Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System
|
|
- Maja Marcinkowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System
2 Plan Model dynamiki populacyjnej Pytania Model mikroskopowy Przybliżenie MFA: równania (wady i zalety) Model dynamiki opinii Pytania Model mikroskopowy Przybliżenie MFA: równania (wady i zalety) 2
3 Dynamika populacyjna - jakie pytania? Czy istnieje minimalna wielkość populacji trwałej? Jakie strategie mogą pomóc populacji (migracje, stada, itp.)? Jak drogi, mosty itp. wpływają na rozwój populacji 3
4 Model Wyjściowy środowisko osobnik śmierć ruch rozmnożenie 4
5 Co może osobnik? Przeżywa z prawdopodobieństwem p, umiera z 1-p Ruch do najbliższego sąsiedztwa mrówka ślepa albo krótkowzroczna Jeśli wykona ruch to Partner do rozmnożenia z najbliższego sąsiedztwa mrówka ślepa albo krótkowzroczna Gdzie umieszczane dziecko? - strategia 5
6 Przykład 6
7 Parametry modelu Koncentracja (liczebność) początkowa osobników Przystosowanie osobników p Rozmiar układu wyniki powinny się skalować N N t 1 Nt narodziny śmierć t 1 Nt Nt pr R (1 ) 1 2 p Prawdopodobieństwo ruchu Prawdopodobieństwo partnera
8 Ślepa czy krótkowzroczna mrówka ) (1 ) (1 4 3 ' / ) ( p c pc c c c L p pr R t N t N t N ) ( 1 1 ), ( 1 ) ( 4 3 ), ( 1 t c R t c R t c R t c R Ślepa: Krótkowzroczna:
9 Punkty stałe * ) ( ) ( ) (1 ) ( , 0 ) (1 ) (1 4 3 ' 2 2 p p p p p p p p pc pc p c pc c p c pc c c c
10 Punkty stałe c 1 2 p 1,2 2 3p
11 Co można więcej? Przystosowanie p nie jest stałe w czasie działa ewolucja biologiczna (genetyka) Osobniki heterogeniczne (płeć, p) Osobniki różnią się płcią jak to zależy od koncentracji płci Liczba dzieci zmienna Dzieci umieszczane w gnieździe Ruch wg. mrówki krótkowzrocznej, a nie ślepej
12 Różnica między mrówką ślepą i krótkowzroczną
13 Dzieci w gnieździe czy nie?
14 Zalety podejścia analitycznego Obliczenia numeryczne (rozwiązywanie równań) szybkie! Bardziej systematyczna analiza modelu Czasem otrzymujemy rozwiązanie analityczne pełna wiedza o zależności od parametrów Szczególnie cenne przy układach z niespodziankami (np. przejścia fazowe) Ale
15 Wady podejścia analitycznego Zgodność z wynikami modelu mikroskopowego w ograniczonych przypadkach (np. graf zupełny, układy jednorodne) Potrafi wyprodukować przejście fazowe tam gdzie go nie ma Nie mamy informacji o fluktuacjach przestrzennych Szczególnie złe w układach niskowymiarowych
16 Model wymierań gatunków (Bak, Sneppen 1993) Dobór naturalny (Darwin) - najsłabiej przystosowani mają najmniejszą szansę na przeżycie Oddziaływania między gatunkami (np. przez łańcuch pokarmowy) wpływ zmian sąsiednich gatunków
17 Model BS krok 2: jak to zrobić? fitness
18 Samoorganizacja w modelu BS
19 Dynamika opinii: nastroje społeczne (CBOS) lepiej gorzej
20 Opinia - jak to mierzymy?
21 Modele wyborcy NIE TAK SPINSON = SPIN + PERSON Opinia publiczna m = 1 N N + N = 1 N S i
22 Nieliniowy model q-wyborcy Castellano, Muñoz & Pastor-Satorras, 2009, PRE Każdy spinson oddziałuje z q sąsiadami Jeśli wszyscy q sąsiedzi mają tą sama opinię to spinson przyjmuje opinię sąsiadów (c) P. Nyczka, 2014
23 Model diamentowy pojedyncza próba Willis (1963), Nail et al. (2000)
24 Model q-wyborcy z nonkonformizmem niezależność antykonformizm
25 Na grafie zupełnym 1. γ + (c) = Prob c t + Δ t = c(t) + 1 N, c(t) = N (t) 2. γ (c) = Prob c t + Δ t = c(t) 1 N 3. γ 0 (c) = Prob c t + Δ t = c(t) = 1 γ + (c) + γ (c) Model z antykonformizmem, N : γ + c = (1 c) 1 p c q + p 1 c q γ c = c 1 p (1 c) q +pc q Model z niezależnością, N : γ + c = (1 c) γ c = c 1 p c q + pf 1 p (1 c) q +pf N
26 2015, Piotr Nyczka Trajektorie ciągłe przejście fazowe nieciągłe przejście fazowe p < p* p p* p > p*
27 2015, Piotr Nyczka ciągłe przejście fazowe nieciągłe przejście fazowe
28 Model q-wyborcy z nonkonformizmem niezależność antykonformizm
29 Nieciągłe przejście fazowe (c) 2017 Urszula Grochocińska
30 Model 1 konformizm + antykonformizm Model 2 konformizm + niezależność 2015, Piotr Nyczka
31 Dalsze pytania i uogólnienia Co jeśli struktura sieci społecznej inna? Co jeśli zamiast jednomyślności próg (np. r=50%)? Co jeśli jednocześnie oba typy nonkonformizmu? Co jeśli wprowadzimy osobowość? pn osób na zawsze nonkonformistycznych (1-p)N osób na zawsze konformistycznych Co jeśli rozmiar grupy q nie będzie stały, ale zadany pewnym rozkładem? Co jeśli agenci będą mieli pamięć? Co jeśli dodatkowo pewne pole zewnętrzne?
32 Co jeśli zamiast jednomyślności próg? Trzy parametry modelu: o q liczebność grupy wpływu o r minimalna większość o p ilość nonkonformizmu Dla: o r = q = 1 model wyborcy o r = q = 2 model Sznajdów o r = q model q-wyborcy o r > 1/2q model większości
33 Co jeśli jednocześnie oba typy nonkonformizmu? Pięć parametrów modelu: o q liczebność grupy wpływu o r minimalna większość dla konformizmu o w minimalna większość dla antykonformizmu o p prawd. nonkonformizmu o z prawd. niezależności jeśli nonkonformizm
34 Co jeśli wprowadzimy osobowość? Osobowość: dwa typy spinsonów nonkonformiści konformiści Sytuacja: prawdopodobieństwo p nonkonformizmu
35 Debata psychologiczna: osobowość czy sytuacja? Heterogenous spinsons: < p > = 0.2 Homogenous spinsons: < p > = 0.2
36 Debata psychologiczna: osobowość czy sytuacja? Independence situation Independence person Anticonformity situation person
37 Rozmiar q grupy nie jest stały
38 Jak to powinno wyglądać? Stawiamy konkretne pytanie badawcze Budujemy model Rozważamy go dla łatwego przypadku Łatwo sprawdzić czy dobrze działa Wyniki analityczne Analizujemy model w całej przestrzeni parametrów Rozwijamy model
39 Literatura do q-votera 1. A. Jędrzejewski and K. Sznajd-Weron (2017) Person-Situation Debate Revisited: Phase Transitions with Quenched and Annealed Disorders, Entropy 16, W. Radosz et al. (2017) Q-voter model with nonconformity in freely forming groups: Does the size distribution matter?, Phys. Rev. E 95, A. Jedrzejewski (2017) Pair approximation for the q-voter model with independence on complex networks, Phys. Rev. E 95, K. Byrka et al. (2016) Difficulty is critical ( ), Renewable and Sustainable Energy Reviews 62, A. Chmiel, K. Sznajd-Weron (2015) Phase transitions in the q-voter model with noise on a duplex clique, Phys. Rev. E 92, K. Sznajd-Weron et al. (2014) Is the person-situation debate important for agentbased modeling and vice versa?, PLoS ONE 9(11), e P. Nyczka, K. Sznajd-Weron (2013) Anticonformity or Independence? -Insights from Statistical Physics, J. Stat. Phys. 151, P. Nyczka et al. (2012) Phase transitions in the q-voter model with two types of stochastic driving, Phys. Rev. E 86,
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Piotr Nyczka Institute of Theoretical Physics University of Wrocław Artykuły Opinion dynamics as a movement in a bistable potential
Praca dyplomowa inżynierska
Wydział Matematyki kierunek studiów: matematyka stosowana specjalność Praca dyplomowa inżynierska Dynamika opinii w sieciach bezskalowych Dominik Miażdżyk słowa kluczowe: dynamika opinii model q-wyborcy
Dynamiki rynków oligopolistycznych oczami fizyka
KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 7-10 listopada 2008 1 1 2 1 2 3 1 2 3 4 Wprowadzenie reklamy 1 2 3 4 Wprowadzenie reklamy 5 1 2 3 4 Wprowadzenie reklamy 5 6 1 2 3 4 Wprowadzenie
Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System
Krytyczność, przejścia fazowe i symulacje Monte Carlo Katarzyna Sznajd-Weron Physics of Complex System Przejścia fazowe wokół nas woda faza ciekła PUNKT KRYTYCZNY Lód faza stała para faza gazowa ciągłe
Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron
Krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Temperatura Curie Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk
Praca dyplomowa inżynierska
Wydział Matematyki kierunek studiów: Matematyka Stosowana specjalność: Praca dyplomowa inżynierska Modelowanie agentowe dynamiki opinii w kontekście badań społecznych Grzegorz Marcjasz słowa kluczowe:
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych
Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Tomasz Gradowski Seminarium Dynamiki Układów Złożonych 5. 11. 2007 Motywacja Wybory są fundamentalnym procesem społecznym
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Automaty komórkowe. Katarzyna Sznajd-Weron
Automaty komórkowe Katarzyna Sznajd-Weron Trochę historii CA (Cellular Automata) Koniec lat 40-tych John von Neuman maszyna z mechanizmem samopowielania Sugestia Ulama 1952 dyskretny układ komórek dyskretne
Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp
Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Katarzyna Sznajd Weron Wyodrębniony (realnie lub myślowo) fragment rzeczywistości Jednostka, którą będziemy się zajmować
GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils
GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0
Modelowanie oligopolu metodami fizyki statystycznej. Praca magisterska. Andrzej Pilarczyk. Wydział Fizyki i Astronomii Uniwersytet Wrocławski
Wydział Fizyki i Astronomii Uniwersytet Wrocławski Andrzej Pilarczyk Modelowanie oligopolu metodami fizyki statystycznej Praca magisterska Opiekun: dr hab. Katarzyna Sznajd-Weron Wrocław 2009 Streszczenie
A. Kowalska-Pyzalska, K. Maciejowska, P. Przybyła, K. Sznajd-Weron, R. Weron
A. Kowalska-Pyzalska, K. Maciejowska, P. Przybyła, K. Sznajd-Weron, R. Weron Institute of Organization and Management Wrocław University of Technology Model agentowy Konsument na rynku energii elektrycznej
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Warsztaty metod fizyki teoretycznej
Warsztaty metod fizyki teoretycznej Zestaw 6 Układy złożone- sieci w otaczającym nas świecie Marcin Zagórski, Jan Kaczmarczyk 17.04.2012 1 Wprowadzenie W otaczającym nas świecie odnajdujemy wiele struktur,
Ekologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych
Ekologia wyk. 1 wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ochrona środowiska Ekologia jako dziedzina nauki jest nauką o zależnościach decydujących
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Prawa potęgowe i samoorganizująca się krytyczność. Katarzyna Sznajd-Weron
Prawa potęgowe i samoorganizująca się krytyczność Katarzyna Sznajd-Weron Przystawka: Masa krytyczna (2004) Wybuch jądrowy: masa krytyczna materiału rozszczepialnego Rowerzyści: nieformalny ruch społeczny,
Porównanie różnych podejść typu ODE do modelowania sieci regu
Porównanie różnych podejść typu ODE do modelowania sieci regulacji genów 8 stycznia 2010 Plan prezentacji 1 Praca źródłowa Sieci regulacji genów 2 Założenia Funkcja Hill a Modele dyskretne 3 Przykład Modele
Co to jest model Isinga?
Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie
Konspekt lekcji biologii w gimnazjum klasa I
mgr Piotr Oleksiak Gimnazjum nr.2 wopatowie. Temat. Cechy populacji biologicznej. Konspekt lekcji biologii w gimnazjum klasa I Zakres treści: Populacja cechy charakterystyczne: liczebność, zagęszczenie,
Przejścia fazowe w 1D modelu Isinga
Przejścia fazowe w 1D modelu Isinga z zero-temperaturową dynamiką Glaubera Rafał Topolnicki rafal.topolnicki@gmail.com Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wydział Podstawowych Problemów
Potęga modeli agentowych
Potęga modeli agentowych Katarzyna Sznajd-Weron Katedra UNESCO Studiów Interdyscyplinarnych Seminarium S 3, 7 maja 2013 Aperitif (2006) Physicists pretend not only to know everything, but also to know
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009
Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O pewnym modelu pojawiania się szkód Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Modele pojawiania
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska
Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera
Bładzenie przypadkowe i lokalizacja
Bładzenie przypadkowe i lokalizacja Zdzisław Burda Jarosław Duda, Jean-Marc Luck, Bartłomiej Wacław Seminarium Wydziałowe WFiIS AGH, 07/11/2014 Plan referatu Wprowadzenie Zwykłe bładzenie przypadkowe (GRW)
Tematy prac magisterskich i doktorskich
Tematy prac magisterskich i doktorskich Stochastyczna dynamika z opóźnieniami czasowymi w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki
Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18
Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Zastosowania automatów komórkowych
Sławomir Kulesza kulesza@matman.uwm.edu.pl Symulacje komputerowe (12) Zastosowania automatów komórkowych Wykład dla studentów Informatyki Ostatnia zmiana: 28 maja 2015 (ver. 4.0) Ewolucja populacji biologicznej
Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron
Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron
Hierarchical Cont-Bouchaud model
Hierarchical Cont-Bouchaud model inż. Robert Paluch dr inż. Krzysztof Suchecki prof. dr hab. inż. Janusz Hołyst Pracownia Fizyki w Ekonomii i Naukach Społecznych Wydział Fizyki Politechniki Warszawskiej
Genetyka populacji. Analiza Trwałości Populacji
Genetyka populacji Analiza Trwałości Populacji Analiza Trwałości Populacji Ocena Środowiska i Trwałości Populacji- PHVA to wielostronne opracowanie przygotowywane na ogół podczas tworzenia planu ochrony
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Jarosław Piersa, Tomasz Schreiber {piersaj, tomeks}(at)mat.umk.pl 2010-07-21 1 2 Dany podzbiór V R 3. N neuronów należących do V N Poiss(c
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZE W BIOLOGII 1. Wykład wstępny. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. ajczęściej wykorzystywane testy statystyczne
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Rozkład materiału z biologii do klasy III.
Rozkład materiału z biologii do klasy III. L.p. Temat lekcji Treści programowe Uwagi 1. Nauka o funkcjonowaniu przyrody. 2. Genetyka nauka o dziedziczności i zmienności. -poziomy różnorodności biologicznej:
Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron
Modele sieciowe fizyki statystycznej i symulacje Monte Carlo Katarzyna Sznajd-Weron Perkolacja 2014 Katarzyna Sznajd-Weron Model erkolacji Model erkolacji : Każdy węzeł (wiązanie) sieci jest zajęty niezależnie
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE
JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Dokładność i poprawność Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-233 GDAŃSK e-mail:
Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów
Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego
Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw
Jak długo żyją spółki na polskiej giełdzie? Zastosowanie statystycznej analizy przeżycia do modelowania upadłości przedsiębiorstw dr Karolina Borowiec-Mihilewicz Uniwersytet Ekonomiczny we Wrocławiu Zastosowania
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Metody uporządkowania
Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której: o ilość zapełnień
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
O ISTOTNYCH OGRANICZENIACH METODY
O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę
Praca dyplomowa inżynierska/licencjacka/magisterska*
Wydział Matematyki kierunek studiów: matematyka stosowana secjalność: Praca dylomowa inżynierska/licencjacka/magisterska* MODEL q-wyborcy Z DYSKRETNYMI I CIĄGŁYMI OPINIAMI Joanna Śmieja słowa kluczowe:
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.
Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności
Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera
Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera D. Jeziorek-Knioła, Z. Wojtkowiak, G. Musiał Faculty of Physics, A. Mickiewicz
2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne
Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna
Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych
Dynamika nieliniowa i chaos deterministyczny Fizyka układów złożonych Wahadło matematyczne F θ = mgsinθ Druga zasada dynamiki: ma = mgsinθ a = d2 x dt 2 = gsinθ Długość łuku: x = Lθ Równanie ruchu: θ ሷ
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
MODELE WIELOPOPULACYJNE. Biomatematyka Dr Wioleta Drobik
MODELE WIELOPOPULACYJNE Biomatematyka Dr Wioleta Drobik UKŁADY RÓWNAŃ RÓŻNICZKOWYCH ZWYCZAJNYCH Warunek początkowy: x(t 0 )=x 0, y(t 0 )=y 0 Funkcje f i g to zadane funkcje ciągłe trzech zmiennych: t,
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów
Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów Andrzej Jaszkiewicz, Przemysław Wesołek 3 grudnia 2013 Kontekst problemu Firma dystrybucyjna Kilka statystyk (wiedza z danych miesięcznych)
Zasada średniego potencjału w grach ewolucyjnych. Paweł Nałęcz-Jawecki
Zasada średniego potencjału w grach ewolucyjnych Paweł Nałęcz-Jawecki O czym będzie ten komunikat O czym będzie ten komunikat Jak powiązać procesy błądzenia losowego na dyskretnym grafie ze (stochastycznymi
Prawdopodobieństwo ucieczki w modelu q-votera na jednowymiarowym pierścieniu
Uniwersytet Wrocławski Wydział Fizyki i Astronomii Prawdopodobieństwo ucieczki w modelu q-votera na jednowymiarowym pierścieniu Autor: Maciej Tabiszewski Praca magisterska wykonana pod kierunkiem prof.
Modelowanie Wieloskalowe. Automaty Komórkowe w Inżynierii Materiałowej
Modelowanie Wieloskalowe Automaty Komórkowe w Inżynierii Materiałowej Dr inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p.
Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie
Algorytmy mrówkowe w środowiskach dynamicznych Dariusz Maksim, promotor: prof. nzw. dr hab. Jacek Mańdziuk 1/51 Plan» Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji»
Turystyka i Rekreacja pytania na egzamin dyplomowy
Turystyka i Rekreacja pytania na egzamin dyplomowy ZAGADNIENIA Z PRZEDMIOTÓW KIERUNKOWYCH 1. Podstawowe typy i rodzaje przedsiębiorstw turystycznych w Polsce. Zakres ich funkcjonowania. Struktury organizacyjne
Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n
i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany
WYKŁAD 8 ANALIZA REGRESJI
WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej
Obszary strukturalne i funkcyjne mózgu
Spis treści 2010-03-16 Spis treści 1 Spis treści 2 Jak charakteryzować grafy? 3 4 Wielkości charakterystyczne Jak charakteryzować grafy? Średni stopień wierzchołków Rozkład stopni wierzchołków Graf jest
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU
MODELE ROZWOJU POPULACJI Z UWZGLĘDNIENIEM WIEKU Dr Wioleta Drobik-Czwarno CIĄG FIBONACCIEGO Schemat: http://blogiceo.nq.pl/matematycznyblog/2013/02/06/kroliki-fibonacciego/ JAK MOŻEMY ULEPSZYĆ DOTYCHCZASOWE
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.
Układy dynamiczne Chaos deterministyczny
Układy dynamiczne Chaos deterministyczny Proste iteracje odwzorowań: Funkcja liniowa Funkcja logistyczna chaos deterministyczny automaty komórkowe Ewolucja układu dynamicznego Rozwój w czasie układu dynamicznego
Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa
Kampus Ochota 18 kwietnia 2015 Gry hazardowe, gry ewolucyjne, ekspresja genów, tak czy owak łańcuchy Markowa Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Andrey (Andrei)
W sieci małego świata od DNA po facebooka. Dr hab. Katarzyna Sznajd-Weron, prof. PWr.
W sieci małego świata od DNA po facebooka Dr hab. Katarzyna Sznajd-Weron, prof. PWr. Plan Co to jest sieć? Przykłady sieci złożonych Cechy rzeczywistych sieci Modele sieci Sieci złożone i układy złożone
Rozkłady zagregowanych wariantów izotopowych
Rozkłady zagregowanych wariantów izotopowych Piotr Dittwald Uniwersytet Warszawski 9 I 2014 Przypomnienie: podstawowe definicje Izotopy warianty tego samego pierwiastka różniące się liczbą neutronów source:
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek
Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe