P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)"

Transkrypt

1 Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P (A), to mówimy, że zdarzenia A i B są niezależne. Przekształćmy równość P (A B) = P (A) do postaci P (A B) P (B) = P (A), skąd P (A B) = P (A)P (B). Definicja niezależności Zdarzenia A i B są niezależne, gdy P (A B) = P (A) P (B). Przykład Dwukrotny rzut monetą: Ω = {OO, OR, RO, RR} A=w pierwszym rzucie orzeł B=w drugim rzucie orzeł P (B) = 1 2, P (B A) = P (B A) P (A) = 1/4 1/2 = 1 2. Zdarzenia A i B są niezależne. Zadanie Założenie: prawdopodobieństwo urodzenia chłopca = prawdopodobieństwo urodzenia dziewczynki = 1 2. Spośród rodzin mających n dzieci, n 2, wybieramy losowo jedną rodzinę. A=w tej rodzinie jest co najwyżej jedna dziewczynka B=w tej rodzinie są i dziewczynki i chłopcy Czy zdarzenia A i B są niezależne? Spróbujmy odgadnąć odpowiedź! 1

2 Rozwiązanie Ω = {x 1, x 2,..., x n }, gdzie x i = d lub c Ω = 2 n, wszystkie zdarzenia elementarne są jednakowo prawdopodobne. A =(sami chłopcy lub jedna dziewczynka)= n + 1. B = 2 n 2, A B =(dokładnie jedna dziewczynka)=n. niezależność A i B: czyli tylko wtedy, gdy n = 3. P (A B) = P (A) P (B) n 2 n = n n 2n 2 2 n, Niezależnośc trzech zdarzeń Zdarzenia A, B oraz C są niezależne, gdy P (A B) = P (A)P (B), P (A C) = P (A)P (C), P (B C) = P (B)P (C), P (A B C) = P (A)P (B)P (C). Zadanie W urnie są cztery kule: biała, czerwona, niebieska i taka, na której są wszystkie trzy powyższe kolory. Losujemy jedną kulę. Czy zdarzenia: na wylosowanej kuli jest kolor B, C, N są niezależne? Czy są parami niezależne? Rozwiązanie P (B) = P (wylosujemy kulę, na której jest kolor biały)= 1 2, Podobnie P (C) = P (N) = 1 2. Oczywiście P (B C) = P (wylosujemy kulę, na której są kolory biały i czerwony)= 1 4. P (B C) = P (B)P (C) = 1 4 te zdarzenia są niezależne! Tak samo pary B i N oraz C i N są niezależne. Ale P (B C N) = 1 4, natomiast P (B)P (C)P (N) = 1 8 i te zdarzenia NIE SĄ niezależne! 2

3 Ogólna definicja zdarzeń niezależnych Zdarzenia A 1, A 2,..., A n są niezależne, gdy dla każdego ich podzbioru A i1, A i2,... A ik zachodzi równość P (A i1 A i2... A ik ) = P (A i1 )P (A i2 )... P (A ik ). To jest łącznie aż 2 n n 1 równości do sprawdzenia! Na szczęscie zwykle nie musimy ich sprawdzać. Schemat Bernoulliego Powtarzamy n razy doświadczenie, którego wynikami mogą być sukces lub porażka, przy czym: kolejne doświadczenia są niezależne; w każdym doświadczeniu prawdopodobieństwo sukcesu wynosi p, a porażki 1 p. Niech S n oznacza liczbę sukcesów w n powtórzeniach. Wówczas P (S n = k) = ( ) n p k (1 p) n k, k = 0, 1, 2,..., n. k Ilustracja: deska Galtona Kulka opada, napotykając na kilka rzędów przeszkód, przy czym na każdej przeszkodzie może skręcić w prawo z prawdopodobieństwem p lub w lewo z prawdopodobienstwem q = 1 p. Gdy rzucimy tak kilkaset kulek, to ile ich zbierze się w kolejnych przegródkach na dole? Odpowiedź dla n = 10 i p = 1 2 Ponieważ tutaj p = 1 2, więc pk (1 p) 10 k = ( 1 2 ) 10, zatem liczby kulek w poszczególnych przegródkach są niemal proporcjonalne do współczynników newtonowskich ( ) 10 k dla k = 0, 1, 2,..., 10 czyli do liczb 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 Zmienna losowa Załóżmy, że znamy wszystkie mozliwe wyniki (czyli zdarzenia elemantarne) Ω pewnego doświadczenia losowego. Funkcję nazywamy zmienną losową. X : Ω R 3

4 Przykłady zmiennych losowych Liczba oczek przy jednokrotnym rzucie kostki. Suma oczek w dwóch rzutach kostką. Liczba sukcesów S n w schemacie Bernoulliego. Numer próby, w której pojawi się pierwszy sukces w schemacie Bernoulliego. Liczba wypadków drogowych, które zdarzą się w Polsce w przyszłym tygodniu. Wzrost losowo wybranego studenta WPPT. Błąd pomiaru pewnej wielkości. Suma wypłacona przez firmę ubezpieczeniową. Cena akcji spółki X jutro o 12:00 (za tydzień, za miesiac). Pierwszy moment, w którym cena akcji spółki Y przekroczy 100 zł. Dwa typy zmiennych loswych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna o rozkładzie dyskretnym. Które wymienione uprzednio zmienne mają rozkłady dyskretne? Jeśli wszystkich wartości zmiennej NIE MOŻNA wypisać w postaci ciągu, to mówimy, że jest to zmienna o rozkładzie ciągłym. Tak jest zawsze, gdy zbiór wartości zawiera jakiś przedział (a, b). Które z wymienionych zmiennych mają rozkłady ciągłe? Rozkład zmiennej losowej dyskretnej Rozkład takiej zmiennej to opis jej możliwych wartości i prawdopodobieństw, z jakimi te wartości zmienna przyjmuje. X = wynik rzutu symetryczną kostką Wartości, jakie może przyjąć X to 1, 2, 3, 4, 5 i 6. Prawdopodobieństwo każdej z tych wartości jest równe 1 6. Y = suma oczek przy dwóch rzutach = 2, 3,..., 10, 11, 12. Jakie są prawdopodobieństwa tych wyników? Zmienne związane z próbami Bernoulliego Liczba sukcesów S n w n próbach. P (S n = k) = ( n k) p k (1 p) n k, k = 0, 1, 2,..., n. Numer próby X, w której pojawi się pierwszy sukces. 4

5 P (X = k) =?, k = 1, 2, 3,... X = k, gdy próby: pierwsza, druga,...,(k 1)-sza dały porażki, a k-ta sukces. Stąd P (X = k) = (1 p) k 1 p, k = 1, 2, 3,... Rozkład Poissona Zmienna X przyjmująca wartości 0, 1, 2,... ma rozkład Poissona z parametrem λ > 0, gdy Rozkład Poissona mają: P (X = k) = λk k! e λ, k = 0, 1, 2,... liczba wypadków w ustalonym dniu (tygodniu, roku, kraju); liczba sygnałów (np. rozpadów atomów radioaktywnych w czasie 1 minuty); liczba gwiazd w losowo wybranym fragmencie nieba, itp. Wartość średnia zmiennej losowej Jeżeli P (X = x k ) = p k, k = 0, 1, 2, 3,..., to wartość średnia (wartość oczekwiana) zmiennej X E(X) = k x k p k. Intuicja: na prostej rozmieszczamy masy p i w punktach x i, i = 0, 1, 2... Wartość średnia to środek ciężkości tego układu (może nie istnieć!) Wariancja zmiennej losowej Jeżeli P (X = x k ) = p k, wariancja zmiennej X k = 0, 1, 2, 3,..., to V ar(x) = k (x k E(X)) 2 p k. Wariancję oznacza się też symbolem D 2 (X). Wariancja mierzy rozrzut wyników średnie odchylenie od wartości średniej. Wariancję można też obliczyć ze wzoru V ar(x) = k x 2 k p k (E(X)) 2. Rozkłady ciągłe (z gęstością) Jeśli dana jest taka funkcja f : R [0, ), że f(x) dx = 1, to f nazywamy gęstością rozkładu zmiennej X i obliczamy 5

6 prawdopodobieństwa P (a < X < b) = b a f(x) dx. Przykłady gęstości Rozkład jednostajny na odcinku [a, b] f(x) = 1 b a, gdy x [a, b], 0, gdy x / [a, b]. Przykłady gęstości Rozkład normalny z parametrami m R i σ > 0 f(x) = 1 2π σ e (x m)2 2σ 2, x R 6

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne. Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej

Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej Wykład 4, 5 i 6 Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak

Bardziej szczegółowo

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008 STATYSTYKA MATEMATYCZNA - dział matematyki stosowanej oparty na rachunku prawdopodobieństwa; zajmuje się badaniem zbiorów na podstawie analizy ich części. Nauka, której przedmiotem zainteresowania są metody

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba 3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z 12.03.2007 Populacja i próba Populacja- zbiorowość skończona lub nieskończona, w stosunku do której mają być formułowane

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 = Kombinatoryka W tej serii zadań można znaleźć pojawiające się na egzaminach zadania dotyczące problemu wyznaczania prostych parametrów rozkładu w przypadku zgadnień kombinatorycznych. Zadania te wymagają

Bardziej szczegółowo

dr Jarosław Kotowicz 29 października Zadania z wykładu 1

dr Jarosław Kotowicz 29 października Zadania z wykładu 1 Rachunek prawdopodobieństwa - ćwiczenia czwarte Schematy rachunku prawdopodobieństwa. Prawdopodobieństwo geometryczne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 29 października 20 Spis

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Elektrotechnika II [ Ćwiczenia ] 2016/2017 Zimowy

Elektrotechnika II [ Ćwiczenia ] 2016/2017 Zimowy Elektrotechnika II [ Ćwiczenia ] 206/207 Zimowy Lp Nazwisko i imię Pkt Kol Suma Popr Ocena Data Egzamin Basaj Mateusz 2 Ciechowski Dawid Dst Dst 3 Cieślik Piotr 4 Glica Mateusz 5 Głuszkowski Michał 6 Kikulski

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 9.10.2011 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0, 1] oraz

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka Matematyczna

Rachunek Prawdopodobieństwa i Statystyka Matematyczna Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Prawdopodobieństwo zadania na sprawdzian

Prawdopodobieństwo zadania na sprawdzian Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych

Bardziej szczegółowo

Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL?

Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? Statystyka i Rachunek Prawdopodobieństwa (Fizyka i Optyka) Lista zadań Marek Klonowski Wrocław 2015/16 Lista 1 1. Ile jest tablic rejestracyjnych formatu LL CCCC? A ile CC LLLL? 2. Ile jest ciągów bitowych

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Zdarzenia losowe i prawdopodobieństwo

Zdarzenia losowe i prawdopodobieństwo Rozdział 1 Zdarzenia losowe i prawdopodobieństwo 1.1 Klasyfikacja zdarzeń Zdarzenie elementarne pojęcie aprioryczne, które nie może być zdefiniowane. Odpowiednik pojęcia punkt w geometrii. Zdarzenie elementarne

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

Prawdopodobieństwo GEOMETRYCZNE

Prawdopodobieństwo GEOMETRYCZNE Prawdopodobieństwo GEOMETRYCZNE Zadanie 1. Skoczek spadochronowy skacze nad kwadratową wyspą o boku 20km. Na środku wyspy znajduje się prostokątne lądowisko o wymiarach 2x3 km. Jakie jest prawdopodobieństwo,

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach

Elementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach Statystyka matematyczna w zastosowaniach Elementy rachunku prawdopodobieństwa Robert Pietrzykowski STATYSTYKA: nauka poświęcona metodom badania(analizowania) zjawisk masowych; polega na systematyzowaniu

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa i jej rozkład ZMIENNA LOSOWA Funkcja X przyporządkowująca każdemu zdarzeniu elementarnemu jedną i tylko jedną liczbę x. zmienna losowa skokowa skończona

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012

Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 dr Przemysław Szczepaniak Kurs do wyboru Wstęp do analizy algorytmów Instytut Matematyki i Informatyki UO 2011/2012 ZLICZANIE 1.ZmiastaAdomiastaBprowadzipięćdróg.Ilomasposobamimożnaodbyćpodróż A B Apodwarunkiem,żeniemożnawracaćtąsamądrogą?

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp. Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (

Bardziej szczegółowo

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3 LISTA 4 1.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ = 7. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest

Bardziej szczegółowo

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6

Bardziej szczegółowo

X P 0,2 0,5 0,2 0,1

X P 0,2 0,5 0,2 0,1 Zadanie 1 Zmienna losowa X ma rozkład: x -2 0 1 p 0,2 0,5 0,3 Wyznaczyć i narysować dystrybuantę tej zmiennej losowej. Zadanie 2 Zmienna losowa X ma rozkład: X -10 0 10 40 P 0,2 0,5 0,2 0,1 Podać wartość

Bardziej szczegółowo

Skrypt 30. Prawdopodobieństwo

Skrypt 30. Prawdopodobieństwo Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.

Bardziej szczegółowo

Lista 1 - Prawdopodobieństwo

Lista 1 - Prawdopodobieństwo Lista 1 - Prawdopodobieństwo Zadanie 1. Niech A, B, C będą zdarzeniami. Zapisać za pomocą działań na zbiorach następujące zdarzenia: a) zachodzi dokładnie jedno ze zdarzeń A, B, C; b) zachodzą dokładnie

Bardziej szczegółowo

1 Rozklady dyskretne. Rachunek p-stwa Przeksztalcenia zmiennych losowych. 2. Rozklad dwumianowy. 3. Rozklad Poissona

1 Rozklady dyskretne. Rachunek p-stwa Przeksztalcenia zmiennych losowych. 2. Rozklad dwumianowy. 3. Rozklad Poissona Rachunek p-stwa 2010-2011 1 Rozklady dyskretne 1. Przeksztalcenia zmiennych losowych 2. Rozklad dwumianowy 3. Rozklad Poissona 4. Inne rozklady dyskretne 1 Przeksztalcenia zmiennych losowych Zmienna losowa

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B; Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,

Bardziej szczegółowo