Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System"

Transkrypt

1 Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System

2 Plan Model dynamiki populacyjnej Pytania Model mikroskopowy Przybliżenie MFA: równania (wady i zalety) Model dynamiki opinii Pytania Model mikroskopowy Przybliżenie MFA: równania (wady i zalety) 2

3 Dynamika populacyjna - jakie pytania? Czy istnieje minimalna wielkość populacji trwałej? Jakie strategie mogą pomóc populacji (migracje, stada, itp.)? Jak drogi, mosty itp. wpływają na rozwój populacji 3

4 Model Wyjściowy środowisko osobnik śmierć ruch rozmnożenie 4

5 Co może osobnik? Przeżywa z prawdopodobieństwem p, umiera z 1-p Ruch do najbliższego sąsiedztwa mrówka ślepa albo krótkowzroczna Jeśli wykona ruch to Partner do rozmnożenia z najbliższego sąsiedztwa mrówka ślepa albo krótkowzroczna Gdzie umieszczane dziecko? - strategia 5

6 Przykład 6

7 Parametry modelu Koncentracja (liczebność) początkowa osobników Przystosowanie osobników p Rozmiar układu wyniki powinny się skalować N N t 1 Nt narodziny śmierć t 1 Nt Nt pr R (1 ) 1 2 p Prawdopodobieństwo ruchu Prawdopodobieństwo partnera

8 Ślepa czy krótkowzroczna mrówka ) (1 ) (1 4 3 ' / ) ( p c pc c c c L p pr R t N t N t N ) ( 1 1 ), ( 1 ) ( 4 3 ), ( 1 t c R t c R t c R t c R Ślepa: Krótkowzroczna:

9 Punkty stałe * ) ( ) ( ) (1 ) ( , 0 ) (1 ) (1 4 3 ' 2 2 p p p p p p p p pc pc p c pc c p c pc c c c

10 Punkty stałe c 1 2 p 1,2 2 3p

11 Co można więcej? Przystosowanie p nie jest stałe w czasie działa ewolucja biologiczna (genetyka) Osobniki heterogeniczne (płeć, p) Osobniki różnią się płcią jak to zależy od koncentracji płci Liczba dzieci zmienna Dzieci umieszczane w gnieździe Ruch wg. mrówki krótkowzrocznej, a nie ślepej

12 Różnica między mrówką ślepą i krótkowzroczną

13 Dzieci w gnieździe czy nie?

14 Zalety podejścia analitycznego Obliczenia numeryczne (rozwiązywanie równań) szybkie! Bardziej systematyczna analiza modelu Czasem otrzymujemy rozwiązanie analityczne pełna wiedza o zależności od parametrów Szczególnie cenne przy układach z niespodziankami (np. przejścia fazowe) Ale

15 Wady podejścia analitycznego Zgodność z wynikami modelu mikroskopowego w ograniczonych przypadkach (np. graf zupełny, układy jednorodne) Potrafi wyprodukować przejście fazowe tam gdzie go nie ma Nie mamy informacji o fluktuacjach przestrzennych Szczególnie złe w układach niskowymiarowych

16 Model wymierań gatunków (Bak, Sneppen 1993) Dobór naturalny (Darwin) - najsłabiej przystosowani mają najmniejszą szansę na przeżycie Oddziaływania między gatunkami (np. przez łańcuch pokarmowy) wpływ zmian sąsiednich gatunków

17 Model BS krok 2: jak to zrobić? fitness

18 Samoorganizacja w modelu BS

19 Dynamika opinii: nastroje społeczne (CBOS) lepiej gorzej

20 Opinia - jak to mierzymy?

21 Modele wyborcy NIE TAK SPINSON = SPIN + PERSON Opinia publiczna m = 1 N N + N = 1 N S i

22 Nieliniowy model q-wyborcy Castellano, Muñoz & Pastor-Satorras, 2009, PRE Każdy spinson oddziałuje z q sąsiadami Jeśli wszyscy q sąsiedzi mają tą sama opinię to spinson przyjmuje opinię sąsiadów (c) P. Nyczka, 2014

23 Model diamentowy pojedyncza próba Willis (1963), Nail et al. (2000)

24 Model q-wyborcy z nonkonformizmem niezależność antykonformizm

25 Na grafie zupełnym 1. γ + (c) = Prob c t + Δ t = c(t) + 1 N, c(t) = N (t) 2. γ (c) = Prob c t + Δ t = c(t) 1 N 3. γ 0 (c) = Prob c t + Δ t = c(t) = 1 γ + (c) + γ (c) Model z antykonformizmem, N : γ + c = (1 c) 1 p c q + p 1 c q γ c = c 1 p (1 c) q +pc q Model z niezależnością, N : γ + c = (1 c) γ c = c 1 p c q + pf 1 p (1 c) q +pf N

26 2015, Piotr Nyczka Trajektorie ciągłe przejście fazowe nieciągłe przejście fazowe p < p* p p* p > p*

27 2015, Piotr Nyczka ciągłe przejście fazowe nieciągłe przejście fazowe

28 Model q-wyborcy z nonkonformizmem niezależność antykonformizm

29 Nieciągłe przejście fazowe (c) 2017 Urszula Grochocińska

30 Model 1 konformizm + antykonformizm Model 2 konformizm + niezależność 2015, Piotr Nyczka

31 Dalsze pytania i uogólnienia Co jeśli struktura sieci społecznej inna? Co jeśli zamiast jednomyślności próg (np. r=50%)? Co jeśli jednocześnie oba typy nonkonformizmu? Co jeśli wprowadzimy osobowość? pn osób na zawsze nonkonformistycznych (1-p)N osób na zawsze konformistycznych Co jeśli rozmiar grupy q nie będzie stały, ale zadany pewnym rozkładem? Co jeśli agenci będą mieli pamięć? Co jeśli dodatkowo pewne pole zewnętrzne?

32 Co jeśli zamiast jednomyślności próg? Trzy parametry modelu: o q liczebność grupy wpływu o r minimalna większość o p ilość nonkonformizmu Dla: o r = q = 1 model wyborcy o r = q = 2 model Sznajdów o r = q model q-wyborcy o r > 1/2q model większości

33 Co jeśli jednocześnie oba typy nonkonformizmu? Pięć parametrów modelu: o q liczebność grupy wpływu o r minimalna większość dla konformizmu o w minimalna większość dla antykonformizmu o p prawd. nonkonformizmu o z prawd. niezależności jeśli nonkonformizm

34 Co jeśli wprowadzimy osobowość? Osobowość: dwa typy spinsonów nonkonformiści konformiści Sytuacja: prawdopodobieństwo p nonkonformizmu

35 Debata psychologiczna: osobowość czy sytuacja? Heterogenous spinsons: < p > = 0.2 Homogenous spinsons: < p > = 0.2

36 Debata psychologiczna: osobowość czy sytuacja? Independence situation Independence person Anticonformity situation person

37 Rozmiar q grupy nie jest stały

38 Jak to powinno wyglądać? Stawiamy konkretne pytanie badawcze Budujemy model Rozważamy go dla łatwego przypadku Łatwo sprawdzić czy dobrze działa Wyniki analityczne Analizujemy model w całej przestrzeni parametrów Rozwijamy model

39 Literatura do q-votera 1. A. Jędrzejewski and K. Sznajd-Weron (2017) Person-Situation Debate Revisited: Phase Transitions with Quenched and Annealed Disorders, Entropy 16, W. Radosz et al. (2017) Q-voter model with nonconformity in freely forming groups: Does the size distribution matter?, Phys. Rev. E 95, A. Jedrzejewski (2017) Pair approximation for the q-voter model with independence on complex networks, Phys. Rev. E 95, K. Byrka et al. (2016) Difficulty is critical ( ), Renewable and Sustainable Energy Reviews 62, A. Chmiel, K. Sznajd-Weron (2015) Phase transitions in the q-voter model with noise on a duplex clique, Phys. Rev. E 92, K. Sznajd-Weron et al. (2014) Is the person-situation debate important for agentbased modeling and vice versa?, PLoS ONE 9(11), e P. Nyczka, K. Sznajd-Weron (2013) Anticonformity or Independence? -Insights from Statistical Physics, J. Stat. Phys. 151, P. Nyczka et al. (2012) Phase transitions in the q-voter model with two types of stochastic driving, Phys. Rev. E 86,

Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym

Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Piotr Nyczka Institute of Theoretical Physics University of Wrocław Artykuły Opinion dynamics as a movement in a bistable potential

Bardziej szczegółowo

Praca dyplomowa inżynierska

Praca dyplomowa inżynierska Wydział Matematyki kierunek studiów: matematyka stosowana specjalność Praca dyplomowa inżynierska Dynamika opinii w sieciach bezskalowych Dominik Miażdżyk słowa kluczowe: dynamika opinii model q-wyborcy

Bardziej szczegółowo

Dynamiki rynków oligopolistycznych oczami fizyka

Dynamiki rynków oligopolistycznych oczami fizyka KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 7-10 listopada 2008 1 1 2 1 2 3 1 2 3 4 Wprowadzenie reklamy 1 2 3 4 Wprowadzenie reklamy 5 1 2 3 4 Wprowadzenie reklamy 5 6 1 2 3 4 Wprowadzenie

Bardziej szczegółowo

Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System

Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System Krytyczność, przejścia fazowe i symulacje Monte Carlo Katarzyna Sznajd-Weron Physics of Complex System Przejścia fazowe wokół nas woda faza ciekła PUNKT KRYTYCZNY Lód faza stała para faza gazowa ciągłe

Bardziej szczegółowo

Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron Krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Temperatura Curie Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk

Bardziej szczegółowo

Praca dyplomowa inżynierska

Praca dyplomowa inżynierska Wydział Matematyki kierunek studiów: Matematyka Stosowana specjalność: Praca dyplomowa inżynierska Modelowanie agentowe dynamiki opinii w kontekście badań społecznych Grzegorz Marcjasz słowa kluczowe:

Bardziej szczegółowo

Grafy Alberta-Barabasiego

Grafy Alberta-Barabasiego Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest

Bardziej szczegółowo

Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych

Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Tomasz Gradowski Seminarium Dynamiki Układów Złożonych 5. 11. 2007 Motywacja Wybory są fundamentalnym procesem społecznym

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Automaty komórkowe. Katarzyna Sznajd-Weron

Automaty komórkowe. Katarzyna Sznajd-Weron Automaty komórkowe Katarzyna Sznajd-Weron Trochę historii CA (Cellular Automata) Koniec lat 40-tych John von Neuman maszyna z mechanizmem samopowielania Sugestia Ulama 1952 dyskretny układ komórek dyskretne

Bardziej szczegółowo

Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp

Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Katarzyna Sznajd Weron Wyodrębniony (realnie lub myślowo) fragment rzeczywistości Jednostka, którą będziemy się zajmować

Bardziej szczegółowo

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils

GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0

Bardziej szczegółowo

Modelowanie oligopolu metodami fizyki statystycznej. Praca magisterska. Andrzej Pilarczyk. Wydział Fizyki i Astronomii Uniwersytet Wrocławski

Modelowanie oligopolu metodami fizyki statystycznej. Praca magisterska. Andrzej Pilarczyk. Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wydział Fizyki i Astronomii Uniwersytet Wrocławski Andrzej Pilarczyk Modelowanie oligopolu metodami fizyki statystycznej Praca magisterska Opiekun: dr hab. Katarzyna Sznajd-Weron Wrocław 2009 Streszczenie

Bardziej szczegółowo

A. Kowalska-Pyzalska, K. Maciejowska, P. Przybyła, K. Sznajd-Weron, R. Weron

A. Kowalska-Pyzalska, K. Maciejowska, P. Przybyła, K. Sznajd-Weron, R. Weron A. Kowalska-Pyzalska, K. Maciejowska, P. Przybyła, K. Sznajd-Weron, R. Weron Institute of Organization and Management Wrocław University of Technology Model agentowy Konsument na rynku energii elektrycznej

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

Warsztaty metod fizyki teoretycznej

Warsztaty metod fizyki teoretycznej Warsztaty metod fizyki teoretycznej Zestaw 6 Układy złożone- sieci w otaczającym nas świecie Marcin Zagórski, Jan Kaczmarczyk 17.04.2012 1 Wprowadzenie W otaczającym nas świecie odnajdujemy wiele struktur,

Bardziej szczegółowo

Ekologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych

Ekologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ekologia wyk. 1 wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ochrona środowiska Ekologia jako dziedzina nauki jest nauką o zależnościach decydujących

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Prawa potęgowe i samoorganizująca się krytyczność. Katarzyna Sznajd-Weron

Prawa potęgowe i samoorganizująca się krytyczność. Katarzyna Sznajd-Weron Prawa potęgowe i samoorganizująca się krytyczność Katarzyna Sznajd-Weron Przystawka: Masa krytyczna (2004) Wybuch jądrowy: masa krytyczna materiału rozszczepialnego Rowerzyści: nieformalny ruch społeczny,

Bardziej szczegółowo

Porównanie różnych podejść typu ODE do modelowania sieci regu

Porównanie różnych podejść typu ODE do modelowania sieci regu Porównanie różnych podejść typu ODE do modelowania sieci regulacji genów 8 stycznia 2010 Plan prezentacji 1 Praca źródłowa Sieci regulacji genów 2 Założenia Funkcja Hill a Modele dyskretne 3 Przykład Modele

Bardziej szczegółowo

Co to jest model Isinga?

Co to jest model Isinga? Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.

Bardziej szczegółowo

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie

Bardziej szczegółowo

Konspekt lekcji biologii w gimnazjum klasa I

Konspekt lekcji biologii w gimnazjum klasa I mgr Piotr Oleksiak Gimnazjum nr.2 wopatowie. Temat. Cechy populacji biologicznej. Konspekt lekcji biologii w gimnazjum klasa I Zakres treści: Populacja cechy charakterystyczne: liczebność, zagęszczenie,

Bardziej szczegółowo

Przejścia fazowe w 1D modelu Isinga

Przejścia fazowe w 1D modelu Isinga Przejścia fazowe w 1D modelu Isinga z zero-temperaturową dynamiką Glaubera Rafał Topolnicki rafal.topolnicki@gmail.com Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wydział Podstawowych Problemów

Bardziej szczegółowo

Potęga modeli agentowych

Potęga modeli agentowych Potęga modeli agentowych Katarzyna Sznajd-Weron Katedra UNESCO Studiów Interdyscyplinarnych Seminarium S 3, 7 maja 2013 Aperitif (2006) Physicists pretend not only to know everything, but also to know

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O pewnym modelu pojawiania się szkód Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Modele pojawiania

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Bładzenie przypadkowe i lokalizacja

Bładzenie przypadkowe i lokalizacja Bładzenie przypadkowe i lokalizacja Zdzisław Burda Jarosław Duda, Jean-Marc Luck, Bartłomiej Wacław Seminarium Wydziałowe WFiIS AGH, 07/11/2014 Plan referatu Wprowadzenie Zwykłe bładzenie przypadkowe (GRW)

Bardziej szczegółowo

Tematy prac magisterskich i doktorskich

Tematy prac magisterskich i doktorskich Tematy prac magisterskich i doktorskich Stochastyczna dynamika z opóźnieniami czasowymi w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

Zastosowania automatów komórkowych

Zastosowania automatów komórkowych Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (12) Zastosowania automatów komórkowych Wykład dla studentów Informatyki Ostatnia zmiana: 28 maja 2015 (ver. 4.0) Ewolucja populacji biologicznej

Bardziej szczegółowo

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron

Bardziej szczegółowo

Hierarchical Cont-Bouchaud model

Hierarchical Cont-Bouchaud model Hierarchical Cont-Bouchaud model inż. Robert Paluch dr inż. Krzysztof Suchecki prof. dr hab. inż. Janusz Hołyst Pracownia Fizyki w Ekonomii i Naukach Społecznych Wydział Fizyki Politechniki Warszawskiej

Bardziej szczegółowo

Genetyka populacji. Analiza Trwałości Populacji

Genetyka populacji. Analiza Trwałości Populacji Genetyka populacji Analiza Trwałości Populacji Analiza Trwałości Populacji Ocena Środowiska i Trwałości Populacji- PHVA to wielostronne opracowanie przygotowywane na ogół podczas tworzenia planu ochrony

Bardziej szczegółowo

Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym

Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Jarosław Piersa, Tomasz Schreiber {piersaj, tomeks}(at)mat.umk.pl 2010-07-21 1 2 Dany podzbiór V R 3. N neuronów należących do V N Poiss(c

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZE W BIOLOGII 1. Wykład wstępny. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. ajczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Rozkład materiału z biologii do klasy III.

Rozkład materiału z biologii do klasy III. Rozkład materiału z biologii do klasy III. L.p. Temat lekcji Treści programowe Uwagi 1. Nauka o funkcjonowaniu przyrody. 2. Genetyka nauka o dziedziczności i zmienności. -poziomy różnorodności biologicznej:

Bardziej szczegółowo

Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron

Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron Modele sieciowe fizyki statystycznej i symulacje Monte Carlo Katarzyna Sznajd-Weron Perkolacja 2014 Katarzyna Sznajd-Weron Model erkolacji Model erkolacji : Każdy węzeł (wiązanie) sieci jest zajęty niezależnie

Bardziej szczegółowo

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Dokładność i poprawność Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-233 GDAŃSK e-mail:

Bardziej szczegółowo

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego

Bardziej szczegółowo

Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw

Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw dr Karolina Borowiec-Mihilewicz Uniwersytet Ekonomiczny we Wrocławiu Zastosowania

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której: o ilość zapełnień

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo

O ISTOTNYCH OGRANICZENIACH METODY

O ISTOTNYCH OGRANICZENIACH METODY O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę

Bardziej szczegółowo

Praca dyplomowa inżynierska/licencjacka/magisterska*

Praca dyplomowa inżynierska/licencjacka/magisterska* Wydział Matematyki kierunek studiów: matematyka stosowana secjalność: Praca dylomowa inżynierska/licencjacka/magisterska* MODEL q-wyborcy Z DYSKRETNYMI I CIĄGŁYMI OPINIAMI Joanna Śmieja słowa kluczowe:

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące

Bardziej szczegółowo

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl

Bardziej szczegółowo

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r. Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia

Bardziej szczegółowo

Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego

Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności

Bardziej szczegółowo

Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera

Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera D. Jeziorek-Knioła, Z. Wojtkowiak, G. Musiał Faculty of Physics, A. Mickiewicz

Bardziej szczegółowo

2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne

Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna

Bardziej szczegółowo

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych

Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych Dynamika nieliniowa i chaos deterministyczny Fizyka układów złożonych Wahadło matematyczne F θ = mgsinθ Druga zasada dynamiki: ma = mgsinθ a = d2 x dt 2 = gsinθ Długość łuku: x = Lθ Równanie ruchu: θ ሷ

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik

MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik MODELE WIELOPOPULACYJNE Biomatematyka Dr Wioleta Drobik UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t 0 )=y 0 Funkcje f i g to zadane funkcje ciągłe trzech zmiennych: t,

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Iteracyjne rozwiązywanie równań

Iteracyjne rozwiązywanie równań Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów

Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów Andrzej Jaszkiewicz, Przemysław Wesołek 3 grudnia 2013 Kontekst problemu Firma dystrybucyjna Kilka statystyk (wiedza z danych miesięcznych)

Bardziej szczegółowo

Zasada średniego potencjału w grach ewolucyjnych. Paweł Nałęcz-Jawecki

Zasada średniego potencjału w grach ewolucyjnych. Paweł Nałęcz-Jawecki Zasada średniego potencjału w grach ewolucyjnych Paweł Nałęcz-Jawecki O czym będzie ten komunikat O czym będzie ten komunikat Jak powiązać procesy błądzenia losowego na dyskretnym grafie ze (stochastycznymi

Bardziej szczegółowo

Prawdopodobieństwo ucieczki w modelu q-votera na jednowymiarowym pierścieniu

Prawdopodobieństwo ucieczki w modelu q-votera na jednowymiarowym pierścieniu Uniwersytet Wrocławski Wydział Fizyki i Astronomii Prawdopodobieństwo ucieczki w modelu q-votera na jednowymiarowym pierścieniu Autor: Maciej Tabiszewski Praca magisterska wykonana pod kierunkiem prof.

Bardziej szczegółowo

Modelowanie Wieloskalowe. Automaty Komórkowe w Inżynierii Materiałowej

Modelowanie Wieloskalowe. Automaty Komórkowe w Inżynierii Materiałowej Modelowanie Wieloskalowe Automaty Komórkowe w Inżynierii Materiałowej Dr inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p.

Bardziej szczegółowo

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie Algorytmy mrówkowe w środowiskach dynamicznych Dariusz Maksim, promotor: prof. nzw. dr hab. Jacek Mańdziuk 1/51 Plan» Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji»

Bardziej szczegółowo

Turystyka i Rekreacja pytania na egzamin dyplomowy

Turystyka i Rekreacja pytania na egzamin dyplomowy Turystyka i Rekreacja pytania na egzamin dyplomowy ZAGADNIENIA Z PRZEDMIOTÓW KIERUNKOWYCH 1. Podstawowe typy i rodzaje przedsiębiorstw turystycznych w Polsce. Zakres ich funkcjonowania. Struktury organizacyjne

Bardziej szczegółowo

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Obszary strukturalne i funkcyjne mózgu

Obszary strukturalne i funkcyjne mózgu Spis treści 2010-03-16 Spis treści 1 Spis treści 2 Jak charakteryzować grafy? 3 4 Wielkości charakterystyczne Jak charakteryzować grafy? Średni stopień wierzchołków Rozkład stopni wierzchołków Graf jest

Bardziej szczegółowo

Algorytmy ewolucyjne NAZEWNICTWO

Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU

MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU Dr Wioleta Drobik-Czwarno CIĄG FIBONACCIEGO Schemat: http://blogiceo.nq.pl/matematycznyblog/2013/02/06/kroliki-fibonacciego/ JAK MOŻEMY ULEPSZYĆ DOTYCHCZASOWE

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

Układy dynamiczne Chaos deterministyczny

Układy dynamiczne Chaos deterministyczny Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego

Bardziej szczegółowo

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa

Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)

Bardziej szczegółowo

W sieci małego świata od DNA po facebooka. Dr hab. Katarzyna Sznajd-Weron, prof. PWr.

W sieci małego świata od DNA po facebooka. Dr hab. Katarzyna Sznajd-Weron, prof. PWr. W sieci małego świata od DNA po facebooka Dr hab. Katarzyna Sznajd-Weron, prof. PWr. Plan Co to jest sieć? Przykłady sieci złożonych Cechy rzeczywistych sieci Modele sieci Sieci złożone i układy złożone

Bardziej szczegółowo

Rozkłady zagregowanych wariantów izotopowych

Rozkłady zagregowanych wariantów izotopowych Rozkłady zagregowanych wariantów izotopowych Piotr Dittwald Uniwersytet Warszawski 9 I 2014 Przypomnienie: podstawowe definicje Izotopy warianty tego samego pierwiastka różniące się liczbą neutronów source:

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo