Przetwarzanie sygnałów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przetwarzanie sygnałów"

Transkrypt

1 Spis treści Przetwarzanie sygnałów Ćwiczenie 2 Dyskretna transformacja Fouriera 1 Liczby zespolone 1 2 Dyskretna Transformacja Fouriera (ang. Discrete Fourier Transform DFT) 2 3 Pytania i zadania na kartkówkę 3 4 Zadania do realizacji Funkcje pomocnicze DFT sygnału rzeczywistego IDFT sygnału rzeczywistego DFT sygnału zespolonego IDFT sygnału zespolonego dr hab. inż. Grzegorz Jóźwiak, dr hab. inż. Tomasz Piasecki (tomasz.piasecki@pwr.edu.pl)

2 1 Liczby zespolone Liczby zespolone są uogólnieniem liczb rzeczywistych. Liczba zespolona jest sumą liczby rzeczywistej i liczby rzeczywistej przemnożonej przez jednostkę urojoną j (a + jb). Jednostka urojona j spełnia równość j 2 = 1. Zatem liczbę zespoloną można podzielić na dwie części: część rzeczywistą a i część urojoną b. Liczba zespolona, której część urojona jest równa zero, jest po prostu liczbą rzeczywistą. Zbiór liczb zespolonych oznacza się zwykle dużą literą C, podobnie jak zbiór liczb rzeczywistych oznacza się dużą literą R. Liczby zespolone można przedstawić graficznie na płaszczyźnie zespolonej jako punkty. Oś odciętych (pozioma) informuje o wartościach części rzeczywistej liczb zespolonych, natomiast oś rzędnych (pionowa) o wartościach części urojonej (rysunek 1a). (a) współrzędne kartezjańskie Im (b) współrzędne biegunowe Im b a+jb re jϕ r 0 a Re 0 ϕ Re Rysunek 1: Reprezentacje liczby zespolonej na płaszczyźnie zespolonej. Zatem oś odciętych można traktować jako oś liczb rzeczywistych, które stanowią podzbiór liczb zespolonych. Dla liczb zespolonych zdefiniowane są operacje algebraiczne, takie jak: dodawanie: (a + jb) + (c + jd) = (a + c) + j(b + d), odejmowanie: (a + jb) (c + jd) = (a c) + j(b d), mnożenie (a + jb)(c + jd) = (ac bd) + j(bc + ad), dzielenie: a+jb = (a+jb)(c jd) c+jd c 2 +d 2 = ac+bd c 2 +d 2 + j bc ad c 2 +d 2. Płaszczyznę liczb zespolonych można przedstawić również w układzie biegunowym (rysunek 1b). W układzie tym położenie punktu definiuje się za pomocą długości wektora i kąta jaki tworzy on z dodatnią półosią odciętych (poziomą). Położenie punktu w układzie biegunowym można łatwo wyznaczyć, przechodząc z algebraicznej postaci liczby zespolonej do postaci trygonometrycznej a + jb = r(cos ϕ + j sin ϕ) lub wykładniczej a + jb = re jϕ. Aby takiego przejścia dokonać, należy obliczyć r i ϕ, korzystając z zależności r = a 2 + b 2, ϕ = arctan ( ) b a. Aby przejść z postaci wykładniczej na algebraiczną wykorzystuje się postać trygonometryczną oraz oblicza wartości a = r cos ϕ i b = r cos ϕ, co daje nam wartości odpowiednio części urojonej i rzeczywistej. Reprezentacja liczb zespolonych w układzie biegunowym wiąże się z pewnymi niedogodnościami. Pierwsza z nich wynika z okresowości funkcji trygonometrycznych sin(ϕ) = sin(2πn+ϕ) i cos(ϕ) = cos(2πn + ϕ) dla n Z. Dlatego re jϕ = re 2πn+ϕ dla n Z (zbiór liczb całkowitych). Drugą niedogodnością jest konieczność rozpatrzenia przypadku, w którym część rzeczywista liczby zespolonej jest równa 0. ależy też pamiętać, że funkcja arcus tangens (arctan) przyjmuje wartości z przedziału π, ) π 2 2, podczas gdy kąt ϕ powinien przyjmować wartości od π, π). Aby zatem obliczyć poprawny kąt fazowy ϕ należy odpowiednio skorygować wynik funkcji arctan dla przypadków, kiedy część rzeczywista liczby zespolonej jest ujemna. Wówczas w zależności od tego, czy część urojona jest dodatnia czy ujemna należy do wyniku funkcji arctan dodać lub od tego wyniku odjąć liczbę π. 1

3 2 Dyskretna Transformacja Fouriera (ang. Discrete Fourier Transform DFT) W dziedzinie przetwarzania sygnałów operacja rozkładu na zbiór funkcji bazowych (składowych) polega na obliczeniu współczynników skalujących amplitudę tych funkcji. Obliczony zbiór współczynników nazywa się widmem sygnału. Zbiór funkcji bazowych zwykle powstaje przez parametryzację pewnej funkcji. W przypadku DFT jest to funkcja zespolona w postaci: e j2πkn ( ) ( ) 2πkn 2πkn = cos + j sin w której jest liczbą próbek jednego okresu rozkładanego dyskretnego sygnału okresowego, a k jest parametrem generującym zbiór funkcji dla operacji rozkładu. Dla DFT k = Oznacza to, że zbiór funkcji jest dyskretny i skończony (stanowi go funkcji bazowych). Indeks k jest związany z okresem (lub odwrotnością okresu czyli częstotliwością) dyskretnych funkcji sinus i cosinus. Indeks ten mówi ile okresów funkcji sinus lub kosinus znajduje się w ciągu próbek. Dlatego częstotliwość dyskretnych funkcji sinus i cosinus wynosi k i jest bezwymiarowa. Jeżeli ciąg próbek jest wynikiem operacji próbkowania równomiernego w czasie z okresem próbkowania równym T s (częstotliwość próbkowania f s = 1 t s ), to ciągłe rekonstrukcje funkcji bazowych DFT miałyby równanie, w którym wyrażenie e j2πkt Ts ( ) ( ) 2πkt 2πkt = cos + j sin T s T s k = kf s T s ma sens częstotliwości k-tej funkcji bazowej. Związek parametru k dla funkcji dyskretnych z częstotliwością ich ciągłych odpowiedników pozwala na wykorzystanie DFT do analizy sygnałów ciągłych. Istnieją inne bazy Fouriera: dla sygnałów ciągłych okresowych, 2. e j2πft T dla sygnałów ciągłych nieokresowych, 3. e j2πfn T dla sygnałów dyskretnych nieokresowych. Każda z nich ma tę cechę, że jej funkcje są tzw. funkcjami analitycznymi, których każda pochodna jest ciągła. Dzięki temu mogą być wykorzystywane do analizy układów liniowych, które są opisywane za pomocą równań różniczkowych. ajważniejszą zaletą DFT jest to, że można ją obliczyć numerycznie. Fakt ten stał się szczególnie istotny w momencie pojawienia się układów mikroprocesorowych. ajprostszym algorytmem umożliwiającym obliczenie współczynników (parametrów skalujących amplitudę - nie mylić z parametrem k i częstotliwością) poszczególnych funkcji bazowych dla sygnałów zespolonych jest bezpośrednia implementacja równania: 1. e j2πkt T (1) (2) (3) X[k] = 1 1 2πkn j x[n]e. (4) W równaniu tym wykorzystuje się z ortogonalność funkcji bazowych. Wówczas współczynniki można obliczyć za pomocą prostego iloczynu skalarnego. ależy pamiętać, że współczynniki X[k] są liczbami zespolonymi, dla których można wyznaczyć moduł i argument. Znając współczynniki X[k] DFT, możemy z powrotem zsyntezować 2

4 (wyznaczyć, obliczyć) sygnał x[n] korzystając z równania syntezy: x[n] = 1 k=0 X[k]e j 2πkn (5) W przypadku sygnałów rzeczywistych możemy obliczyć ich DFT w sposób bardziej efektywny. Wykorzystuje się tu fakt, że dla sygnałów rzeczywistych współczynniki funkcji bazowych o indeksie k = /2 + m równe są współczynnikom funkcji o indeksie k = /2 m, dla wszystkich m = 1../2 1 z dokładnością do znaku części urojonej. Znak ten jest zawsze przeciwny: Im{X[k = /2 m]} = Im{X[k = /2 + m]}. Dzięki temu współczynniki Re[k] i Im[k] można wyznaczyć z równania Re[k] = 2 Im[k] = ( ) 2πkn x[n] cos, ( ) (6) 2πkn x[n] sin dla k = 1../2 1, czyli dla dwukrotnie mniejszej liczby iteracji. Odnoszą się one odpowiednio do części rzeczywistej i urojonej współczynników X[k] dla sygnałów zespolonych. Ich amplituda jest dwa razy większa, ponieważ reprezentują połowę współczynników obliczanych dla sygnałów zespolonych ( zamiast dwóch zespolonych X[/2 m] i X[/2 + m], mamy jedną parę współczynników Re[/2 m] i Im[/2 m] o podwojonej wartości). Zależność ta nie dotyczy współczynników dla k = 0 i k = /2, które nie mają pary i w związku z tym ich amplituda nie powinna być podwajana. Re[k] = 1 Im[k] = ( ) 2πkn x[n] cos, ( ) 2πkn x[n] sin, dla k = { 0, } (7) 2 Współczynniki Re[k] i Im[k] dla sygnałów rzeczywistych pozwalają syntetyzować sygnał x[n] i operację tę można opisać następującym równaniem: x[n] = /2 k=0 ( ) ( ) 2πkn 2πkn Re[k] cos Im[k] sin Możemy zauważyć, że do zsyntetyzowania sygnału x[n], wykorzystujemy teraz mniejszą liczbę par (Re [k] i Im [k]) współczynników (/2+1) niż w przypadku sygnałów zespolonych. 3 Pytania i zadania na kartkówkę 1. Co trzeba zrobić z wynikiem funkcji ϕ = arctan ( ) Im(x) Re(x) aby obliczyć argument liczby zespolonej x = 2 + j? 2. Co trzeba zrobić z wynikiem funkcji ϕ = arctan ( ) Im(x) Re(x) aby obliczyć argument liczby zespolonej x = 2 j? 3. Podaj przykład liczb zespolonej której moduł można obliczyć w pamięci. 4. Jaką częstotliwość będzie miała 5. (licząc od zera) składowa DFT sygnału o liczbie próbek równiej 100 i okresie próbkowania równym 0.1 s? 5. Podaj dyskretne częstotliwości DFT dla okresowego sygnału dyskretnego, którego okres można przedstawić za pomocą następującego ciągu liczb [ ]. 3 (8)

5 6. Podaj dyskretne częstotliwości DFT w hercach dla okresowego sygnału dyskretnego, którego okres można przedstawić za pomocą następującego ciągu liczb [ ] i który powstał przez próbkowanie ciągłego okresowego sygnału rzeczywistego z okresem próbkowania równym 10 ms. 7. Podaj dyskretne częstotliwości DFT dla okresowego sygnału dyskretnego, którego okres można przedstawić za pomocą następującego ciągu liczb [1+j, 2-j, -3+j, 8. Podaj dyskretne częstotliwości DFT w hercach dla okresowego sygnału dyskretnego, którego okres można przedstawić za pomocą następującego ciągu liczb [1+j, 2-j, -3+j, -4-j] i który powstał przez próbkowanie ciągłego okresowego sygnału zespolonego z okresem próbkowania równym 10 ms. 9. Czy obliczając DFT dla sygnałów rzeczywistych możemy używać równania (4)? 10. Jak będzie się różniła amplituda współczynników DFT obliczanych równaniem (4) i (6) dla sygnałów rzeczywistych? 11. Jak będzie się różniła amplituda współczynników DFT o indeksie 0 i /2 obliczanych równaniem (4) i (6) dla sygnałów rzeczywistych o liczbie próbek sygnału. 12. Podaj przykład równań sygnału rzeczywistego i jego widma DFT. 13. Podaj przykład równań sygnału zespolonego i jego widma DFT. 4 Zadania do realizacji a zajęciach laboratoryjnych należy rozwiązać 5 podanych poniżej zadań. Każde z zadań polega na usunięciu błędów w podanych definicjach funkcji. Każda z definicji wykonuje operacje, które zostały teoretycznie omówione w poprzednich rozdziałach niniejszej instrukcji. Za każde zadanie można otrzymać jeden punkt pod warunkiem, że zostanie ono w całości poprawnie zrealizowane. Wszystkie funkcje, których argumentem bądź wynikiem jest widmo sygnału w postaci tablicy, powinny w pierwszym jej elemencie (czyli elemencie o indeksie 1) zawierać pierwszy element widma (czyli obliczony dla początkowej wartości k). Wszystkie funkcje powinny być napisane czytelnie, z zachowaniem zasad formatowania kodów źródłowych języków wysokiego poziomu. 4.1 Funkcje pomocnicze W zadaniu pierwszym należy poprawić funkcje do obliczania modułu gj_mag i wartości kąta fazowego gj_arg dla tablicy liczb zespolonych zaimplementowanej w postaci dwóch tablic liczb rzeczywistych re i im (re dla części rzeczywistej i im dla części urojonej). Wszystkie te funkcje zwracają tablicę liczb rzeczywistych. Ponadto, należy usunąć błędy w funkcji do obliczania częstotliwości poszczególnych składowych widma Fouriera gj_freq. Funkcje te przyjmują jako parametry liczbę punktów DFT i częstotliwość próbkowania fs. Ostatnimi funkcjami do poprawienia w zadaniu pierwszym są funkcje dodawania gj_cadd i mnożenia gj_cmul dwóch liczb zespolonych. Parametrami tych funkcji są części rzeczywiste i urojone dwóch liczb zespolonych. Zwracane wartości to odpowiednio część rzeczywista i urojona wyniku operacji dodawania lub mnożenia. Działanie funkcji powinno być zaprezentowane w taki sposób, aby jednoznacznie udowodnić, że funkcje działają poprawnie. a przykład dla funkcji obliczającej argument należy przetestować wszystkie możliwe przypadki kątów. Poprawne działanie funkcji należy w trakcie prezentacji jej działania, udowodnić. function fi=gj_arg(re,im) =length(re); 4

6 for i=1: if (re(i)>0 && im(i)>0) fi(i)=atan(im(i)/re(i)); elseif (re(i)>0 && im(i)>=0) fi(i)=pi+atan(im(i)/re(i)); elseif (re(i)==0 && im(i)>0) fi(i)=-pi+atan(re(i)/im(i)); elseif (re(i)=<0 && im(i)<0) fi(i)=-pi; elseif (re(i)>0 && im(i)<=0) fi(i)=atan(im(i)/re(i)); else fi(i)=pi/2; endif function mag=gj_mag(re,im) =length(re);mag=zeros(1,); for i=1: mag(i-1)=sqrt(re(i)*re(i)-im(i)*im(i)); function [Cr,Ci]=gj_cmul(Ar,Ai,Br,Bi) Cr=Ar*Bi-Ai*Bi; Ci=Ar*Bi+Ai*Bi; function [Cr,Ci]=gj_cadd(Ar,Ai,Br,Bi) Cr=Ar+Br; Ci=Ai+Bi; function f=gj_freq(,fs) f=zeros(1,); for i=1: f(i)=i*fs//2; 4.2 DFT sygnału rzeczywistego Zadanie drugie polega na usunięciu błędów z funkcji obliczającej DFT sygnału rzeczywistego. Funkcja jako parametr przyjmuje tablicę liczb rzeczywistych, a w wyniku zwraca dwie tablice, odpowiednio dla części rzeczywistej i urojonej wyniku. Działanie funkcji należy przetestować dla sygnału, dla którego znamy prawidłowy wynik DFT. Prezentując działanie funkcji należy wyjaśnić, dlaczego uważa się, że funkcja działa prawidłowo. Sygnał testowy można uzyskać poprzez syntezę z wybranych funkcji bazowych DFT. 5

7 function [Re,Im]=gj_rdft(x) =length(x); Re=zeros(1,/2+1); Im=zeros(1,/2+1); for k=0:/2 Tr=0; Ti=0; for :-1 Tr+=2*x(n)*cos(2*pi*k*n/)/; Ti+=-2*x(n)*sin(2*pi*k*n/)/; Re(k)=Tr; Re(k)=Ti; 4.3 IDFT sygnału rzeczywistego Zadanie trzecie polega na usunięciu błędów z funkcji obliczającej odwrotną DFT sygnału rzeczywistego. Funkcja jako parametr przyjmuje dwie tablice liczb rzeczywistych (jedna dla części rzeczywistej, a druga dla części urojonej widma DFT). W wyniku natomiast zwraca tablicę liczb rzeczywistych odpowiadających kolejnym próbkom sygnału. Działanie funkcji należy przetestować dla widma sygnału, dla którego znamy prawidłowy wynik odwrotnej DFT. Prezentując działanie funkcji należy wyjaśnić, dlaczego uważa się, że funkcja działa prawidłowo. function x=gj_irdft(re,im) =(length(re)-1)*2; Re(1)/=2; Im(1)/=2; Re(/2+1)/=2; Im(/2+1)/=2; x=zeros(1,); for :-1 T=0; for k=1:/2 T+=Re(k)*cos(2*pi*n*k/)-Im(k)*sin(2*pi*n*k/); x(n)=t; 4.4 DFT sygnału zespolonego Zadanie czwarte polega na usunięciu błędów z funkcji obliczającej DFT sygnału zespolonego. Funkcja jako parametr przyjmuje dwie tablice liczb rzeczywistych (jedna dla części rzeczywistej sygnału, druga dla części urojonej sygnału), a w wyniku zwraca dwie tablice odpowiednio dla części rzeczywistej wyniku i urojonej widma DFT. Działanie funkcji należy przetestować dla sygnału zespolonego, dla którego znamy prawidłowy wynik DFT. Prezentując działanie funkcji należy wyjaśnić, dlaczego uważa się, że funkcja działa prawidłowo. function [Yr,Yi]=gj_cdft(Xr,Xi) =length(xr); for i=1: Tr=0;Ti=0; 6

8 for j=1: Er=cos(2*pi*(i)*(j)/); Ei=sin(2*pi*(i)*(j)/); [Er,Ei]=gj_cmul(Xr(j),Xi(j),Er,Ei); [Tr,Ti]=gj_cadd(Tr,Ti,Er,Ei); Yr(i)=Tr;Yi(i)=Ti; 4.5 IDFT sygnału zespolonego Zadanie piąte polega na usunięciu błędów z funkcji obliczającej odwrotną DFT sygnału zespolonego. Funkcja jako parametr przyjmuje dwie tablice liczb rzeczywistych (jedna dla części rzeczywistej, a druga dla części urojonej widma DFT). W wyniku również zwraca dwie tablice liczb rzeczywistych (jedna dla części rzeczywistej, a druga dla części urojonej sygnału). Działanie funkcji należy przetestować dla widma sygnału zespolonego, dla którego znamy prawidłowy wynik odwrotnej DFT. Prezentując działanie funkcji należy wyjaśnić, dlaczego uważa się, że funkcja działa prawidłowo. function [Yr,Yi]=gj_icdft(Xr,Xi) =length(xr); for i=1: Tr=0;Ti=0; for j=1: Er=cos(2*pi*(i)*(j)/); Ei=sin(2*pi*(i)*(j)/); [Er,Ei]=gj_cmul(Xr(j),Xi(j),Er,Ei); [Tr,Ti]=gj_cadd(Tr,Ti,Er,Ei); Yr(i)=Tr;Yi(i)=Ti; 7

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 2. Dyskretna Transformacja Fouriera 1. Liczby zespolone Liczby zespolone są uogólnieniem

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

http://www-users.mat.umk.pl/~pjedrzej/matwyz.html 1 Opis przedmiotu Celem przedmiotu jest wykształcenie u studentów podstaw języka matematycznego i opanowanie przez nich podstawowych pojęć dotyczących

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

Dr Maciej Grzesiak, Instytut Matematyki

Dr Maciej Grzesiak, Instytut Matematyki liczbowe Dr Maciej Grzesiak, Instytut Matematyki liczbowe Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.maciej.grzesiak.pracownik.put.poznan.pl podręcznik: i algebra liniowa

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZEIE 6 Dyskretne przekształcenie Fouriera DFT 1. Cel ćwiczenia Dyskretne przekształcenie Fouriera ( w skrócie oznaczane jako DFT z ang. Discrete Fourier

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera cz. 2

Dyskretne przekształcenie Fouriera cz. 2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Kolorowa płaszczyzna zespolona

Kolorowa płaszczyzna zespolona Kolorowa płaszczyzna zespolona Marta Szumańska MIMUW/IX LO w Warszawie Sielpia, 27 października 2018 p. 1 of 64 Liczby zespolone Przez i oznaczamy jednostkę urojoną. Jest to obiekt spełniający warunek

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Pendolinem z równaniami, nierównościami i układami

Pendolinem z równaniami, nierównościami i układami Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Spis treści Przetwarzanie sygnałów Ćwiczenie 1 Wprowadzenie do programu Octave 1 Operatory 1 1.1 Operatory arytmetyczne...................... 1 1.2 Operatory relacji.......................... 1 1.3 Operatory

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Matematyka w Instytucie Akustyki. Maciej Radziejewski

Matematyka w Instytucie Akustyki. Maciej Radziejewski Matematyka w Instytucie Akustyki Maciej Radziejewski Prowadzący: Dr Maciej Radziejewski Zakład Algebry i Teorii Liczb, Wydział Matematyki i Informatyki UAM p. B2-10 (ew. B2-46). WWW: http://matematykaaku.weebly.com

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Wstęp

Podstawy nauk przyrodniczych Matematyka Wstęp Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

KURS LICZB ZESPOLONYCH

KURS LICZB ZESPOLONYCH KURS LICZB ZESPOLONYCH Lekcja 2 Równania zespolone. Pierwiastki drugiego stopnia liczone w postaci kartezjańskiej. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) =

Matematyka A kolokwium 26 kwietnia 2017 r., godz. 18:05 20:00. i = = i. +i sin ) = 1024(cos 5π+i sin 5π) = Matematyka A kolokwium 6 kwietnia 7 r., godz. 8:5 : Starałem się nie popełniać błędów, ale jeśli są, będę wdzięczny za wieści o nich Mam też nadzieję, że niektórzy studenci zechcą zrozumieć poniższy tekst,

Bardziej szczegółowo

Algebra liniowa i geometria analityczna. Autorzy: Agnieszka Kowalik Michał Góra

Algebra liniowa i geometria analityczna. Autorzy: Agnieszka Kowalik Michał Góra Algebra liniowa i geometria analityczna Autorzy: Agnieszka Kowalik Michał Góra 9 Spis treści Liczby zespolone Postać algebraiczna liczby zespolonej Moduł i argument liczby zespolonej Postać trygonometryczna

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do

Bardziej szczegółowo

GAL 80 zadań z liczb zespolonych

GAL 80 zadań z liczb zespolonych GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 1 - Wprowadzenie do automatyki Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu Podstawowe informacje Wprowadzenie

Bardziej szczegółowo

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Analiza obrazu komputerowego wykład 5 Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie

Bardziej szczegółowo

Praca domowa - seria 2

Praca domowa - seria 2 Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.

Bardziej szczegółowo

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3

Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 3 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy 2016/2017 Potęgowanie Dla dowolnej liczby dodatniej

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17

Jarosław Wróblewski Analiza Matematyczna 2, lato 2016/17 41. Niech z = 5 + 4i. Dla podanych liczb m, n podać taką liczbę całkowitą k, aby 5 zachodziła równość z m z n =z k. Uwaga na sprzężenie w drugim czynniku po lewej stronie. a) m = 1, n = 1, k = 9 ; b) m

Bardziej szczegółowo

Funkcje trygonometryczne w trójkącie prostokątnym

Funkcje trygonometryczne w trójkącie prostokątnym Funkcje trygonometryczne w trójkącie prostokątnym Oznaczenia boków i kątów trójkąta prostokątnego użyte w definicjach Sinus Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek przyprostokątnej

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Lista nr 1 - Liczby zespolone

Lista nr 1 - Liczby zespolone Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr ohdan ieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D. Resnick,

Bardziej szczegółowo

Zajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ).

Zajmijmy się najpierw pierwszym równaniem. Zapiszmy je w postaci trygonometrycznej, podstawiając z = r(cos ϕ + i sin ϕ). Zad (0p) Zaznacz na płaszczyźnie zespolonej wszystkie z C, które spełniają równanie ( iz 3 z z ) Re [(z + 3) ( z 3) = 0 Szukane z C spełniają: iz 3 = z z Re [(z + 3) ( z 3) = 0 Zajmijmy się najpierw pierwszym

Bardziej szczegółowo