Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron"

Transkrypt

1 Modele sieciowe fizyki statystycznej i symulacje Monte Carlo Katarzyna Sznajd-Weron

2 Perkolacja 2014 Katarzyna Sznajd-Weron

3 Model erkolacji Model erkolacji : Każdy węzeł (wiązanie) sieci jest zajęty niezależnie z rawdoodobieństwem Jak duże musi być to rawdoodobieństwo aby owstał klaster łączący brzegi sieci (rzeływ)?

4 Perkolacja: Pożary lasów

5 Prawdoodobieństwo rzejścia Symulacja komuterowa modelu erkolacji 101x x x1003 gęstość zadrzewienia Dla jakiego ożar dotrze do drugiej strony lasu?

6 Idea metody Monte Carlo (MC) Jaka jest szansa ułożenia asjansa? Ciężko to oliczyć analitycznie bo wygrana zależy od wielu ruchów A gdyby tak arę razy sróbować ułożyć asjansa i zobaczyć ile razy się to uda? Przegrana Przegrana Wygrana Przegrana Szansa ułożenia to ¼!

7 7 Losowość i rawdoodobieństwo Zjawisko jest losowe jeśli oszczególne wyniki są wcześniej nieznane Definicja Lalace a: Prawdoodobieństwo A zajścia zdarzenia A jest równe stosunkowi liczby rzyadków srzyjających wystąieniu zdarzenia A do liczby N wszystkich możliwych rzyadków: A P A = N A N

8 8 Przestrzeń zdarzeń i zdarzenia losowe Przestrzeń zdarzeń elementarnych Zbiór wszystkich możliwych wyników, n. 52 karty, które mogą być losowo wybrane z talii Zdarzenie Zbiór zdarzeń elementarnych, n. wybór 5 z 52 kart Zdarzenie elementarne Możliwy wynik, n. jedna z 52 kart, która może być losowo wybrana z talii

9 9 Przykład: Rzut kostką Zdarzenie elementarne Liczba oczek wyrzuconych na kostce Przestrzeń zdarzeń elementarnych S = {1, 2, 3, 4, 5, 6} Liczność Ω = #{1, 2, 3, 4, 5, 6} = 6 Zdarzenia: A: Liczba oczek jest arzysta B: Liczba oczek jest mniejsza od 3

10 (c) Rafał Weron Rozkład zmiennej losowej dyskretnej 6/36 5/36 4/36 3/36 P(suma=7) = 6/36 P(suma=3) = 2/36 2/36 1/36

11 (c) Rafał Weron rawdoodobieństwo Wartość oczekiwana zmiennej losowej Zmienna losowa dyskretna E( X ) xi ( xi ) x i Przykład: Zmienna losowa: liczba orłów w 2 rzutach monetą Jaka jest wartość oczekiwana tej zmiennej? Zmienna losowa ciągła E ( X ) x f ( x) dx 0,50 0,25 Rozkład E X = x i x i = = # orłów

12 Podstawy teoretyczne metody MC Niech a oznacza oszukiwana wielkość i jest wartością oczekiwaną a = EX ewnej zmiennej losowej X Jeżeli jesteśmy w stanie generować niezależne wartości S 1, S 2,, S n z rozkładu zmiennej losowej X to z mocnego rawa wielkich liczb wynika, że: 1 lim n n S S n = a MC olega wiec na szacowaniu wielkości a rzez średnia z ewnej odowiednio dobranej n elementowej róby.

13 Generatory liczb seudolosowych (PRNG) PRNG generuje deterministycznie ciąg bitów, który od ewnymi względami jest nieodróżnialny od ciągu uzyskanego z rawdziwie losowego źródła. Algorytm liniowy (liczby o rozkładzie jednostajnym): x ax b mod c n1 n a,b,c liczby magiczne, n: a 7 5, b 0, c

14 Cechy dobrego generatora do MC Długi okres owtarzalności Losowość brak korelacji, równomierność (secjalne testy) Szybki

15 Generator Mersenne Twister (htt:// Makoto Matsumoto i Takuji Nishimura,1997 Nadaje się do Symulacji Monte Carlo, ale nie do krytografii Zalety MT19937 Mersenne Twistera: Okres (udowodnione) Wysoki stoień równomiernego rozmieszczenia Sełnia większość testów losowości Szybki

16 Temeratura Curie ciągłe rzejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk T > T c Jak to zrozumieć?

17 Model Isinga (Lenza-Isinga?) 1925 rozrawa doktorska Ernsta Isinga Brak rzejścia fazowego w 1D Jedyna raca Isinga Przejście fazowe w 2D (lata czterdzieste) Skala mikro tłumaczy zachowania makro L H = J L S i S j 1D H = J i=1 S i S i+1 <i,j>

18 Skąd taki Hamiltonian? Każdy układ dąży do minimalizacji energii LÓD WODA LÓD WODA LÓD WODA Lód i woda w równowadze Przechłodzona woda

19 Skąd taki Hamiltonian? L H = J S i S i+1 i=1 L H = J S i S i+1 = J ( 1) i=1 Każdy układ dąży do minimalizacji energii L H = J i=1 L S i S i+1 = J i=1 1 = JL

20 Oddziaływania omiędzy cząstkami Ferromagnetyk (konformizm) Antyferromagnetyk (antykonformizm) Wływ (siła oddziaływania) wzrasta wraz Ze zgodnością gruy Z rozmiarem gruy Wysoka temeratura nerwowo Piotr Nyczka

21 Czego się sodziewacie? Czego się sodziewacie? Zajrzyjcie na htts://ccl.northwestern.edu/netlogo/ Models Library NetLogo (środowisko do ABM) Prof. Uri Wilensky Northwestern's Center for Connected Learning and Comuter-Based Modeling (CCL)

22 Ewolucja układu w czasie (ferromagnetyk) niska temeratura Oddziaływanie orządkuje Temeratura losowe zmiany W niskich temeraturach orządek W wysokich temeraturach nieorządek m =< S i > = 1 N i=1 N S i

23 Dalsze losy modelu Isinga Przejście fazowe w 2D bez ola Onsager, lata czterdzieste Symulacje Komuterowe model Isinga w 3D i 2D z olem Wykorzystanie oza fizyką

24 Symulacja Monte Carlo Modelu Isinga Przygotuj stan oczątkowy układu Pozwól mu ewoluować Poczekaj aż ustali się magnetyzacja Zanotuj wartość m Powtarzaj to dużo razy Policz średnią magnetyzację Jaka to średnia? N m =< S i > = 1 N i=1 S i

25 Średnia o zesole Średnia o czasie i średnia o zesole Średnia o czasie Układ ergodyczny to średnia o zesole = średnia o czasie

26 Algorytm Metroolisa 1MCS = N losowań Wylosuj jeden sin S i Oblicz energię E = E(S i ) = S i J j nn S j Oblicz energię E = E( S i ) = S i J j nn S j Oblicz zmianę energii ΔE = E E Jeżeli ΔE 0 to S i S i Jeżeli ΔE > 0 to wylosuj r z rzedziału [0,1] i akcetuj nową konfigurację jeżeli: r < = ex ΔE k B T, k B = J = 1

27 Przejście fazowe w modelu Isinga

28 Metody analityczne fizyki statystycznej Ścisłe bardzo rzadko to się udaje Przybliżone Metoda średniego ola Metoda gruy renormalizacyjnej Metoda szeregów wysokotemeraturowych Przykład: model erkolacji

29 Perkolacja site Rozważmy sieć dwuwymiarową L na L Każde miejsce sieci jest zajęte niezależnie z rawdoodobieństwem Klaster grua zajętych węzłów znajdujących się wzajemnie w najbliższym sąsiedztwie (rozmiar s)

30 Krytyczność w modelu erkolacji Próg erkolacji - najmniejsza koncentracja zaełnionych węzłów na sieci, rzy której owstaje nieskończony klaster. Parametr orządku Wyniki dla sieci 2D

31 Krytyczność w modelu erkolacji Próg erkolacji dla roblemu site to najmniejsza koncentracja zaełnionych węzłów na sieci, rzy której owstaje nieskończony klaster. Próg erkolacji dla roblemu bond to najmniejsza koncentracja zaełnionych ołączeń między węzłami sieci, rzy której owstaje nieskończony klaster.

32 Trzewo (sieć) Bethego (z=3) Klaster erkolujący rozciąga się w nieskończoność Rozważmy sacer o erkolującym nieskończonym klastrze Kontynuując sacer z węzła i-tego możemy ójść w z 1 kierunkach Tylko (z 1) jest wolnych Czyli musi być rzynajmniej jedna wolna z 1 1 c = 1 z 1

33 Perkolacja na sieci kwadratowej (bond): dualność sieci Sieć wyjściowa: mogę rzejść q=1- nie mogę rzejść Sieć dualna: nie mogę rzejść q=1- mogę rzejść

34 Samodualność sieci kwadratowej * q q * q q * * q* 1 *, q* * 0.5 *

35 Próg erkolacji nie jest uniwersalny! sieć site bond heksagonalna kwadratowa trójkątna diamond Prosta kubiczna BCC FCC

36 Metoda Średniego Pola (MFA) erkolacja wiązań (bond) Pytanie: Jaka jest krytyczna wartość koncentracji wiązań (mostów), rzy której owstanie nieskończony klaster? Oznaczenia: rawdoodobieństwo tego, że dwa dowolne węzły sieci są ołączone (tzn. że istnieje wiązanie): rawdoodobieństwo, że i-ty węzeł należy do nieskończonego klastra: P i

37 Kiedy należy do nieskończonego klastra? Żeby węzeł i należał do klastra to: musi on mieć rzy najmniej jednego sąsiada j, z którym jest ołączony mostem, j należy do nieskończonego klastra. Prawdoodobieństwo tego, że ma: P j Prawd., że nie należy do klastra

38 Mean field aroximation (MFA) z 1 P i = j=1 1 P j MFA: i P i = P (układ jednorodny) z 1 P = j=1 1 P = 1 P z 1 P = 1 P z Dla układu jednowymiarowego (1D): z = 2 1 P = 1 P 2

39 Układ jednowymiarowy, z = 2 1 P = 1 P 2 Pytanie: Czy istnieje takie, żeby P > 0? 1 P = 1 2P + 2 P 2 2 P P = 0 P( 2 P ) = 0 2 P = 0 P = P = > > 0 > 1 2

40 ) (1 4 ) (1 2 ' Grua renormalizacyjna (decymacja): Perkolacja na sieci kwadratowej =0 =0 =0 =1 =1 =1

41 ) (1 0 1 ) (1 0 ) 2 (1 2 ', 2 ' *= Szukamy unktów stałych transformacji

42 Grua renormalizacyjna (majority rule): Perkolacja na sieci trójkątnej rawdoodobieństwo rawdoodobieństwo = = = c = = 0 ( ) = = 0

43 Literatura D. W. Heermann, Podstawy symulacji komuterowych w fizyce, WNT 1997 D. P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press 2005

Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System

Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System Krytyczność, przejścia fazowe i symulacje Monte Carlo Katarzyna Sznajd-Weron Physics of Complex System Przejścia fazowe wokół nas woda faza ciekła PUNKT KRYTYCZNY Lód faza stała para faza gazowa ciągłe

Bardziej szczegółowo

Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron Krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Temperatura Curie Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk

Bardziej szczegółowo

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron

Bardziej szczegółowo

Modelowanie Agentowe Układów Złożonych Wstęp. Katarzyna Sznajd-Weron

Modelowanie Agentowe Układów Złożonych Wstęp. Katarzyna Sznajd-Weron Modelowanie Agentowe Układów Złożonych Wstęp Katarzyna Sznajd-Weron Aperitif (2006) Physicists pretend not only to know everything, but also to know everything better. This applies in particular to computational

Bardziej szczegółowo

Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp

Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Katarzyna Sznajd Weron Wyodrębniony (realnie lub myślowo) fragment rzeczywistości Jednostka, którą będziemy się zajmować

Bardziej szczegółowo

Metoda Monte Carlo. Katarzyna Sznajd-Weron

Metoda Monte Carlo. Katarzyna Sznajd-Weron Metoda Monte Carlo Katarzyna Sznajd-Weron Stanisław Ulam i metoda Monte Carlo The idea for what was later called the Monte Carlo method occurred to me when I was laying solitaire during my illness. I noticed

Bardziej szczegółowo

Fizyka statystyczna i termodynamika Wykład 1: Wstęp. Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej

Fizyka statystyczna i termodynamika Wykład 1: Wstęp. Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Fizyka statystyczna i termodynamika Wykład 1: Wstęp Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej http://www.if.pwr.wroc.pl/~katarzynaweron/ Mój plan zajęć Strona kursu Kim jestem? Prof. dr hab. Katarzyna

Bardziej szczegółowo

Co to jest model Isinga?

Co to jest model Isinga? Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Dynamiki rynków oligopolistycznych oczami fizyka

Dynamiki rynków oligopolistycznych oczami fizyka KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 7-10 listopada 2008 1 1 2 1 2 3 1 2 3 4 Wprowadzenie reklamy 1 2 3 4 Wprowadzenie reklamy 5 1 2 3 4 Wprowadzenie reklamy 5 6 1 2 3 4 Wprowadzenie

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

07DRAP - Zmienne losowe: dyskretne i ciągłe

07DRAP - Zmienne losowe: dyskretne i ciągłe 07DRAP - Zmienne losowe: dyskretne i ciągłe Definicja Zmienna losowa (rozkład zmiennej losowej X jest skuiona na zbiorze S, jeśli P X (S = P (X S = (Podajemy najmniejszy lub najładniejszy taki zbiór Definicja

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

Wykład 2 Zmienne losowe i ich rozkłady

Wykład 2 Zmienne losowe i ich rozkłady Wykład 2 Zmienne losowe i ich rozkłady Magdalena Frąszczak Wrocław, 11.10.2017r Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Doświadczenie

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.

Bardziej szczegółowo

TERMODYNAMIKA I FIZYKA STATYSTYCZNA

TERMODYNAMIKA I FIZYKA STATYSTYCZNA TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1

Bardziej szczegółowo

Dyskretne zmienne losowe

Dyskretne zmienne losowe Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która

Bardziej szczegółowo

Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym

Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Piotr Nyczka Institute of Theoretical Physics University of Wrocław Artykuły Opinion dynamics as a movement in a bistable potential

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 5. Zmienne losowe: wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8..208 / 42 Motywacja Często bardziej niż same zdarzenia losowe

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Podstawy symulacji komputerowej

Podstawy symulacji komputerowej Podstawy symulacji komputerowej Wykład 3 Generatory liczb losowych Wojciech Kordecki wojciech.kordecki@pwsz-legnica.eu Państwowa Wyższa Szkoła Zawodowa im. Witelona w Legnicy Wydział Nauk Technicznych

Bardziej szczegółowo

Jednowymiarowa zmienna losowa

Jednowymiarowa zmienna losowa 1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),

Bardziej szczegółowo

TERMODYNAMIKA I FIZYKA STATYSTYCZNA

TERMODYNAMIKA I FIZYKA STATYSTYCZNA TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 14-15.50 można się umówić wysyłając e-maila

Bardziej szczegółowo

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami.

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami. Procesy Markowa Proces stochastyczny { X } t t nazywamy rocesem markowowskim, jeśli dla każdego momentu t 0 rawdoodobieństwo dowolnego ołożenia systemu w rzyszłości (t>t 0 ) zależy tylko od jego ołożenia

Bardziej szczegółowo

1 Wersja testu A 18 września 2014 r.

1 Wersja testu A 18 września 2014 r. 1 Wersja testu A 18 września 2014 r. 1. Zapisać w postaci przedziału lub uporządkowanej sumy przedziałów zbiór liczb rzeczywstych x, dla których podana implikacja jest prawdziwa. a) x 2 < 4 x < 3, (, +

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014 Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 1

Sieci Mobilne i Bezprzewodowe laboratorium 1 Sieci Mobilne i Bezprzewodowe laboratorium 1 Plan laboratoriów Teoria zdarzeń dyskretnych Modelowanie zdarzeń dyskretnych Symulacja zdarzeń dyskretnych Problem rozmieszczenia stacji raportujących i nieraportujących

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b]

Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b] Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b] Dagna Bieda, Piotr Jarecki, Tomasz Nachtigall, Jakub Ciesiółka, Marek Kubiczek Metoda Monte Carlo Metoda Monte

Bardziej szczegółowo

Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System

Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System Plan Model dynamiki populacyjnej Pytania Model mikroskopowy Przybliżenie MFA: równania (wady

Bardziej szczegółowo

Mini-quiz 0 Mini-quiz 1

Mini-quiz 0 Mini-quiz 1 rawda fałsz Mini-quiz 0.Wielkości ekstensywne to: a rędkość kątowa b masa układu c ilość cząstek d temeratura e całkowity moment magnetyczny.. Układy otwarte: a mogą wymieniać energię z otoczeniem b mogą

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych Definicja 1 Przestrzeń probabilistyczna to trójka (Ω, F, P), gdzie Ω zbiór zdarzeń elementarnych, F σ ciało zdarzeń (podzbiorów Ω), P funkcja prawdopodobieństwa/miara

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

Praca dyplomowa inżynierska/licencjacka/magisterska*

Praca dyplomowa inżynierska/licencjacka/magisterska* Wydział Matematyki kierunek studiów: matematyka stosowana secjalność: Praca dylomowa inżynierska/licencjacka/magisterska* MODEL q-wyborcy Z DYSKRETNYMI I CIĄGŁYMI OPINIAMI Joanna Śmieja słowa kluczowe:

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

Statystyka matematyczna dla kierunku Rolnictwo w SGGW. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ.

Statystyka matematyczna dla kierunku Rolnictwo w SGGW. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ. BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH. ANALIZA KORELACJI PROSTEJ. IDEA OPISU WSPÓŁZALEśNOŚCI CECH X, Y cechy obserwowane w doświadczeniu, n liczba jednostek doświadczalnych, Wyniki doświadczenia: wartości

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy

Bardziej szczegółowo

1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo

1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1.1 Rodzaje zbieżności ciagów zmiennych losowych Niech (Ω, F, P ) będzie przestrzenia probabilistyczna na której określony jest ciag {X

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Ekonometria Finansowa II EARF. Michał Rubaszek

Ekonometria Finansowa II EARF. Michał Rubaszek Ekonometria Finansowa II EARF Michał Rubaszek 1 Cele - Zapoznanie z charakterystykami szeregów finansowych - Omówienie jednowymiarowych metod liczenia VaR - Omówienie wielowymiarowych metod liczenia VaR

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.); 03DRAP - Przykłady przestrzeni probabilistycznych A Zadania na ćwiczenia Zadanie A1 (wskazówka: pierwsze ćwicznia i rozdział 23 przykł 1 i 2) Zbuduj model przestrzeni klasycznej (czyli takiej, w której

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.4. Momenty zmiennych losowych Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Rzucamy raz kostką Ile wynosi średnia liczba oczek, jaka

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank

PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank PageRank Bartosz Makuracki 28 listopada 2013 Definicja Definicja PageRank jest algorytmem używanym przez wyszukiwarkę Google do ustalania kolejności stron pojawiających się w wynikach wyszukiwania. Definicja

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008 STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody

Bardziej szczegółowo

I. Kombinatoryka i prawdopodobieństwo. g) różnowartościowych, h) bez miejsc zerowych, i) z jednym miejscem zerowym, j) z dwoma miejscami zerowymi,

I. Kombinatoryka i prawdopodobieństwo. g) różnowartościowych, h) bez miejsc zerowych, i) z jednym miejscem zerowym, j) z dwoma miejscami zerowymi, I. Kombinatoryka i prawdopodobieństwo I.1 Mała Lusia bawi się literkami A,A,A,E,K,M,M,T,T,Y ustawiając je w różnej kolejności. Jakie jest prawdopodobieństwo ustawienia wyrazu MATEMATYKA? I. Wśród funkcji

Bardziej szczegółowo

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez

Bardziej szczegółowo

model isinga 2d ab 10 grudnia 2016

model isinga 2d ab 10 grudnia 2016 model isinga 2d ab 10 grudnia 2016 tematyka Model spinów Isinga Hamiltonian i suma statystyczna modelu Metoda Monte-Carlo. Algorytm Metropolisa. Obserwable Modelowanie: Model Isinga 1 hamiltonian I Hamiltonian,

Bardziej szczegółowo

X P 0,2 0,5 0,2 0,1

X P 0,2 0,5 0,2 0,1 Zadanie 1 Zmienna losowa X ma rozkład: x -2 0 1 p 0,2 0,5 0,3 Wyznaczyć i narysować dystrybuantę tej zmiennej losowej. Zadanie 2 Zmienna losowa X ma rozkład: X -10 0 10 40 P 0,2 0,5 0,2 0,1 Podać wartość

Bardziej szczegółowo

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

METODY ANALIZY DANYCH NIEPEWNYCH

METODY ANALIZY DANYCH NIEPEWNYCH METODY ANALIZY DANYCH NIEPEWNYCH LITERATURA PODSTAWOWA. Z. Hellwig, Elementy Rachunku Prawdopodobieństwa i Statystyki Matematycznej, PWN, Warszawa, 995 2. W. Krysicki i inni, Rachunek Prawdopodobieństwa

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

Zmienne losowe i ich rozkłady

Zmienne losowe i ich rozkłady Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej

Bardziej szczegółowo

Generowanie ciągów pseudolosowych o zadanych rozkładach wstęp do projektu

Generowanie ciągów pseudolosowych o zadanych rozkładach wstęp do projektu Generowanie ciągów pseudolosowych o zadanych rozkładach wstęp do projektu Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.

Bardziej szczegółowo

ćwiczenia z rachunku prawdopodobieństwa

ćwiczenia z rachunku prawdopodobieństwa ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Uniwersyteckie Koło Matematyczne 23 kwietnia 2009 r. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo