ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

Wielkość: px
Rozpocząć pokaz od strony:

Download "ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY"

Transkrypt

1 ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór liczb rzeczywistych i jego 4 Zbiór liczb rzeczywistych i jego 5-6 Zbiór liczb rzeczywistych i jego 7-8 Zbiór liczb rzeczywistych i jego Temat lekcji Liczba godzin 1 Numer tematu w podręczniku Zagadnienie do realizacji wg podstawy programowej Język matematyki I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny (...). Zbiory i działania na zbiorach I. Wykorzystanie i interpretowanie reprezentacji. Uczeń używa prostych, dobrze znanych obiektów matematycznych. Liczby naturalne i liczby całkowite GIM oraz oblicza wartości wyrażeń arytmetycznych (...). Liczby wymierne i liczby niewymierne GIM oraz przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków,...); oblicza wartości wyrażeń arytmetycznych (wymiernych). Liczby rzeczywiste GIM oraz oblicza wartości wyrażeń arytmetycznych (wymiernych). 1

2 9-10 Zbiór liczb rzeczywistych i jego Zbiór liczb rzeczywistych i jego Zbiór liczb rzeczywistych i jego Zbiór liczb rzeczywistych i jego Potęga o wykładniku całkowitym. Notacja wykładnicza GIM oraz przedstawia liczby rzeczywiste w różnych postaciach (np.... z użyciem symboli... potęg); wykorzystuje podstawowe własności potęg (również w zagadnieniach związanych z innymi dziedzinami wiedzy, np. fizyką, chemią, informatyką). Wzory skróconego mnożenia Wyrażenia algebraiczne. Uczeń: używa wzorów skróconego mnożenia na oraz. Pierwiastek dowolnego stopnia GIM oraz przedstawia liczby rzeczywiste w różnych postaciach (np.... z użyciem symboli pierwiastków,...); posługuje się w obliczeniach pierwiastkami dowolnego stopnia i stosuje prawa działań na pierwiastkach. Potęga o wykładniku wymiernym Powtórzenie wiadomości 1 19 Sprawdzian Zbiór liczb rzeczywistych i jego Zbiór liczb rzeczywistych i jego Zbiór liczb rzeczywistych i jego 26 Zbiór liczb rzeczywistych i jego Zbiór liczb rzeczywistych i jego Zbiór liczb rzeczywistych i jego oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach o wykładnikach wymiernych. Procenty GIM oraz wykonuje obliczenia procentowe, oblicza podatki (...). Przedziały liczbowe posługuje się pojęciem przedziału liczbowego, zaznacza przedziały na osi liczbowej. Wartość bezwzględna GIM oraz II. Wykorzystanie i interpretowanie reprezentacji. Uczeń używa prostych, dobrze znanych obiektów matematycznych. Błąd przybliżenia oblicza błąd bezwzględny i błąd względny przybliżenia. Pojęcie logarytmu wykorzystuje definicję logarytmu (...). Własności logarytmów: logarytm iloczynu, ilorazu i potęgi (...) stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym. 2

3 31-32 Zbiór liczb rzeczywistych i jego Obliczenia z zastosowaniem logarytmów 33 Sprawdzian Funkcja i jej własności Pojęcie funkcji. Sposoby opisywania funkcji Funkcja i jej własności Wykres funkcji. Dziedzina i zbiór wartości funkcji Funkcja i jej własności Wzór funkcji. Dziedzina i zbiór wartości funkcji GIM oraz wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym. określa funkcje za pomocą wzoru, tabeli, wykresu, opisu słownego odczytuje z wykresu własności funkcji (dziedzinę, zbiór wartości, miejsca zerowe,...) GIM oraz określa funkcje za pomocą wzoru (...); oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje się poznanymi metodami rozwiązywania równań do obliczenia, dla jakiego argumentu funkcja przyjmuje daną wartość. 40 Funkcja i jej własności Monotoniczność funkcji odczytuje z wykresu własności funkcji (... maksymalne przedziały, w których funkcja maleje, rośnie,...). V. Rozumowanie i argumentacja. Uczeń prowadzi proste rozumowanie, składające się z niewielkiej liczby kroków Funkcja i jej własności Odczytywanie własności funkcji z wykresu Funkcja i jej własności Rysowanie wykresów funkcji o zadanych własnościach Funkcja i jej własności Zastosowanie wiadomości o funkcjach w zadaniach praktycznych 47 Powtórzenie wiadomości 1 48 Sprawdzian GIM oraz odczytuje z wykresu własności funkcji (..., maksymalne przedziały, w których funkcja maleje, rośnie, ma stały znak; punkty, w których funkcja przyjmuje w podanym przedziale wartość największą lub najmniejszą) II. Wykorzystanie i interpretowanie reprezentacji. Uczeń używa prostych, dobrze znanych obiektów matematycznych. 2 2,7 I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik.

4 49 Funkcja liniowa Proporcjonalność prosta GIM oraz II. Wykorzystanie i interpretowanie reprezentacji. Uczeń używa prostych, dobrze znanych obiektów matematycznych Funkcja liniowa Funkcja liniowa i jej własności oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje się poznanymi metodami rozwiązywania równań do obliczenia, dla jakiego argumentu funkcja przyjmuje daną wartość; rysuje wykresy funkcji liniowej, korzystając z jej wzoru; odczytuje z wykresu własności funkcji (dziedzina, zbiór wartości, miejsca zerowe, maksymalne przedziały, w których funkcja maleje, rośnie, ma stały znak; punkty, w których funkcja przyjmuje w podanym przedziale wartość największą lub najmniejszą). 53 Funkcja liniowa Wyznaczanie wzoru funkcji liniowej na podstawie informacji o funkcji lub o jej wykresie Funkcja liniowa Równoległość i prostopadłość prostych Funkcja liniowa Zastosowanie funkcji liniowej do opisywania zjawisk z życia codziennego 58 Powtórzenie wiadomości 1 59 Sprawdzian 1 interpretuje współczynniki występujące we wzorze funkcji liniowej wyznacza wzór funkcji liniowej na podstawie informacji o funkcji lub ojej wykresie interpretuje współczynniki występujące we wzorze funkcji liniowej; 8. Geometria na płaszczyźnie kartezjańskiej. Uczeń: wyznacza równanie prostej przechodzącej przez dwa dane punkty (w postaci kierunkowej lub ogólnej); bada równoległość i prostopadłość prostych na podstawie ich równań kierunkowych; wyznacza równanie prostej, która jest równoległa lub prostopadła do prostej danej w postaci kierunkowej i przechodzi przez dany punkt wykorzystuje własności funkcji liniowej (...) do interpretacji zagadnień geometrycznych, fizycznych itp. (także osadzonych w kontekście praktycznym). 4

5 60 Funkcja liniowa Równania liniowe GIM oraz 3. Równania i nierówności. Uczeń: sprawdza, czy dana liczba rzeczywista jest rozwiązaniem równania (...) Funkcja liniowa Nierówności liniowe Równania i nierówności. Uczeń: sprawdza, czy dana liczba rzeczywista jest rozwiązaniem (...) nierówności; Funkcja liniowa Układy równań liniowych z dwiema niewiadomymi rozwiązuje nierówności pierwszego stopnia z jedną niewiadomą GIM oraz 3. Równania i nierówności. Uczeń: wykorzystuje interpretację geometryczną układu równań pierwszego stopnia z dwiema niewiadomymi. 8. Geometria na płaszczyźnie kartezjańskiej. Uczeń: oblicza współrzędne punktu przecięcia dwóch prostych Funkcja liniowa Rozwiązywanie zadań tekstowych z zastosowaniem układów równań liniowych GIM oraz II. Wykorzystanie i interpretowanie reprezentacji. Uczeń używa prostych, dobrze znanych obiektów matematycznych. 67 Powtórzenie wiadomości 1 68 Sprawdzian Przekształcanie wykresów funkcji 71 Przekształcanie wykresów funkcji Przekształcanie wykresów funkcji Symetria względem osi układu współrzędnych Symetria względem początku układu współrzędnych Przesunięcia wykresu funkcji równolegle do osi x i do osi y 74 Sprawdzian GIM oraz GIM oraz na podstawie wykresu funkcji szkicuje wykresy funkcji (...),. na podstawie wykresu funkcji szkicuje wykresy funkcji (...), na podstawie wykresu funkcji szkicuje wykresy funkcji, (...). IV. Użycie i tworzenie strategii. Uczeń stosuje strategię, która jasno wynika z treści zadania. 5

6 75 Funkcja kwadratowa Funkcja, odczytuje z wykresu własności funkcji (dziedzinę, zbiór wartości, miejsca zerowe,...); szkicuje wykres funkcji kwadratowej, korzystając z jej wzoru. 76 Funkcja kwadratowa Przesunięcia wykresu funkcji, odczytuje z wykresu własności funkcji (...); na podstawie wykresu funkcji szkicuje wykresy funkcji,,, Funkcja kwadratowa Postać ogólna i postać kanoniczna funkcji kwadratowej szkicuje wykres funkcji kwadratowej, korzystając z jej wzoru; wyznacza wzór funkcji kwadratowej na podstawie pewnych informacji o tej funkcji lub o jej wykresie; Funkcja kwadratowa Miejsca zerowe funkcji kwadratowej. Postać iloczynowa funkcji kwadratowej Funkcja kwadratowa Najmniejsza i największa wartość funkcji kwadratowej w przedziale domkniętym Funkcja kwadratowa Zastosowanie własności funkcji kwadratowej interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci kanonicznej, w postaci ogólnej (...) szkicuje wykres funkcji kwadratowej, korzystając z jej wzoru; wyznacza wzór funkcji kwadratowej na podstawie pewnych informacji o tej funkcji lub o jej wykresie; interpretuje współczynniki występujące we wzorze funkcji kwadratowej (...) w postaci ogólnej i w postaci iloczynowej (o ile istnieje) wyznacza wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym szkicuje wykres funkcji kwadratowej, korzystając z jej wzoru; wyznacza wzór funkcji kwadratowej na podstawie pewnych informacji o tej funkcji lub o jej wykresie. IV. Użycie i tworzenie strategii. Uczeń stosuje strategię, która jasno wynika z treści zadania. 6

7 86-87 Funkcja kwadratowa Funkcja kwadratowa w zadaniach optymalizacyjnych Wykorzystuje własności funkcji (...) kwadratowej do interpretacji zagadnień geometrycznych, fizycznych itp. (także osadzonych w kontekście praktycznym). III. Modelowanie matematyczne. Uczeń dobiera model matematyczny do prostej sytuacji i krytycznie ocenia trafność modelu. 88 Powtórzenie wiadomości 1 89 Sprawdzian Funkcja kwadratowa Równania kwadratowe Równania i nierówności. Uczeń: sprawdza, czy dana liczba jest rozwiązaniem równania (...); rozwiązuje równania kwadratowe z jedną niewiadomą Funkcja kwadratowa Nierówności kwadratowe Równania i nierówności. Uczeń: sprawdza, czy dana liczba rzeczywista jest rozwiązaniem (...) nierówności; rozwiązuje nierówności kwadratowe z jedną niewiadomą Funkcja kwadratowa Zadania tekstowe z zastosowaniem Równania i nierówności. Uczeń: równań i nierówności kwadratowych rozwiązuje równania kwadratowe z jedną niewiadomą; rozwiązuje nierówności kwadratowe z jedną niewiadomą. I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. III. Modelowanie matematyczne. Uczeń dobiera model matematyczny do prostej sytuacji i krytycznie ocenia trafność modelu. 97 Powtórzenie wiadomości 1 98 Sprawdzian 1 99 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym Trygonometria. Uczeń: wykorzystuje definicje i wyznacza wartości funkcji sinus, cosinus i tangens kątów (...); korzysta z przybliżonych wartości funkcji trygonometrycznych (odczytanych z tablic lub obliczonych za pomocą kalkulatora). 7

8 Trygonometria Funkcje trygonometryczne kątów o miarach od 0 do 180 w układzie współrzędnych Trygonometria Wyznaczanie wartości funkcji trygonometrycznych kątów o miarach od 0 do Trygonometria Podstawowe tożsamości trygonometryczne Trygonometria. Uczeń: wykorzystuje definicje i wyznacza wartości funkcji sinus, cosinus i tangens kątów o miarach od 0 do 180 ; korzysta z przybliżonych wartości funkcji trygonometrycznych (odczytanych z tablic lub obliczonych za pomocą kalkulatora); oblicza miarę kąta ostrego, dla której funkcja trygonometryczna przyjmuje daną wartość (miarę dokładną albo korzystając z tablic lub kalkulatora przybliżoną) Trygonometria. Uczeń: wykorzystuje definicje i wyznacza wartości funkcji sinus, cosinus i tangens kątów o miarach od 0 do 180 ; 7. Planimetria. Uczeń: korzysta z własności funkcji trygonometrycznych w łatwych obliczeniach geometrycznych (...) Trygonometria. Uczeń: stosuje proste zależności między funkcjami trygonometrycznymi:, oraz Trygonometria Wyznaczanie wartości funkcji trygonometrycznych, gdy znana jest wartość sinusa lub cosinusa kąta V. Rozumowanie i argumentacja. Uczeń prowadzi proste rozumowanie, składające się z niewielkiej liczby kroków Trygonometria. Uczeń: znając wartość jednej z funkcji: sinus lub cosinus, wyznacza wartości pozostałych funkcji tego samego kąta ostrego Trygonometria Zastosowanie trygonometrii Planimetria. Uczeń: korzysta z własności funkcji trygonometrycznych w łatwych obliczeniach geometrycznych, w tym ze wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi. I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. III. Modelowanie matematyczne. Uczeń dobiera model matematyczny do prostej sytuacji i krytycznie ocenia trafność modelu. 110 Powtórzenie wiadomości Sprawdzian Omówienie sprawdzianu 1 8

9 Razem Godziny do dyspozycji nauczyciela 8 test diagnostyczny -2 h, powtórki -6h 9

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Procedury osiągania celów

Procedury osiągania celów Cele wychowawcze Istotną część procesu nauczania stanowi proces wychowywania. W nauczaniu matematyki szczególnie eksponowane są następujące cele wychowawcze: przygotowanie do życia we współczesnym świecie,

Bardziej szczegółowo

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I.

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I. XCII LO z Oddziałami Integracyjnymi i Sportowymi Materiał nauczania i przewidywane umiejętności uczniów Klasa I Treści nauczania I. Liczby 1. Liczby rzeczywiste, zapis dziesiętny liczby rzeczywistej, zamiana

Bardziej szczegółowo

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy.

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 Kamienna Góra tel.: (+48) 75-645-0-8 fax: (+48) 75-645-0-8 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole Cele kształcenia wymagania ogólne MATEMATYKA III etap edukacyjny I. Wykorzystanie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K) - 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają

Bardziej szczegółowo

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą Klasa LO Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą ZBIÓR I PODZBIOR DZIAŁANIA NA ZBIORACH I W ZBIORACH Przykładowe zadania: potrafi określić rodzaj liczby (N, C, W, NW, R) ) Ze zbioru

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki Rok szkolny 2014/2015

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki Rok szkolny 2014/2015 Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki Rok szkolny 2014/2015 Ocena celująca Ocenę tę otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej Kształcenie w zakresie podstawowym i rozszerzonym. cały cykl

Bardziej szczegółowo

Klasa 1. Osiągnięcia. Treści kształcenia. Dział. Uczeń: buduje zdania złożone w postaci koniunkcji, 1.1. Język matematyki

Klasa 1. Osiągnięcia. Treści kształcenia. Dział. Uczeń: buduje zdania złożone w postaci koniunkcji, 1.1. Język matematyki Opis założonych osiągnięć ucznia W tabelach dla poszczególnych klas, przy treściach kształcenia podajemy przewidywane osiągnięcia uczniów w ramach zakresu rozszerzonego. Podzieliliśmy je na podstawowe

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

LICEUM I TECHNIKUM. zakres podstawowy i rozszerzony. Matematyka poznać, zrozumieć ZGODNY Z WYMAGANIAMI. Podręcznik, klasa

LICEUM I TECHNIKUM. zakres podstawowy i rozszerzony. Matematyka poznać, zrozumieć ZGODNY Z WYMAGANIAMI. Podręcznik, klasa LICEUM I TECHNIKUM zakres podstawowy i rozszerzony Matematyka poznać, zrozumieć ZGODNY Z WYMAGANIAMI od 2015 Podręcznik, klasa Autorzy: Alina Przychoda, Zygmunt Łaszczyk Podręcznik dopuszczony do użytku

Bardziej szczegółowo

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy Projekt pt. Wyższe kwalifikacje lepszy start zawodowy realizowany przez Zespół Szkół Ponadgimnazjalnych im. Jana Kochanowskiego w Garbatce-Letnisku w ramach Programu Operacyjnego Kapitał Ludzki Priorytet

Bardziej szczegółowo

Przedmiotowy System Oceniania z matematyki

Przedmiotowy System Oceniania z matematyki Przedmiotowy System Oceniania z matematyki Opracowany zgodnie ze Statutem oraz z Wewnątrzszkolnym Systemem Oceniania Liceum Ogólnokształcącego im. Janka Bytnara w Kolbuszowej. I. Kontrakt między nauczycielem

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa Wymagania z matematyki, poziom rozszerzony nowa podstawa programowa Nauczyciel matematyki: mgr Izabela Stachowiak Wilk Zbiór liczb rzeczywistych i jego podzbiory odróżnia zdanie logiczne od innych wypowiedzi

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania został skonstruowany w oparciu o następujące

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Dorota Ponczek. MATeMAtyka. Program nauczania matematyki. dla szkół ponadgimnazjalnych kończących się maturą

Dorota Ponczek. MATeMAtyka. Program nauczania matematyki. dla szkół ponadgimnazjalnych kończących się maturą Dorota Ponczek MATeMAtyka Program nauczania matematyki dla szkół ponadgimnazjalnych kończących się maturą Spis treści Podstawa programowa nauczania matematyki na III i IV etapie edukacyjnym 3 Wstęp do

Bardziej szczegółowo

I. LICZBY RZECZYWISTE I WYRAŻENIA ALGEBRAICZNE Temat. Ilość godzin Podstawowe wiadomości o zbiorach. Opis wymagań

I. LICZBY RZECZYWISTE I WYRAŻENIA ALGEBRAICZNE Temat. Ilość godzin Podstawowe wiadomości o zbiorach. Opis wymagań PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym z obowiązkową maturą z matematyki) I. LICZBY RZECZYWISTE

Bardziej szczegółowo

DZIENNIK ZAJĘĆ POZALEKCYJNYCH

DZIENNIK ZAJĘĆ POZALEKCYJNYCH DZIENNIK ZAJĘĆ POZALEKCYJNYCH REALIZOWANYCH W RAMACH PROGRAMU ROZWOJOWEGO SZKOŁY w projekcie Dolnośląska szkoła liderem projakościowych zmian w polskim systemie edukacji Priorytet IX Rozwój wykształcenia

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

III. Wyrażenia algebraiczne, równania i nierówności. Uczeń: 1) używa wzorów skróconego mnożenia na. b ;

III. Wyrażenia algebraiczne, równania i nierówności. Uczeń: 1) używa wzorów skróconego mnożenia na. b ; Wymagania edukacyjne, kryteria oceniania oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów XV LO w Krakowie Matematyka Klasa pierwsza. Poziom podstawowy. Rok szkolny 2014/2015 Wymagania ogólne zdobywa

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Matematyka. Program nauczania w Technikum Elektronicznym Nr 1. Zakres rozszerzony. Marcin Kurczab Elżbieta Kurczab Elżbieta Świda

Matematyka. Program nauczania w Technikum Elektronicznym Nr 1. Zakres rozszerzony. Marcin Kurczab Elżbieta Kurczab Elżbieta Świda Marcin Kurczab Elżbieta Kurczab Elżbieta Świda Matematyka Program nauczania w Technikum Elektronicznym Nr 1 Zakres rozszerzony Oficyna Edukacyjna * Krzysztof Pazdro 2 Warszawa 2012 3 Spis treści I. Wstęp...

Bardziej szczegółowo

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące Informator o egzaminie eksternistycznym od 007 roku MATEMATYKA Liceum ogólnokształcące Warszawa 007 Opracowano w Centralnej Komisji Egzaminacyjnej we współpracy z okręgowymi komisjami egzaminacyjnymi w

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na

Bardziej szczegółowo

Alina Przychoda Zygmunt Łaszczyk. Program nauczania matematyki w liceach i technikach Kształcenie w zakresie podstawowym

Alina Przychoda Zygmunt Łaszczyk. Program nauczania matematyki w liceach i technikach Kształcenie w zakresie podstawowym Alina Przychoda Zygmunt Łaszczyk Program nauczania matematyki w liceach i technikach Kształcenie w zakresie podstawowym śadna nauka nie wzmacnia tak wiary w potęgę umysłu ludzkiego, jak matematyka. Hugo

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO I. Kontrakt 1. Każdy uczeń jest oceniany zgodnie z zasadami PSO,WSO. 2. Ocenie podlegają wszystkie formy aktywności ucznia. 3. Ocena

Bardziej szczegółowo

Przedmiotowy System Oceniania dla matematyki Kontrakt z uczniami: Ocena Waga

Przedmiotowy System Oceniania dla matematyki Kontrakt z uczniami: Ocena Waga Przedmiotowy System Oceniania dla matematyki Maria Wietrzykowska Kontrakt z uczniami: 1. Każdy uczeń jest oceniany zgodnie z prawe WSO i zasadami sprawiedliwości. 2. Ocenie podlega: Ocena Waga Wypowiedź

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM

WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM I. Wymagania na poszczególne oceny semestralne i roczne Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych przedmiotów,

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 04/05 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A, A, A, A4, A6, A7) GRUDZIEŃ 04 Klucz odpowiedzi do zadań zamkniętych Nr zadania 4 5 6

Bardziej szczegółowo

PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY

PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY PROGRAM NAUCZANIA MATEMATYKI IV ETAP EDUKACYJNY ZAKRES PODSTAWOWY I ROZSZERZONY Maria Zioło Program nauczania matematyki dla szkół ponadgimnazjalnych, których ukończenie umożliwia uzyskanie świadectwa

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

Kryteria ocen z matematyki w I klasie gimnazjum Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Kryteria ocen z matematyki w I klasie gimnazjum Dopuszczający Dostateczny Dobry Bardzo dobry Celujący LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej porównuje liczby wymierne zaznacza liczby wymierne na osi liczbowej zamienia ułamki zwykłe na dziesiętne i odwrotnie zna pojęcia:

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CENTRUM KSZTAŁCENIA USTAWICZNEGO NR 1 ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CENTRUM KSZTAŁCENIA USTAWICZNEGO NR 1 ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CENTRUM KSZTAŁCENIA USTAWICZNEGO NR 1 ZAKRES PODSTAWOWY Rozkład materiału został opracowany zgodnie z wymaganiami nowej podstawy

Bardziej szczegółowo

LICEUM OGÓLNOKSZTAŁCĄCE IV etap edukacyjny klasy I, II, III. Program nauczania Prosto do matury, kształcenie ogólne na poziomie podstawowym.

LICEUM OGÓLNOKSZTAŁCĄCE IV etap edukacyjny klasy I, II, III. Program nauczania Prosto do matury, kształcenie ogólne na poziomie podstawowym. LICEUM OGÓLNOKSZTAŁCĄCE IV etap edukacyjny klasy I, II, III Program nauczania Prosto do matury, kształcenie ogólne na poziomie podstawowym. PRZEDMIOTOWT SYSTEM OCENIANIA Z MATEMATYKI I. Cele oceniania:

Bardziej szczegółowo

KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1.

KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1. Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1. Prace klasowe

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

Matematyka - zajęcia wyrównawcze przygotowujące do obowiązkowej matury w klasie III

Matematyka - zajęcia wyrównawcze przygotowujące do obowiązkowej matury w klasie III 249 - Matematyka - zajęcia wyrównawcze przygotowujące do obowiązkowej matury w klasie III Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_249 Zmień rolę na... Włącz tryb edycji Osoby

Bardziej szczegółowo

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi: PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (kształcenie ogólne w zakresie podstawowym z obowiązkową maturą z matematyki, wydawnictwo Nowa Era)

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym)

PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym) PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym) I. LICZBY Temat Przykład i hipoteza. Dowód czy kontrprzykład?

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011 W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe

Bardziej szczegółowo

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra)

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy i rozszerzony do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Dorota Ponczek Program nauczania matematyki w zasadniczej szkole zawodowej

Dorota Ponczek Program nauczania matematyki w zasadniczej szkole zawodowej Dorota Ponczek Program nauczania matematyki w zasadniczej szkole zawodowej Spis treści Podstawa programowa kształcenia ogólnego dla zasadniczych szkół zawodowych (fragmenty).3 Wstęp do programu nauczania..9

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016 Litery w nawiasach oznaczają kolejno: K - ocena dopuszczająca P - ocena dostateczna

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Zakres podstawowy i rozszerzony Katalog wymagań na poszczególne oceny: Zakres wiedzy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - gimnazjum

Wymagania edukacyjne z matematyki - gimnazjum Wymagania edukacyjne z matematyki - gimnazjum Skrót postanowień: III etap edukacyjny (kl. I-III gimnazjum) Cele kształcenia (wymagania ogólne): wykorzystanie i tworzenie informacji - uczeń interpretuje

Bardziej szczegółowo

1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń:

1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń: 1. Funkcja liniowa Tematyka: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej. Własności funkcji liniowej Znaczenie współczynników we wzorze funkcji liniowej

Bardziej szczegółowo

Matematyka Program nauczania

Matematyka Program nauczania Marcin Kurczab Elżbieta Kurczab Elżbieta Świda 1 Zakres podstawowy Matematyka Program nauczania w liceach i w technikach Oficyna Edukacyjna * Krzysztof Pazdro 2 Matematyka. Program nauczania w liceach

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Program nauczania matematyki w liceach ogólnokształcących i technikach (IV etap edukacyjny) zakres podstawowy

Program nauczania matematyki w liceach ogólnokształcących i technikach (IV etap edukacyjny) zakres podstawowy Program nauczania matematyki w liceach ogólnokształcących i technikach (IV etap edukacyjny) zakres podstawowy Autorzy: Alicja Cewe, Alina Magryś-Walczak, Halina Nahorska Realizacja to 300 w cyklu całego

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA VI LICEUM OGÓLNOKSZTAŁCĄCEGO ZESPOŁU SZKÓŁ MISTRZOSTWA SPORTOWEGO W JASTRZĘBIU ZDROJU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA VI LICEUM OGÓLNOKSZTAŁCĄCEGO ZESPOŁU SZKÓŁ MISTRZOSTWA SPORTOWEGO W JASTRZĘBIU ZDROJU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA VI LICEUM OGÓLNOKSZTAŁCĄCEGO ZESPOŁU SZKÓŁ MISTRZOSTWA SPORTOWEGO W JASTRZĘBIU ZDROJU I. Kontrakt 1. Każdy uczeń jest oceniany zgodnie z zasadami PSO,WSO.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZÓŁ OGÓLNOSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 amienna Góra tel.: (+48) 75-645-0-8 fax: (+48) 75-645-0-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY SYSTEM

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo