Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej"

Transkrypt

1 Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

2 Zmienna losowa Niech (Ω, p) będzie ziarnista przestrzenia probabilistyczna. Każda funkcję X : Ω R nazywamy zmienna losowa w tej przestrzeni.

3 Zmienna losowa Niech (Ω, p) będzie ziarnista przestrzenia probabilistyczna. Każda funkcję X : Ω R nazywamy zmienna losowa w tej przestrzeni. Jeżeli przestrzeń probabilistyczna (Ω, p) jest modelem doświadczenia δ, to zmienna losowa X w tej przestrzeni jest funkcja, która każdemu wynikowi doświadczenia δ przypisuje liczbę rzeczywista.

4 Przykłady zmiennych losowych Zmienna losowa jest:

5 Przykłady zmiennych losowych Zmienna losowa jest: liczba reszek w n-krotnym rzucie moneta,

6 Przykłady zmiennych losowych Zmienna losowa jest: liczba reszek w n-krotnym rzucie moneta, suma liczb oczek wyrzuconych w dwukrotnym rzucie kostka,

7 Przykłady zmiennych losowych Zmienna losowa jest: liczba reszek w n-krotnym rzucie moneta, suma liczb oczek wyrzuconych w dwukrotnym rzucie kostka, liczba rzutów monet a wykonanych aż do uzyskania po raz pierwszy reszki,

8 Przykłady zmiennych losowych Zmienna losowa jest: liczba reszek w n-krotnym rzucie moneta, suma liczb oczek wyrzuconych w dwukrotnym rzucie kostka, liczba rzutów moneta wykonanych aż do uzyskania po raz pierwszy reszki, pod warunkiem, że o tych liczbach mówimy zanim rozpocznie się doświadczenie.

9 Rozkład zmiennej losowej Niech Ω X oznacza zbiór wartości zmiennej losowej X w przestrzeni probabilistycznej (Ω, p).

10 Rozkład zmiennej losowej Niech Ω X oznacza zbiór wartości zmiennej losowej X w przestrzeni probabilistycznej (Ω, p). Ten zbiór jest co najwyżej przeliczalny. Załóżmy, że Ω X = {x 1, x 2, x 3,..., x t } lub Ω X = {x 1, x 2, x 3,...}.

11 Rozkład zmiennej losowej Jeżeli x j Ω X, to symbolem {X =x j } oznaczamy zbiór {ω Ω : X(ω)=x j }.

12 Rozkład zmiennej losowej Jeżeli x j Ω X, to symbolem {X =x j } oznaczamy zbiór {ω Ω : X(ω)=x j }. Ten zbiór jest zdarzeniem w przestrzeni probabilistycznej (Ω, p).

13 Rozkład zmiennej losowej Jeżeli x j Ω X, to symbolem {X =x j } oznaczamy zbiór {ω Ω : X(ω)=x j }. Ten zbiór jest zdarzeniem w przestrzeni probabilistycznej (Ω, p). Niech P (X =x j ) oznacza jego prawdopodobieństwo.

14 Rozkład zmiennej losowej Jeżeli x j Ω X, to symbolem {X =x j } oznaczamy zbiór {ω Ω : X(ω)=x j }. Ten zbiór jest zdarzeniem w przestrzeni probabilistycznej (Ω, p). Niech P (X =x j ) oznacza jego prawdopodobieństwo. Nazywamy je prawdopodobieństwem, z jakim zmienna losowa X przyjmuje wartość x j.

15 Rozkład zmiennej losowej Określmy na zbiorze Ω X funkcję p X następujaco: p X (x j ) = P (X =x j ) dla x j Ω X.

16 Rozkład zmiennej losowej Określmy na zbiorze Ω X funkcję p X następujaco: p X (x j ) = P (X =x j ) dla x j Ω X. Zbiór {{X =x j } : x j Ω X } jest układem zupełnym zdarzeń w przestrzeni probabilistycznej (Ω, p).

17 Rozkład zmiennej losowej Określmy na zbiorze Ω X funkcję p X następujaco: p X (x j ) = P (X =x j ) dla x j Ω X. Zbiór {{X =x j } : x j Ω X } jest układem zupełnym zdarzeń w przestrzeni probabilistycznej (Ω, p). Funkcja p X jest zatem rozkładem prawdopodobieństwa na zbiorze Ω X, a więc para (Ω X, p X ) jest nowa przestrzenia probabilistyczna.

18 Rozkład zmiennej losowej Definicja. Jeśli X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), Ω X jest zbiorem jej wartości, a p X jest funkcja określona wzorem p X (x j ) = P (X =x j ) dla x j Ω X, to parę (Ω X, p X ) nazywamy przestrzenia probabilistyczna generowana na prostej przez zmienna losowa X, a funkcję p X rozkładem zmiennej losowej X.

19 Uwagi Rozkład zmiennej losowej X jest więc funkcja, która każdej wartości zmiennej losowej X przypisuje prawdopodobieństwo, z jakim zmienna losowa X przyjmuje (może przyjać) tę wartość.

20 Uwagi Rozkład zmiennej losowej X jest więc funkcja, która każdej wartości zmiennej losowej X przypisuje prawdopodobieństwo, z jakim zmienna losowa X przyjmuje (może przyjać) tę wartość. Każda zmienna losowa X w przestrzeni probabilistycznej (Ω, p) przeprowadza ja w nowa przestrzeń probabilistyczna (Ω X, p X ).

21 Przykład. Rozważmy doświadczenie δ: rzut dwiema monetami. Niech X będzie liczba wyrzuconych orłów.

22 Przykład. Rozważmy doświadczenie δ: rzut dwiema monetami. Niech X będzie liczba wyrzuconych orłów. Przyjmijmy oznaczenie: ω k doświadczenie δ zakończy się wyrzuceniem k orłów.

23 Przykład. Rozważmy doświadczenie δ: rzut dwiema monetami. Niech X będzie liczba wyrzuconych orłów. Przyjmijmy oznaczenie: ω k doświadczenie δ zakończy się wyrzuceniem k orłów. Wówczas Ω = {ω 0, ω 1, ω 2 } oraz p(ω 0 ) = p(ω 2 ) = 1 4 oraz p(ω 1 ) = 1 2.

24 Mamy tutaj Ω X = {0, 1, 2}

25 Mamy tutaj Ω X = {0, 1, 2} oraz {X = 0} = {ω 0 }, {X = 1} = {ω 1 }, {X = 2} = {ω 2 },

26 Mamy tutaj Ω X = {0, 1, 2} oraz {X = 0} = {ω 0 }, {X = 1} = {ω 1 }, {X = 2} = {ω 2 }, skad p X (0) = P (X = 0) = p(ω 0 ) = 1 4, p X (1) = P (X = 1) = p(ω 1 ) = 1 2, p X (2) = P (X = 2) = p(ω 2 ) = 1 4.

27 Dystrybuanta zmiennej losowej Niech X będzie zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), Ω X zbiorem jej wartości, p X zaś jej rozkładem. Niech {X < x} = {ω Ω : X(ω) < x}, gdzie x R. Zbiór {X < x} jest zdarzeniem w przestrzeni probabilistycznej (Ω, p). Niech P (X < x) oznacza jego prawdopodobieństwo.

28 Dystrybuanta zmiennej losowej Definicja. Jeżeli X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), to funkcję F X : R R określona wzorem F X (x) = P (X < x), dla x R, nazywamy dystrybuanta zmiennej losowej X.

29 Fizyczna interpretacja rozkładu zmiennej losowej Załóżmy, że X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), że Ω X jest zbiorem jej wartości, a funkcja p X jest jej rozkładem. Niech x j Ω X.

30 Fizyczna interpretacja rozkładu zmiennej losowej Załóżmy, że X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), że Ω X jest zbiorem jej wartości, a funkcja p X jest jej rozkładem. Niech x j Ω X. Interpretujmy liczbę p X (x j ), tj. prawdopodobieństwo P (X =x j ), jako masę skupiona na osi liczbowej w punkcie x j.

31 Fizyczna interpretacja rozkładu zmiennej losowej Załóżmy, że X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), że Ω X jest zbiorem jej wartości, a funkcja p X jest jej rozkładem. Niech x j Ω X. Interpretujmy liczbę p X (x j ), tj. prawdopodobieństwo P (X =x j ), jako masę skupiona na osi liczbowej w punkcie x j. Funkcja p X staje się w tej fizycznej interpretacji rozkładem jednostkowej masy w izolowanych punktach na prostej.

32 Fizyczna interpretacja rozkładu zmiennej losowej Załóżmy, że X jest zmienna losowa w przestrzeni probabilistycznej (Ω, p), że Ω X jest zbiorem jej wartości, a funkcja p X jest jej rozkładem. Niech x j Ω X. Interpretujmy liczbę p X (x j ), tj. prawdopodobieństwo P (X =x j ), jako masę skupiona na osi liczbowej w punkcie x j. Funkcja p X staje się w tej fizycznej interpretacji rozkładem jednostkowej masy w izolowanych punktach na prostej. Ta interpretacja rozkładu zmiennej losowej tłumaczy jego nazwę ROZKŁAD ZIARNISTY.

33

34 F X (x) = 0 dla x (, 0], 1 4 dla x (0, 1], 3 4 dla x (1, 2], 1 dla x (2, ).

35 F X (x) = 0 dla x (, 0], 1 4 dla x (0, 1], 3 4 dla x (1, 2], 1 dla x (2, ).

36 F X (x) = 0 dla x (, 0], 1 4 dla x (0, 1], 3 4 dla x (1, 2], 1 dla x (2, ).

37 F X (x) = 0 dla x (, 0], 1 4 dla x (0, 1], 3 4 dla x (1, 2], 1 dla x (2, ).

38 . F X X

39 Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1];

40 Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1]; 2) a, b R : [a < b = F X (a) F X (b)];

41 Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1]; 2) a, b R : [a < b = F X (a) F X (b)]; 3) a R : [ lim F X(x) = F X (a) x a ] ;

42 Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1]; 2) a, b R : [a < b = F X (a) F X (b)]; 3) a R : [ lim F X(x) = F X (a) x a ] ; 4) lim x F X(x) = 0 oraz lim x F X (x) = 1.

43 Własności dystrybuanty Twierdzenie. Jeżeli X jest zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), a funkcja F X jest jej dystrybuanta, to: 1) x R : [0 F X (x) 1]; 2) a, b R : [a < b = F X (a) F X (b)]; 3) a R : [ lim F X(x) = F X (a) x a ] ; 4) lim x F X(x) = 0 oraz lim x F X (x) = 1.

44 Wartość oczekiwana zmiennej losowej Niech X będzie zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), Ω X zbiorem jej wartości, p X zaś jej rozkładem. Wartościa oczekiwana, albo wartościa średnia zmiennej losowej X, nazywamy liczbę E(X), gdzie: 1 o E(X) = c, gdy Ω X = {c};

45 Wartość oczekiwana zmiennej losowej Niech X będzie zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), Ω X zbiorem jej wartości, p X zaś jej rozkładem. Wartościa oczekiwana, albo wartościa średnia zmiennej losowej X, nazywamy liczbę E(X), gdzie: 1 o E(X) = c, gdy Ω X = {c}; 2 o E(X) = x 1 p X (x 1 ) + x 2 p X (x 2 ) x t p X (x t ), gdy Ω X = {x 1, x 2,..., x t };

46 Wartość oczekiwana zmiennej losowej Niech X będzie zmienna losowa w ziarnistej przestrzeni probabilistycznej (Ω, p), Ω X zbiorem jej wartości, p X zaś jej rozkładem. Wartościa oczekiwana, albo wartościa średnia zmiennej losowej X, nazywamy liczbę E(X), gdzie: 1 o E(X) = c, gdy Ω X = {c}; 2 o E(X) = x 1 p X (x 1 ) + x 2 p X (x 2 ) x t p X (x t ), 3 o E(X) = j=1 gdy Ω X = {x 1, x 2,..., x t }; x j p X (x j ), gdy Ω X = {x 1, x 2, x 3,...}, pod warunkiem, że ten szereg jest zbieżny i to bezwzględnie.

47 Wartość oczekiwana zmiennej losowej W interpretacji fizycznej rozkładu p X liczba E(X) jest środkiem ciężkości tego układu mas. Z tego faktu wynikaja pewne własności wartości oczekiwanej.

48 Własności wartości oczekiwanej Twierdzenie. Jeśli zmienna losowa X posiada wartość oczekiwana E(X), b zaś jest dowolna ustalona liczba rzeczywista, to zmienna losowa Y =X +b także posiada wartość oczekiwana i E(Y ) = E(X +b) = E(X) + b.

49 Własności wartości oczekiwanej Twierdzenie. Jeśli zmienna losowa X posiada wartość oczekiwana E(X), b zaś jest dowolna ustalona liczba rzeczywista, to zmienna losowa Y =X +b także posiada wartość oczekiwana i E(Y ) = E(X +b) = E(X) + b. Twierdzenie. Jeżeli zmienna losowa X posiada wartość oczekiwana E(X) i a jest dowolna ustalona liczba rzeczywista różna od 0, to zmienna losowa Y = a X także posiada wartość oczekiwana i E(Y ) = E(a X) = a E(X).

50 Własności wartości oczekiwanej Twierdzenie. Jeśli zmienne losowe X 1, X 2,..., X s sa określone w tej samej przestrzeni probabilistycznej i każda posiada wartość oczekiwana, to posiada ja również ich suma i E(X 1 + X X s ) = E(X 1 ) + E(X 2 ) + + E(X s ).

51 Wariancja zmiennej losowej Definicja. Jeżeli zmienna losowa X w przestrzeni probabilistycznej (Ω, p) posiada wartość oczekiwana E(X), to wariancja zmiennej losowej X nazywamy liczbę D 2 (X) = E[X E(X)] 2.

52 Wariancja zmiennej losowej Jeżeli X jest zmienna losowa posiadajac a wartość oczekiwana, to Y = [X E(X)] 2 jest nowa zmienna losowa w tej przestrzeni.

53 Wariancja zmiennej losowej Jeżeli X jest zmienna losowa posiadajac a wartość oczekiwana, to Y = [X E(X)] 2 jest nowa zmienna losowa w tej przestrzeni. Zmienna losowa Y jest kwadratem odchylenia wartości zmiennej losowej X od liczby E(X).

54 Wariancja zmiennej losowej Jeżeli X jest zmienna losowa posiadajac a wartość oczekiwana, to Y = [X E(X)] 2 jest nowa zmienna losowa w tej przestrzeni. Zmienna losowa Y jest kwadratem odchylenia wartości zmiennej losowej X od liczby E(X). Wariancja zmiennej losowej X jest więc wartościa oczekiwana kwadratu odchyleń wartości tej zmiennej losowej od liczby E(X).

55 Wariancja zmiennej losowej Z definicji wynika, że wariancja zmiennej losowej wyraża się wzorem: D 2 (X) = x j Ω X [x j E(X)] 2 p X (x j ).

56 Wariancja zmiennej losowej Z definicji wynika, że wariancja zmiennej losowej wyraża się wzorem: D 2 (X) = x j Ω X [x j E(X)] 2 p X (x j ). Z własności wartości oczekiwanej wynika następujace Twierdzenie. Jeżeli zmienna losowa X posiada wartość oczekiwana i posiada wariancję, to D 2 (X) = E(X 2 ) [E(X)] 2.

57 Własności wariancji Jeżeli zmienna losowa X ma wariancję, c zaś jest ustalona liczba rzeczywista, to: 1 o D 2 (c X) = c 2 D 2 (X);

58 Własności wariancji Jeżeli zmienna losowa X ma wariancję, c zaś jest ustalona liczba rzeczywista, to: 1 o D 2 (c X) = c 2 D 2 (X); 2 o D 2 (X + c) = D 2 (X);

59 Odchylenie standardowe Definicja. Pierwiastek kwadratowy z wariancji D 2 (X) nazywamy odchyleniem standardowym zmiennej losowej X i oznaczamy σ X.

60 Co wynika z faktu, że wariancja D 2 (X) = x j Ω X [x j E(X)] 2 p X (x j ). jest mała?

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa

Wstęp do rachunku prawdopodobieństwa Wstęp do rachunku prawdopodobieństwa Rozdział 06: Zmienne losowe. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Wprowadzenie Przykład 6.1 Adam, Bolek i Czesiu wstąpili do kasyna. Postanowili

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL?

Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? Statystyka i Rachunek Prawdopodobieństwa (Fizyka i Optyka) Lista zadań Marek Klonowski Wrocław 2015/16 Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? 2. Ile jest ciągów bitowych

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008 STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 dr Przemysław Szczepaniak Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 ZLICZANIE 1.ZmiastaAdomiastaBprowadzipięćdróg.Ilomasposobamimożnaodbyćpodróż A B Apodwarunkiem,żeniemożnawracaćtąsamądrogą?

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 2 i 3 Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne autor: Maciej Zięba Politechnika Wrocławska Pojęcie prawdopodobieństwa Prawdopodobieństwo

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Statystyka Astronomiczna

Statystyka Astronomiczna Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Pojęcie przestrzeni probabilistycznej

Pojęcie przestrzeni probabilistycznej Pojęcie przestrzeni probabilistycznej Definicja (przestrzeni probabilistycznej) Uporządkowany układ < Ω, S, P> nazywamy przestrzenią probabilistyczną jeśli (Ω) Ω jest niepustym zbiorem zwanym przestrzenia

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 21 marca 2011 Zmienna losowa wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie z rejestracja jakiś sygna lów (danych). Moga to być na

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach

Elementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach Statystyka matematyczna w zastosowaniach Elementy rachunku prawdopodobieństwa Robert Pietrzykowski STATYSTYKA: nauka poświęcona metodom badania(analizowania) zjawisk masowych; polega na systematyzowaniu

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.

Bardziej szczegółowo

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3 LISTA 4 1.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ = 7. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania

Bardziej szczegółowo

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa.losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 9.10.2011 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0, 1] oraz

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL?

Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? Statystyka i Rachunek Prawdopodobieństwa (IB) Lista zadań Marek Klonowski Wrocław 2015/16 Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? 2. Ile jest ciągów bitowych długości

Bardziej szczegółowo

S88 Badanie rzutu kostką sześcienną

S88 Badanie rzutu kostką sześcienną S88 Badanie rzutu kostką sześcienną Andrzej Kapanowski 29 lutego 2012 Streszczenie Celem ćwiczenia jest zbadanie rzutu kostką sześcienną. Dokument ma być pomocą przy przygotowywaniu opracowania z ćwiczenia

Bardziej szczegółowo

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III) Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty

Bardziej szczegółowo