Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b]

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b]"

Transkrypt

1 Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b] Dagna Bieda, Piotr Jarecki, Tomasz Nachtigall, Jakub Ciesiółka, Marek Kubiczek

2 Metoda Monte Carlo Metoda Monte Carlo (MC) jest stosowana do modelowania matematycznego procesów zbyt złożonych (obliczania całek, łańcuchów procesów statystycznych), aby można było przewidzieć ich wyniki za pomocą podejścia analitycznego. Istotną rolę w metodzie MC odgrywa losowanie (wybór przypadkowy) wielkości charakteryzujących proces, przy czym losowanie dokonywane jest zgodnie z rozkładem, który musi być znany.

3 Cel projektu Celem projektu jest pokazanie na kilku przykładach, Celem projektu jest pokazanie na kilku przykładach, jakie wyniki daje metoda Monte Carlo w zależności od ilości iteracji w porównaniu z wynikami dokładnymi, obliczonymi ze wzorów na pola lub z całek podwójnych. W tym celu do każdego przykładu został napisany program w języku C++ obliczający pole metodą MC.

4 Ogólny algorytm 1. Losujemy niezależnie liczby u, 1 u 2,..., u n oraz v 1, v2,..., v n z rozkładu jednostajnego U[ 0,1]

5 Ogólny algorytm 1. Losujemy niezależnie liczby u 1 u 2,..., u n oraz v 1, v2,..., v n z rozkładu jednostajnego U[ 0,1] 2. Przekształcamy x ( ) k a + b a u k i y k = a + b dla k =1,2,..., n = ( ) k a v

6 Ogólny algorytm 1. Losujemy niezależnie liczby u 1 u 2,..., u n oraz v 1, v2,..., v n z rozkładu jednostajnego U[ 0,1] 2. Przekształcamy x ( ) k a + b a u k i y k = a + b dla k =1,2,..., n = ( ) k 3. Jako przybliżoną wartość pola przyjmujemy: D ( b a ) n f ( x ) k, y k 2 przy czym za przyjmujemy 1, gdy punkt należy do obszaru D, 0 w przeciwnym przypadku. n k = 1 f (, ) x k y k a v

7 Przykład 1 pole trójkąta

8 Przykład 1 pole trójkąta Dany jest trójkąt t zawarty w prostokącie [2,5]x[2,6]. Ograniczony prostymi: x oraz y = x = 5

9 Przykład 1 pole trójkąta Obliczamy pole trójkąta ta ze standardowego wzoru P = 2 1 a h P = = 4,5 Oraz metodą MC.

10 Wyniki działania programu dla różnych ilości losowań 6,5 Rozrzut wartości pola trójkąta przy 100 losowaniach 6 5,5 Wartość pola 5 4,5 4 Rozrzut wartości pola Wartość policzona 3,5 3 2, Numer próby

11 Wyniki działania programu dla różnych ilości losowań 5 Rozrzut wartości pola trójkąta dla 1000 losowań 4,9 4,8 4,7 Wartość pola 4,6 4,5 4,4 Rozrzut wartości pola Wartość policzona 4,3 4,2 4, Numer próby

12 Wyniki działania programu dla różnych ilości losowań Rozrzut wartości pola trójkąta dla losowań 4,54 4,52 Wartość pola 4,5 4,48 Rozrzut wartości pola Wartość policzona 4,46 4, Numer próby

13 Wyniki działania programu dla różnych ilości losowań Liczba losowań Wartość min 3,12 4,14 4,54 Wartość max 5,88 4,96 4,46 Wartość średnia 4,5 4,54 4,51 Odchylenie standardowe 0,56 0,19 0,02

14 Przykład 2 pole koła

15 Przykład 2 pole koła Dane jest koło zawarte w protokącie [3,9]x[4,10]. Ograniczone krzywymi o równaniach: 2 y = ( x 6) y = 7 9 ( x 6) x x = 9 = 3 2

16 Przykład 2 pole koła Obliczamy pole ze standardowego wzoru: P = πr P = 9π 28,27 oraz metodą MC. 2

17 Wyniki działania programu dla różnych ilości losowań 32 Rozrzut wartości pola figury przy 100 losowaniach Wartość pola Rozrzut wartości pola Wartość policzona Numer próby

18 Wyniki działania programu dla różnych ilości losowań 29,5 Rozrzut wartości pola figury przy 1000 losowań 29 Wartość pola 28,5 28 Rozrzut wartości pola Wartość policzona 27, Numer próby

19 Wyniki działania programu dla różnych ilości losowań 28,4 Rozrzut wartości pola figury dla losowań 28,35 Wartość pola 28,3 28,25 Rozrzut wartości pola Wartość policzona 28,2 28, Numer próby

20 Wyniki działania programu dla różnych ilości losowań Liczba losowań Wartość min 24,12 27,32 28,17 Wartość max 31,68 29,41 28,38 Wartość średnia 28,13 28,41 28,27 Odchylenie standardowe 1,44 0,46 0,04

21 Przykład 3

22 Przykład 3 Dana jest figura zawarta w prostokącie [5,10]x[1,10]. Ograniczona krzywymi o równaniach: y = x +17 y 2 = 0,6515x 12x + 56,26

23 Przykład 3 Obliczamy pole figury korzystając z całki podwójnej P = 10 5,5 7 5,5 10dx + (0,6515x ( x + 17) dx 12x + 56,26) dx 24,79 oraz przy pomocy metody MC.

24 Wyniki działania programu dla różnych ilości losowań Rozrzut wartości pola figury przy 100 losowaniach Wartość pola Rozrzut wartości pola Wartość policzona Numer próby

25 Wyniki działania programu dla różnych ilości losowań 27 Rozrzut wartości pola figury dla 1000 losowań 26, ,5 Wartość pola 25 24,5 24 Rozrzut wartości pola Wartość policzona 23, , Numer próby

26 Wyniki działania programu dla różnych ilości losowań 25 Rozrzut wartości pola figury dla losowań 24,95 24,9 24,85 Wartość pola 24,8 24,75 24,7 Rozrzut wartości pola Wartość policzona 24,65 24,6 24, Numer próby

27 Wyniki działania programu dla różnych ilości losowań Liczba losowań Wartość min 19,35 22,90 24,59 Wartość max 31,95 26,50 24,96 Wartość średnia 24,53 24,88 24,82 Odchylenie standardowe 2,27 0,73 0,08

28 Przykład 4

29 Przykład 4 Dane są 3 figury zawarte w kwadracie [4,11]x[4,11]. ograniczone krzywymi 2 y = 0,12 x + 1,8 x + 8,28 2 y = 0,12 x + 1,8 x + 10,28 x = 4, x = 11 x x = 4, x = 6, y = 9, y = 11 = 9, x = 11, y = 9, y = 11

30 Przykład 4 Obliczamy pole figury korzystając z całki podwójnej P = (0,12 x (0,12 x 2 + 1,8 x + 1,8 x + 8,28) dx = + 10,28) dx 22 oraz przy pomocy metody MC.

31 Wyniki działania programu dla różnych ilości losowań Rozrzut wartości pola figury przy 100 losowaniach Wartość pola Rozrzut wartości pola Wartość policzona Numer próby

32 Wyniki działania programu dla różnych ilości losowań 24,5 Rozrzut wartości pola figury dla 1000 losowań 24 23,5 23 Wartość pola 22, ,5 Rozrzut wartości pola Wartość policzona 21 20, Numer próby

33 Wyniki działania programu dla różnych ilości losowań 22,2 Rozrzut wartości pola figury dla losowań 22,15 22,1 22,05 Wartość pola 22 21,95 21,9 Rozrzut wartości pola Wartość policzona 21,85 21,8 21, Numer próby

34 Wyniki działania programu dla różnych ilości losowań Liczba losowań Wartość min 16,17 20,18 21,79 Wartość max 27,93 24,01 22,18 Wartość średnia 22,08 21,99 21,99 Odchylenie standardowe 2,46 0,83 0,08

35 Odchylenia standardowe dla różnych n σ σ Wynik dokładny [n=100] [n=1000] [n=100000] Trójkąt 4,5 0,56 0,10 0,02 Koło 28,27 1,44 0,46 0,04 Parabola 24,79 2,27 0,73 0,08 Buźka 22 2,46 0,83 0,08 σ

36 Dziękujemy za uwagę

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b].

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b]. Rachunek Prawdopodobienstwa MAEW104 Wydział Elektroniki, rok akad. 2008/09, sem. letni wykład: dr hab. Agnieszka Jurlewicz Temat projektu: Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego

Bardziej szczegółowo

wykład V uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C++ klasy i obiekty wykład V dr Jarosław Mederski Spis Język C++ - klasy

wykład V uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C++ klasy i obiekty wykład V dr Jarosław Mederski Spis Język C++ - klasy i obiekty Programowanie i obiekty uzupełnienie notatek: dr Jerzy Białkowski i obiekty 1 2 3 4 i obiekty Obiektowość języka C++ Na tym wykładzie poznamy: ˆ Klasa (w języku C++ rozszerzenie struktury, typ

Bardziej szczegółowo

Nie do końca zaawansowane elementy programowania w pakiecie R. Tomasz Suchocki

Nie do końca zaawansowane elementy programowania w pakiecie R. Tomasz Suchocki Nie do końca zaawansowane elementy programowania w pakiecie R Tomasz Suchocki Plan wykładu Metody Monte Carlo Jak bardzo można przybliżyć liczbę π? Całkowanie numeryczne R w Linuxie Tinn-R Metody Monte

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

Dział I FUNKCJE TRYGONOMETRYCZNE

Dział I FUNKCJE TRYGONOMETRYCZNE MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobieństwo geometryczne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Uniwersyteckie Koło Matematyczne 23 kwietnia 2009 r. Bartosz Ziemkiewicz (WMiI UMK) Prawdopodobieństwo geometryczne

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax, Funkcja kwadratowa Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Zawód: FRYZJER, STOLARZ, MECHANIK POJAZDÓW SAMOCHODOWYCH, BLACHARZ SAMOCHODOWY I inne Rok szkolny 2012/2013 Przedmiot: MATEMATYKA Numer programu

Bardziej szczegółowo

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej Całka oznaczona zastosowania (wykład 9;26.11.7) Definicja całki oznaczonej dla funkcji ciagłej Definicja 1 Załózmy, że funkcja f jest ciagła na przedziale [a, b]. Całkę oznaczona z funkcji ci b a f(x)dx

Bardziej szczegółowo

Okręgi i proste na płaszczyźnie

Okręgi i proste na płaszczyźnie Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne 16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 1 Całkowanie numeryczne 16 kwiecień 2009 SciLab w obliczeniach numerycznych - część 4 Slajd 2 Plan zajęć 1. Całkowanie przybliżone funkcji

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

w najprostszych przypadkach, np. dla trójkątów równobocznych

w najprostszych przypadkach, np. dla trójkątów równobocznych MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania

Bardziej szczegółowo

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f(x) = 3x 3 przy x = zakładając, że przyrost x zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f(x)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1 KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)

Bardziej szczegółowo

Wymagania edukacyjne zakres podstawowy klasa 3A

Wymagania edukacyjne zakres podstawowy klasa 3A Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu umiejętności

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 3 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 3 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 3 gimnazjum Statystyka opisowa i elementy rachunku prawdopodobieństwa

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie II gimnazjum

Kryteria ocen z matematyki w klasie II gimnazjum Kryteria ocen z matematyki w klasie II gimnazjum Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA DZIAŁ I: POTĘGI I PIERWIASTKI zna i rozumie pojęcie potęgi o wykładniku naturalnym (2) umie zapisać potęgę w postaci iloczynu (2)

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) DZIAŁ 1. POTĘGI (14 h) TEMAT ZAJĘĆ 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach. 6. Potęgowanie potęgi. 7-8. Potęgowanie iloczynu i

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum

Wymagania edukacyjne z matematyki dla klasy II gimnazjum Wymagania edukacyjne z matematyki dla klasy II gimnazjum Opracowano na podstawie programu Matematyka z plusem Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE I GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Zgodny z programem Matematyka z plusem. Numer dopuszczenia DKW-4014-139/99. Zajęcia indywidualne.

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era POTĘGI I PIERWIASTKI POTĘGI Na ocenę dopuszczającą uczeń: zna i rozumie pojęcie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001

PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Bożena Bakiewicz, Bożena Pindral PLAN WYNIKOWY Z MAEMATYKI DLA KLASY II GIMNAZJUM do podręcznika MATEMATYKA 2001 Poziom wymagań: K - konieczny P - podstawowy R - rozszerzający D - dopełniający POTĘGI,

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego

2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

Jak napisać program obliczający pola powierzchni różnych figur płaskich?

Jak napisać program obliczający pola powierzchni różnych figur płaskich? Część IX C++ Jak napisać program obliczający pola powierzchni różnych figur płaskich? Na początku, przed stworzeniem właściwego kodu programu zaprojektujemy naszą aplikację i stworzymy schemat blokowy

Bardziej szczegółowo

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Matura 0 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny brak stron lub

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.

Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo. 6 Orientacyjnie 40 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.. Śmietankowe ponad wszystko Statystyka. Powtórzenie wiadomości ze statystyki 3 Czytanka. O języku matematyki, czyli

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Egzamin Gimnazjalny z WSiP LISTOPAD 2015 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo

SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH

SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH SPRAWDZIAN UMIEJĘTNOŚCI MATEMATYCZNYCH PO KLASIE 3 SZKOŁY PODSTAWOWEJ Autor: Grażyna Wójcicka Konsultacje: Weronika Janiszewska, Joanna Zagórska, Maria Zaorska, Tomasz Zaorski imię i nazwisko 1 Zapisz

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014

Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014 I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo