtedy, gdy X jest przestrzenia metryczna zwarta, w sobie ge sta, której jedynymi podprzestrzeniami spójnymi sa podzbiory jednopunktowe Każda przestrzeń metryzowalna w sposób zupe lny i w sobie ge sta zawiera podprzestrzeń homeomorficzna ze zbiorem Cantora Każda przestrzeń metryczna ośrodkowa której każdy punkt ma otoczenia otwarto-domknie te dowolnie ma lej średnicy (taka przestrzeń nazywa sie zero-wymiarowa) jest homeomorficzna z podzbiorem zbioru Cantora

9 ĆWICZENIA 0 Ćwiczenia () Sprawdź, czy zbiór końców usuwanych przedzia lów w konstrukcji zbioru Cantora C (tzn zbiór końców sk ladowych zbiorów I n dla wszystkich n N) jest przeliczalny i ge sty w C i czy jest zwarty (2) Wskaż kilka podzbiorów otwarto-domknie tych w C Wykaż, że zbiór C jest podobny do swych podzbiorów C [0, ], 3 C [ 2, ], C [0, ], C 3 [2, ], itd 3 (3) Niech X {0, } {0, } z metryka f ρ ((s, s 2, ), (t, t 2, )) min{n : s n t n } lub 0, gdy (s, s 2, ) (t, t 2, ) Sprawdź, że ρ jest metryka w X Wykaż, że przekszta lcenie f : C X określone wzorem ( t 3 + t ) ( t 2, t 2 2, ) gdzie t n {0, 2} dla każdego n, jest homeomorfizmem (4) Skonstruuj zbiór homeomorficzny ze zbiorem Cantora C zawarty w zbiorze liczb niewymiernych z metryka euklidesowa (zob [Ku]) (5) Przestrzeń metryczna X jest grupa topologiczna, gdy w X jest określone dzia lanie grupowe, które jest cia g le jako przekszta lcenie X X X i w którym branie elementu odwrotnego x x też jest przekszta lceniem cia g lym X X Sprawdzić, czy przestrzenie euklidesowe, przestrzeń Hilberta l 2, R ℵ 0, okra g S {z (R 2, ρ e ) : z }, torus n-wymiarowy (S ) n sa grupami topologicznymi (z jakimi dzia laniami?) Korzystaja c z zadania 3 pokazać, że zbiór Cantora jest grupa topologiczna (6) Czy istnieja przekszta lcenia cia g le (homeomorfizmy) z: C na C 3, C na Q, C na R \ Q, C na I 3, C na R 2, C na okra g S, C na sfere S 2, C na C I, C na X {0,,,, }, C na 2 3 X I, I na C, X I na C, R na C, Q na C, Q I na C, S 2 na C? Podaj przekszta lcenia (wykorzystuj, m in funkcje z C na I) lub przyczyne ich braku (np zwartość, spójność) (7) Czy zbiór Cantora jest ścia galny? Czy przestrzeń X suma odcinków la cza cych punkt (, ) z 2 punktami zbioru C na osi x na p laszczyźnie euklidesowej jest ścia - galna?

Pojȩcie przestrzeni metrycznej

Pojȩcie przestrzeni metrycznej ROZDZIA l 1 Pojȩcie przestrzeni metrycznej Definicja 1.1. Dowolny niepusty zbiór X z funkcja ρ : X X [0, ), spe lniaja ca naste puja ce trzy warunki M1: ρ(x, y) = 0 x = y, M2: ρ(x, y) = ρ(y, x), M3: ρ(x,

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów

Bardziej szczegółowo

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną

Bardziej szczegółowo

Wyk lady z topologii I

Wyk lady z topologii I Wyk lady z topologii I Wies law Kubiś Akademia Świȩtokrzyska ul. Świȩtokrzyska 15, 25-406 Kielce, Poland E-mail: wkubis@pu.kielce.pl 1 maja 2006 Spis treści 1 Przestrzenie metryczne 3 1.1 Definicje........................................

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

13 Zastosowania Lematu Szemerédiego

13 Zastosowania Lematu Szemerédiego 13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{

Bardziej szczegółowo

Teoria miary i całki

Teoria miary i całki Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach.

Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Topologia I*, jesień 2013 (prowadzący H. Toruńczyk). Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

f(t) f(x), D f(x) = lim sup t x oraz D f(x) = lim inf

f(t) f(x), D f(x) = lim sup t x oraz D f(x) = lim inf 9. Różniczkowanie. Jeśli f jest funkcją rzeczywistą, to granice D + f(x) = lim sup t x + f(t) f(x), D f(x) = lim sup t x t x f(t) f(x), t x f(t) f(x) f(t) f(x) D + f(x) = lim inf oraz D f(x) = lim inf

Bardziej szczegółowo

Szeregi liczbowe wste

Szeregi liczbowe wste 3 grudnia 2007 orawi lem dowód twierdzenia o rzybliżeniach dziesie tnych Zajmiemy sie teraz cia gami nieskończonym, ale zaisywanymi w ostaci sum. Definicja 2. (szeregu) Niech (a n ) be dzie dowolnym cia

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013 Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania luty 2013 WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

1 Ciągłe operatory liniowe

1 Ciągłe operatory liniowe 1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Analiza matematyczna 2, cze ść dwunasta Tekst poprawiony 4 września 2011, godz. 00:02. o zauważonych b le. dach, poprawie

Analiza matematyczna 2, cze ść dwunasta Tekst poprawiony 4 września 2011, godz. 00:02. o zauważonych b le. dach, poprawie Analiza matematyczna 2, cze ść dwunasta Tekst poprawiony 4 września 2011, godz 00:02 Zwyk la prośba: prosze o informacje o zauważonych b le dach, poprawie Zajmiemy sie teraz określeniem miary na rozmaitości

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego

Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Wybrane zagadnienia teorii continuów

Wybrane zagadnienia teorii continuów Wybrane zagadnienia teorii continuów Mirosława Reńska, Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW Prezentacja wykładu Warszawa, maj 2011, (prezentacja dostępna na stronie http://www.mimuw.edu.pl/

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

zaznaczymy na osi liczbowej w ten sposób:

zaznaczymy na osi liczbowej w ten sposób: 1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb

Bardziej szczegółowo

O liczbach niewymiernych

O liczbach niewymiernych O liczbach niewymiernych Agnieszka Bier Spotkania z matematyką jakiej nie znacie ;) 8 stycznia 0 Liczby wymierne i niewymierne Definicja Liczbę a nazywamy wymierną, jeżeli istnieją takie liczby całkowite

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja przestrzenie liniowe nad A: każdy z nich ma rozk lad na sume modu lów prostych. W tych rozk

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Wyk lad 11 Przekszta lcenia liniowe a macierze

Wyk lad 11 Przekszta lcenia liniowe a macierze Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Wyk lad 3 Grupy cykliczne

Wyk lad 3 Grupy cykliczne Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA.

ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA. ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA. PIOTR ZAKRZEWSKI 1. Wykłady 1/2 Definicja 1.1. Przestrzeń polska to przestrzeń topologiczna ośrodkowa, metryzowalna w sposób zupełny. Przykład 1.2.

Bardziej szczegółowo

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X

Bardziej szczegółowo

Rozdzia l 3. Relacje binarne

Rozdzia l 3. Relacje binarne Rozdzia l 3. Relacje binarne 1. Para uporz adkowana. Produkt kartezjański dwóch zbiorów Dla pary zbiorów {x, y} zachodzi, jak latwo sprawdzić, równość {x, y} = {y, x}. To znaczy, kolejność wymienienia

Bardziej szczegółowo

Zadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2

Zadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2 Zadania z GAL-u Listopad 2004 1 Rozwia zać uk lady równań: 11 12 13 14 15 { 2x + 3y = 1 3x + y = 0 x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 3x + y + z = 1 x + 2z = 6 3y + 2z = 0 2x + 3y + 2z = 1 3x + 4y

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór:

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Topologia I, Egzamin. II termin, 2013-03-05. Nr albumu: Nazwisko prowadzącego ćwiczenia: Nr grupy:

Topologia I, Egzamin. II termin, 2013-03-05. Nr albumu: Nazwisko prowadzącego ćwiczenia: Nr grupy: Stwierdź czy następujące zdania są prawdziwe, zakreślając właściwą odpowiedź i skreślając pozostałe. 1 Zad. 1. Jeżeli przekształcenie f : (X, T ) (R, T s ) jest ciągłe, to to samo odwzorowanie jest ciągłe

Bardziej szczegółowo

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie 1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej. Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim TOPOLOGIA Nazwa w języku angielskim TOPOLOGY Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli dotyczy): Matematyka

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Ilustracja S1 S2. S3 ściana zewnętrzna

Ilustracja S1 S2. S3 ściana zewnętrzna Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio

Bardziej szczegółowo

Analiza matematyczna I

Analiza matematyczna I Analiza matematyczna I 1 Spis treści 1 Wstep. Ograniczenia i kresy zbiorów. 4 1.1 Oznaczenia..................................... 4 1.2 Zbiory liczbowe................................... 4 1.3 Kwantyfikatory...................................

Bardziej szczegółowo

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

Łatwy dowód poniższej własności pozostawiamy czytelnikowi. Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

Całki powierzchniowe w R n

Całki powierzchniowe w R n Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Praca magisterska. Równania całkowe i teoria Hilberta-Schmidta

Praca magisterska. Równania całkowe i teoria Hilberta-Schmidta Politechnika Łódzka wydział FTIMS Praca magisterska Równania całkowe i teoria Hilberta-Schmidta Piotr Kowalski Promotor Pracy : dr Jerzy Kalina Kierunek: Matematyka Stosowana Specjalność: Matematyka Finansowa

Bardziej szczegółowo